Abstract

A dual-band polarization-independent coherent perfect absorber(CPA) based on metal-graphene nanostructure is proposed, which is composed of golden nanorings with different sizes on graphene monolayer. Based on the finite-difference time-domain (FDTD) solutions, coherent perfect absorptions of the metal-graphene CPA are achieved at frequencies of 50.54 THz and 43.60 THz, which are resulted from the excited surface plasmon resonance induced by different size nanorings. Through varying the relative phase of two incident countering-propagating beams, the absorption peaks are all-optically tuned from 98.3 % and 98.4 % to nearly 0, respectively. By changing the gate-controlled Fermi energy of the graphene layer, the resonance frequencies of the CPA are tuned simultaneously without changing the geometrical parameters. And polarization independence of the metal-graphene CPA is revealed due to the center symmetry of nanoring structure. The electrical tunability of resonance frequency and polarization independence enable the proposed CPA to be widely applied in optoelectronic and engineering technology areas for tunable active multiple-band regulation and control.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual-band tunable perfect metamaterial absorber based on graphene

Fengling Wang, Sha Huang, Ling Li, Weidong Chen, and Zhengwei Xie
Appl. Opt. 57(24) 6916-6922 (2018)

Independently tunable multi-band and ultra-wide-band absorbers based on multilayer metal-graphene metamaterials

Yan Liu, Renbin Zhong, Jiebiao Huang, Yilin Lv, Chen Han, and Shenggang Liu
Opt. Express 27(5) 7393-7404 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. Dutta-Gupta, “Strong-interaction-mediated critical coupling at two distinct frequencies,” Opt. Lett. 32, 1483–11078 (2007).
    [Crossref]
  2. B. S. Tun, B. X. Khuye, Y. Ju Kim, V. D. Lam, K. W. Kim, and Y. Lee, “Polarization-independent, wide-incident-angle and dual-band perfect absorption, based on near-field coupling in a symmetric metamaterial,” Sci. Rep. 7, 11507 (2017).
    [Crossref]
  3. B. X. Wang, G. Z. Wang, T. Sang, and L. L. Wang, “Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure,” Sci. Rep. 7, 41373 (2017).
    [Crossref] [PubMed]
  4. G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103, 064302 (2008).
    [Crossref]
  5. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, HA. Bechtel, X. Liang, A. Zettl, YR. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2014).
    [Crossref]
  6. Y. Fan, Z. Wei, Z. Zhang, and H. Li, “Enhancing infrared extinction and absorption in a monolayer graphene sheet by harvesting the electric dipolar mode of split ring resonators,” Opt. Lett. 38, 5410–5413 (2013).
    [Crossref] [PubMed]
  7. S. Abdollahramezani, K. Arik, A. Khavasi, and Z. Kavehvash, “Analog computing using graphene-based metalines,” Opt. Lett. 40, 5239–5242 (2015).
    [Crossref] [PubMed]
  8. S. Abdollahramezani, K. Arik, S. Farajollahi, A. Khavasi, and Z. Kavehvash, “Beam manipulating by gate-tunable graphene-based metasurfaces,” Opt. Lett. 40, 5383–5386 (2015).
    [Crossref] [PubMed]
  9. K. Arik, S. Abdollahramezani, and A. Khavasi, “Polarization insensitive and broadband terahertz absorber using graphene disks,” Plasmonics 12, 393–398 (2017).
    [Crossref]
  10. Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6256–6532 (2014).
    [Crossref]
  11. Y. Zhang, T. Li, H. Lv, X. Huang, X. Zhang, S. Xu, and H. Zhang, “Graphene-based tunable polarization insensitive dual-band metamaterial absorber at mid-infrared frequencies,” Chin. Phys. Lett. 32, 169–172 (2015).
  12. Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
    [Crossref] [PubMed]
  13. R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8, 2548–2554 (2014).
    [Crossref]
  14. R. Bruck and O. L. Muskens, “Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches,” Opt. Express 8, 27652–27661 (2011).
  15. J. M. Rothenberg, C. P. Chen, J. J. Ackert, J. I. Dadap, A. P. Knights, K. Bergman, R. M. Osgood, and R. R. Grote, “Experimental demonstration of coherent perfect absorption in a silicon photonic racetrack resonator,” Opt. Lett. 41, 2537–2540 (2016).
    [Crossref] [PubMed]
  16. S. Dutta-Gupta, O. J. F. Martin, S. D. Gupta, and G. S. Agarwal, “Controllable coherent perfect absorption in a composite film,” Opt. Express 20, 1330–1336 (2012).
    [Crossref] [PubMed]
  17. Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
    [Crossref] [PubMed]
  18. W. Wan, Y. Chong, L. Ge, H. Noh, AD. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
    [Crossref] [PubMed]
  19. G. Nie, Q. Shi, Z. Zhu, and J. Shi, “Selective coherent perfect absorption in metamaterials,” Appl. Phys. Lett. 105, 201909 (2014).
    [Crossref]
  20. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517(2011).
    [Crossref] [PubMed]
  21. M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, “Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination,” Opt. Express 20, 2246–2254 (2012).
    [Crossref] [PubMed]
  22. J. Yoon, M. Zhou, Md. A. Badsha, T. Y. Kim, Y.C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
    [Crossref] [PubMed]
  23. S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91, 220301(R) (2015).
    [Crossref]
  24. T. Y. Kim, Md. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General strategy for broadband coherent perfect absorption and multi-wavelength all-optical switching based on epsilon-zear zero multilayer films,” Sci. Rep. 6, 22941 (2016).
    [Crossref]
  25. S. Dutta-Gupta, R. Deshmukh, A. V. Gopal, O. J. F. Martin, and S. D. Gupta, “Coherent perfect absorption mediated anomalous reflection and refraction,” Opt. Lett. 37, 4452–4454 (2012).
    [Crossref] [PubMed]
  26. Y. Ye, D. Hay, and Z. Shi, “Coherent perfect absorption in chiral metamaterials,” Opt. Lett. 41, 3359–3362 (2016).
    [Crossref] [PubMed]
  27. J. Zhang, C. Guo, K. Liu, Z. Zhu, W. Ye, X. Yuan, and S. Qin, “Coherent perfect absorption and transparency in a nanostructured graphene film,” Opt. Express 22, 12524–12532 (2014).
    [Crossref] [PubMed]
  28. X. Hu and J. Wang, “High-speed gate-tunable terahertz coherent perfect absorption using a split-ring graphene,” Opt. Lett. 40, 5538–5541 (2015).
    [Crossref] [PubMed]
  29. Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39, 6269–6272 (2014).
    [Crossref] [PubMed]
  30. A. M. Aygar, O. Balci, S. Cakmakyapan, C. Kocabas, H. Caglayan, and E. Ozbay, “Comparison of back and top gating schemes with tunable graphene fractal metasurfaces,” ACS Photonics 3, 2303–2307 (2016).
    [Crossref]
  31. O. Ozdemir, A. M. Ayga, O. Balci, C. Kocabas, H. Caglayan, and E. Ozbay, “Enhanced tunability of V-shaped plasmonic structures using ionic liquid gating and graphene,” Carbon 108, 515–520 (2016).
    [Crossref]
  32. M. Habib, A. R. Rashed, E. Ozbay, and H. Caglayan, “Graphene-based tunable plasmon induced transparency in gold strips,” Opt. Material Express 8, 1069–1074 (2018).
    [Crossref]
  33. B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, and J. H. Cho, “High-performance flexible graphene field effect transistors with ion gel gate dielectrics,” Nano Lett. 10, 3464–3466 (2010).
    [Crossref] [PubMed]
  34. Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
    [Crossref] [PubMed]
  35. E. D. Palik, Handbook of Optical Constants of Solids (Academic University, 1985).
  36. Z. Yi, G. Niu, J. Chen, J. Luo, X. Liu, Y. Yi, T. Duan, X. li Kang, X. Ye, P. Wu, and Y. Tang, “Dipole, auadrupole, and octupole plasmon resonance modes in ag nanoring structure: local field enhancement in the visible and near infrared regions,” Plasmonics 11, 37–44 (2016).
    [Crossref]

2018 (1)

M. Habib, A. R. Rashed, E. Ozbay, and H. Caglayan, “Graphene-based tunable plasmon induced transparency in gold strips,” Opt. Material Express 8, 1069–1074 (2018).
[Crossref]

2017 (3)

B. S. Tun, B. X. Khuye, Y. Ju Kim, V. D. Lam, K. W. Kim, and Y. Lee, “Polarization-independent, wide-incident-angle and dual-band perfect absorption, based on near-field coupling in a symmetric metamaterial,” Sci. Rep. 7, 11507 (2017).
[Crossref]

B. X. Wang, G. Z. Wang, T. Sang, and L. L. Wang, “Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure,” Sci. Rep. 7, 41373 (2017).
[Crossref] [PubMed]

K. Arik, S. Abdollahramezani, and A. Khavasi, “Polarization insensitive and broadband terahertz absorber using graphene disks,” Plasmonics 12, 393–398 (2017).
[Crossref]

2016 (6)

T. Y. Kim, Md. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General strategy for broadband coherent perfect absorption and multi-wavelength all-optical switching based on epsilon-zear zero multilayer films,” Sci. Rep. 6, 22941 (2016).
[Crossref]

A. M. Aygar, O. Balci, S. Cakmakyapan, C. Kocabas, H. Caglayan, and E. Ozbay, “Comparison of back and top gating schemes with tunable graphene fractal metasurfaces,” ACS Photonics 3, 2303–2307 (2016).
[Crossref]

O. Ozdemir, A. M. Ayga, O. Balci, C. Kocabas, H. Caglayan, and E. Ozbay, “Enhanced tunability of V-shaped plasmonic structures using ionic liquid gating and graphene,” Carbon 108, 515–520 (2016).
[Crossref]

Z. Yi, G. Niu, J. Chen, J. Luo, X. Liu, Y. Yi, T. Duan, X. li Kang, X. Ye, P. Wu, and Y. Tang, “Dipole, auadrupole, and octupole plasmon resonance modes in ag nanoring structure: local field enhancement in the visible and near infrared regions,” Plasmonics 11, 37–44 (2016).
[Crossref]

J. M. Rothenberg, C. P. Chen, J. J. Ackert, J. I. Dadap, A. P. Knights, K. Bergman, R. M. Osgood, and R. R. Grote, “Experimental demonstration of coherent perfect absorption in a silicon photonic racetrack resonator,” Opt. Lett. 41, 2537–2540 (2016).
[Crossref] [PubMed]

Y. Ye, D. Hay, and Z. Shi, “Coherent perfect absorption in chiral metamaterials,” Opt. Lett. 41, 3359–3362 (2016).
[Crossref] [PubMed]

2015 (7)

S. Abdollahramezani, K. Arik, A. Khavasi, and Z. Kavehvash, “Analog computing using graphene-based metalines,” Opt. Lett. 40, 5239–5242 (2015).
[Crossref] [PubMed]

S. Abdollahramezani, K. Arik, S. Farajollahi, A. Khavasi, and Z. Kavehvash, “Beam manipulating by gate-tunable graphene-based metasurfaces,” Opt. Lett. 40, 5383–5386 (2015).
[Crossref] [PubMed]

X. Hu and J. Wang, “High-speed gate-tunable terahertz coherent perfect absorption using a split-ring graphene,” Opt. Lett. 40, 5538–5541 (2015).
[Crossref] [PubMed]

J. Yoon, M. Zhou, Md. A. Badsha, T. Y. Kim, Y.C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref] [PubMed]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91, 220301(R) (2015).
[Crossref]

Y. Zhang, T. Li, H. Lv, X. Huang, X. Zhang, S. Xu, and H. Zhang, “Graphene-based tunable polarization insensitive dual-band metamaterial absorber at mid-infrared frequencies,” Chin. Phys. Lett. 32, 169–172 (2015).

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
[Crossref] [PubMed]

2014 (6)

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8, 2548–2554 (2014).
[Crossref]

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6256–6532 (2014).
[Crossref]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, HA. Bechtel, X. Liang, A. Zettl, YR. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2014).
[Crossref]

G. Nie, Q. Shi, Z. Zhu, and J. Shi, “Selective coherent perfect absorption in metamaterials,” Appl. Phys. Lett. 105, 201909 (2014).
[Crossref]

J. Zhang, C. Guo, K. Liu, Z. Zhu, W. Ye, X. Yuan, and S. Qin, “Coherent perfect absorption and transparency in a nanostructured graphene film,” Opt. Express 22, 12524–12532 (2014).
[Crossref] [PubMed]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39, 6269–6272 (2014).
[Crossref] [PubMed]

2013 (2)

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

Y. Fan, Z. Wei, Z. Zhang, and H. Li, “Enhancing infrared extinction and absorption in a monolayer graphene sheet by harvesting the electric dipolar mode of split ring resonators,” Opt. Lett. 38, 5410–5413 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (3)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517(2011).
[Crossref] [PubMed]

W. Wan, Y. Chong, L. Ge, H. Noh, AD. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref] [PubMed]

R. Bruck and O. L. Muskens, “Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches,” Opt. Express 8, 27652–27661 (2011).

2010 (2)

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, and J. H. Cho, “High-performance flexible graphene field effect transistors with ion gel gate dielectrics,” Nano Lett. 10, 3464–3466 (2010).
[Crossref] [PubMed]

2008 (1)

G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103, 064302 (2008).
[Crossref]

2007 (1)

Abdollahramezani, S.

Abele, E.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
[Crossref] [PubMed]

Ackert, J. J.

Agarwal, G. S.

Ahn, J. H.

B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, and J. H. Cho, “High-performance flexible graphene field effect transistors with ion gel gate dielectrics,” Nano Lett. 10, 3464–3466 (2010).
[Crossref] [PubMed]

Anwar, S.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91, 220301(R) (2015).
[Crossref]

Arik, K.

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517(2011).
[Crossref] [PubMed]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517(2011).
[Crossref] [PubMed]

Ayga, A. M.

O. Ozdemir, A. M. Ayga, O. Balci, C. Kocabas, H. Caglayan, and E. Ozbay, “Enhanced tunability of V-shaped plasmonic structures using ionic liquid gating and graphene,” Carbon 108, 515–520 (2016).
[Crossref]

Aygar, A. M.

A. M. Aygar, O. Balci, S. Cakmakyapan, C. Kocabas, H. Caglayan, and E. Ozbay, “Comparison of back and top gating schemes with tunable graphene fractal metasurfaces,” ACS Photonics 3, 2303–2307 (2016).
[Crossref]

Azad, A. K.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
[Crossref] [PubMed]

Badsha, Md. A.

T. Y. Kim, Md. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General strategy for broadband coherent perfect absorption and multi-wavelength all-optical switching based on epsilon-zear zero multilayer films,” Sci. Rep. 6, 22941 (2016).
[Crossref]

J. Yoon, M. Zhou, Md. A. Badsha, T. Y. Kim, Y.C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref] [PubMed]

Balci, O.

A. M. Aygar, O. Balci, S. Cakmakyapan, C. Kocabas, H. Caglayan, and E. Ozbay, “Comparison of back and top gating schemes with tunable graphene fractal metasurfaces,” ACS Photonics 3, 2303–2307 (2016).
[Crossref]

O. Ozdemir, A. M. Ayga, O. Balci, C. Kocabas, H. Caglayan, and E. Ozbay, “Enhanced tunability of V-shaped plasmonic structures using ionic liquid gating and graphene,” Carbon 108, 515–520 (2016).
[Crossref]

Bechtel, HA.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, HA. Bechtel, X. Liang, A. Zettl, YR. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2014).
[Crossref]

Beere, H. E.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8, 2548–2554 (2014).
[Crossref]

Bergman, K.

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517(2011).
[Crossref] [PubMed]

Bruck, R.

R. Bruck and O. L. Muskens, “Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches,” Opt. Express 8, 27652–27661 (2011).

Caglayan, H.

M. Habib, A. R. Rashed, E. Ozbay, and H. Caglayan, “Graphene-based tunable plasmon induced transparency in gold strips,” Opt. Material Express 8, 1069–1074 (2018).
[Crossref]

O. Ozdemir, A. M. Ayga, O. Balci, C. Kocabas, H. Caglayan, and E. Ozbay, “Enhanced tunability of V-shaped plasmonic structures using ionic liquid gating and graphene,” Carbon 108, 515–520 (2016).
[Crossref]

A. M. Aygar, O. Balci, S. Cakmakyapan, C. Kocabas, H. Caglayan, and E. Ozbay, “Comparison of back and top gating schemes with tunable graphene fractal metasurfaces,” ACS Photonics 3, 2303–2307 (2016).
[Crossref]

Cakmakyapan, S.

A. M. Aygar, O. Balci, S. Cakmakyapan, C. Kocabas, H. Caglayan, and E. Ozbay, “Comparison of back and top gating schemes with tunable graphene fractal metasurfaces,” ACS Photonics 3, 2303–2307 (2016).
[Crossref]

Cao, H.

W. Wan, Y. Chong, L. Ge, H. Noh, AD. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

Capasso, F.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6256–6532 (2014).
[Crossref]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

Chen, C. P.

Chen, H. T.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
[Crossref] [PubMed]

Chen, J.

Z. Yi, G. Niu, J. Chen, J. Luo, X. Liu, Y. Yi, T. Duan, X. li Kang, X. Ye, P. Wu, and Y. Tang, “Dipole, auadrupole, and octupole plasmon resonance modes in ag nanoring structure: local field enhancement in the visible and near infrared regions,” Plasmonics 11, 37–44 (2016).
[Crossref]

Chen, Q.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
[Crossref] [PubMed]

Cho, J. H.

B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, and J. H. Cho, “High-performance flexible graphene field effect transistors with ion gel gate dielectrics,” Nano Lett. 10, 3464–3466 (2010).
[Crossref] [PubMed]

Chong, Y.

W. Wan, Y. Chong, L. Ge, H. Noh, AD. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref] [PubMed]

Chong, Y. D.

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

Dadap, J. I.

Degl’Innocenti, R.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8, 2548–2554 (2014).
[Crossref]

Deshmukh, R.

Duan, T.

Z. Yi, G. Niu, J. Chen, J. Luo, X. Liu, Y. Yi, T. Duan, X. li Kang, X. Ye, P. Wu, and Y. Tang, “Dipole, auadrupole, and octupole plasmon resonance modes in ag nanoring structure: local field enhancement in the visible and near infrared regions,” Plasmonics 11, 37–44 (2016).
[Crossref]

Dutta-Gupta, S.

Fan, Y.

Farajollahi, S.

Feng, Q.

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517(2011).
[Crossref] [PubMed]

Ge, L.

W. Wan, Y. Chong, L. Ge, H. Noh, AD. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

Genevet, P.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, HA. Bechtel, X. Liang, A. Zettl, YR. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2014).
[Crossref]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, HA. Bechtel, X. Liang, A. Zettl, YR. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2014).
[Crossref]

Gopal, A. V.

Grote, R. R.

Guo, C.

Gupta, S. D.

Habib, M.

M. Habib, A. R. Rashed, E. Ozbay, and H. Caglayan, “Graphene-based tunable plasmon induced transparency in gold strips,” Opt. Material Express 8, 1069–1074 (2018).
[Crossref]

Hang, Z. H.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91, 220301(R) (2015).
[Crossref]

Hanson, G. W.

G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103, 064302 (2008).
[Crossref]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, HA. Bechtel, X. Liang, A. Zettl, YR. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2014).
[Crossref]

Hay, D.

Hofmann, S.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8, 2548–2554 (2014).
[Crossref]

Hong, B. H.

B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, and J. H. Cho, “High-performance flexible graphene field effect transistors with ion gel gate dielectrics,” Nano Lett. 10, 3464–3466 (2010).
[Crossref] [PubMed]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, HA. Bechtel, X. Liang, A. Zettl, YR. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2014).
[Crossref]

Hou, B.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91, 220301(R) (2015).
[Crossref]

Hu, C.

Hu, X.

Huang, C.

Huang, X.

Y. Zhang, T. Li, H. Lv, X. Huang, X. Zhang, S. Xu, and H. Zhang, “Graphene-based tunable polarization insensitive dual-band metamaterial absorber at mid-infrared frequencies,” Chin. Phys. Lett. 32, 169–172 (2015).

Hwangbo, C. K.

T. Y. Kim, Md. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General strategy for broadband coherent perfect absorption and multi-wavelength all-optical switching based on epsilon-zear zero multilayer films,” Sci. Rep. 6, 22941 (2016).
[Crossref]

J. Yoon, M. Zhou, Md. A. Badsha, T. Y. Kim, Y.C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref] [PubMed]

Jang, H.

B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, and J. H. Cho, “High-performance flexible graphene field effect transistors with ion gel gate dielectrics,” Nano Lett. 10, 3464–3466 (2010).
[Crossref] [PubMed]

Jessop, D. S.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8, 2548–2554 (2014).
[Crossref]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, HA. Bechtel, X. Liang, A. Zettl, YR. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2014).
[Crossref]

Jun, Y. C.

T. Y. Kim, Md. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General strategy for broadband coherent perfect absorption and multi-wavelength all-optical switching based on epsilon-zear zero multilayer films,” Sci. Rep. 6, 22941 (2016).
[Crossref]

Jun, Y.C.

J. Yoon, M. Zhou, Md. A. Badsha, T. Y. Kim, Y.C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref] [PubMed]

Kats, M. A.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6256–6532 (2014).
[Crossref]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

Kavehvash, Z.

Khavasi, A.

Khuye, B. X.

B. S. Tun, B. X. Khuye, Y. Ju Kim, V. D. Lam, K. W. Kim, and Y. Lee, “Polarization-independent, wide-incident-angle and dual-band perfect absorption, based on near-field coupling in a symmetric metamaterial,” Sci. Rep. 7, 11507 (2017).
[Crossref]

Kidambi, P. R.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8, 2548–2554 (2014).
[Crossref]

Kim, B. J.

B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, and J. H. Cho, “High-performance flexible graphene field effect transistors with ion gel gate dielectrics,” Nano Lett. 10, 3464–3466 (2010).
[Crossref] [PubMed]

Kim, K. W.

B. S. Tun, B. X. Khuye, Y. Ju Kim, V. D. Lam, K. W. Kim, and Y. Lee, “Polarization-independent, wide-incident-angle and dual-band perfect absorption, based on near-field coupling in a symmetric metamaterial,” Sci. Rep. 7, 11507 (2017).
[Crossref]

Kim, T. Y.

T. Y. Kim, Md. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General strategy for broadband coherent perfect absorption and multi-wavelength all-optical switching based on epsilon-zear zero multilayer films,” Sci. Rep. 6, 22941 (2016).
[Crossref]

J. Yoon, M. Zhou, Md. A. Badsha, T. Y. Kim, Y.C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref] [PubMed]

Kim, Y. Ju

B. S. Tun, B. X. Khuye, Y. Ju Kim, V. D. Lam, K. W. Kim, and Y. Lee, “Polarization-independent, wide-incident-angle and dual-band perfect absorption, based on near-field coupling in a symmetric metamaterial,” Sci. Rep. 7, 11507 (2017).
[Crossref]

Knights, A. P.

Kocabas, C.

A. M. Aygar, O. Balci, S. Cakmakyapan, C. Kocabas, H. Caglayan, and E. Ozbay, “Comparison of back and top gating schemes with tunable graphene fractal metasurfaces,” ACS Photonics 3, 2303–2307 (2016).
[Crossref]

O. Ozdemir, A. M. Ayga, O. Balci, C. Kocabas, H. Caglayan, and E. Ozbay, “Enhanced tunability of V-shaped plasmonic structures using ionic liquid gating and graphene,” Carbon 108, 515–520 (2016).
[Crossref]

Kong, J.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6256–6532 (2014).
[Crossref]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

Lai, Y.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91, 220301(R) (2015).
[Crossref]

Lam, V. D.

B. S. Tun, B. X. Khuye, Y. Ju Kim, V. D. Lam, K. W. Kim, and Y. Lee, “Polarization-independent, wide-incident-angle and dual-band perfect absorption, based on near-field coupling in a symmetric metamaterial,” Sci. Rep. 7, 11507 (2017).
[Crossref]

Lee, S. K.

B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, and J. H. Cho, “High-performance flexible graphene field effect transistors with ion gel gate dielectrics,” Nano Lett. 10, 3464–3466 (2010).
[Crossref] [PubMed]

Lee, S. Y.

T. Y. Kim, Md. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General strategy for broadband coherent perfect absorption and multi-wavelength all-optical switching based on epsilon-zear zero multilayer films,” Sci. Rep. 6, 22941 (2016).
[Crossref]

Lee, Y.

B. S. Tun, B. X. Khuye, Y. Ju Kim, V. D. Lam, K. W. Kim, and Y. Lee, “Polarization-independent, wide-incident-angle and dual-band perfect absorption, based on near-field coupling in a symmetric metamaterial,” Sci. Rep. 7, 11507 (2017).
[Crossref]

Li, H.

Li, S.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91, 220301(R) (2015).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91, 220301(R) (2015).
[Crossref]

Li, T.

Y. Zhang, T. Li, H. Lv, X. Huang, X. Zhang, S. Xu, and H. Zhang, “Graphene-based tunable polarization insensitive dual-band metamaterial absorber at mid-infrared frequencies,” Chin. Phys. Lett. 32, 169–172 (2015).

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
[Crossref] [PubMed]

li Kang, X.

Z. Yi, G. Niu, J. Chen, J. Luo, X. Liu, Y. Yi, T. Duan, X. li Kang, X. Ye, P. Wu, and Y. Tang, “Dipole, auadrupole, and octupole plasmon resonance modes in ag nanoring structure: local field enhancement in the visible and near infrared regions,” Plasmonics 11, 37–44 (2016).
[Crossref]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, HA. Bechtel, X. Liang, A. Zettl, YR. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2014).
[Crossref]

Liu, K.

Liu, X.

Z. Yi, G. Niu, J. Chen, J. Luo, X. Liu, Y. Yi, T. Duan, X. li Kang, X. Ye, P. Wu, and Y. Tang, “Dipole, auadrupole, and octupole plasmon resonance modes in ag nanoring structure: local field enhancement in the visible and near infrared regions,” Plasmonics 11, 37–44 (2016).
[Crossref]

Loncar, M.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6256–6532 (2014).
[Crossref]

Lu, W.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91, 220301(R) (2015).
[Crossref]

Luo, J.

Z. Yi, G. Niu, J. Chen, J. Luo, X. Liu, Y. Yi, T. Duan, X. li Kang, X. Ye, P. Wu, and Y. Tang, “Dipole, auadrupole, and octupole plasmon resonance modes in ag nanoring structure: local field enhancement in the visible and near infrared regions,” Plasmonics 11, 37–44 (2016).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91, 220301(R) (2015).
[Crossref]

Luo, X.

Lv, H.

Y. Zhang, T. Li, H. Lv, X. Huang, X. Zhang, S. Xu, and H. Zhang, “Graphene-based tunable polarization insensitive dual-band metamaterial absorber at mid-infrared frequencies,” Chin. Phys. Lett. 32, 169–172 (2015).

Ma, X.

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, HA. Bechtel, X. Liang, A. Zettl, YR. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2014).
[Crossref]

Martin, O. J. F.

Muskens, O. L.

R. Bruck and O. L. Muskens, “Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches,” Opt. Express 8, 27652–27661 (2011).

Nie, G.

G. Nie, Q. Shi, Z. Zhu, and J. Shi, “Selective coherent perfect absorption in metamaterials,” Appl. Phys. Lett. 105, 201909 (2014).
[Crossref]

Niu, G.

Z. Yi, G. Niu, J. Chen, J. Luo, X. Liu, Y. Yi, T. Duan, X. li Kang, X. Ye, P. Wu, and Y. Tang, “Dipole, auadrupole, and octupole plasmon resonance modes in ag nanoring structure: local field enhancement in the visible and near infrared regions,” Plasmonics 11, 37–44 (2016).
[Crossref]

Noh, H.

W. Wan, Y. Chong, L. Ge, H. Noh, AD. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref] [PubMed]

O’Hara, J. F.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
[Crossref] [PubMed]

Osgood, R. M.

Ozbay, E.

M. Habib, A. R. Rashed, E. Ozbay, and H. Caglayan, “Graphene-based tunable plasmon induced transparency in gold strips,” Opt. Material Express 8, 1069–1074 (2018).
[Crossref]

O. Ozdemir, A. M. Ayga, O. Balci, C. Kocabas, H. Caglayan, and E. Ozbay, “Enhanced tunability of V-shaped plasmonic structures using ionic liquid gating and graphene,” Carbon 108, 515–520 (2016).
[Crossref]

A. M. Aygar, O. Balci, S. Cakmakyapan, C. Kocabas, H. Caglayan, and E. Ozbay, “Comparison of back and top gating schemes with tunable graphene fractal metasurfaces,” ACS Photonics 3, 2303–2307 (2016).
[Crossref]

Ozdemir, O.

O. Ozdemir, A. M. Ayga, O. Balci, C. Kocabas, H. Caglayan, and E. Ozbay, “Enhanced tunability of V-shaped plasmonic structures using ionic liquid gating and graphene,” Carbon 108, 515–520 (2016).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic University, 1985).

Pu, M.

Qin, S.

Rashed, A. R.

M. Habib, A. R. Rashed, E. Ozbay, and H. Caglayan, “Graphene-based tunable plasmon induced transparency in gold strips,” Opt. Material Express 8, 1069–1074 (2018).
[Crossref]

Ritchie, D. A.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8, 2548–2554 (2014).
[Crossref]

Rothenberg, J. M.

Sang, T.

B. X. Wang, G. Z. Wang, T. Sang, and L. L. Wang, “Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure,” Sci. Rep. 7, 41373 (2017).
[Crossref] [PubMed]

Shah, Y. D.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8, 2548–2554 (2014).
[Crossref]

Shankar, R.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6256–6532 (2014).
[Crossref]

Shen, M.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91, 220301(R) (2015).
[Crossref]

Shen, YR.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, HA. Bechtel, X. Liang, A. Zettl, YR. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2014).
[Crossref]

Shi, J.

G. Nie, Q. Shi, Z. Zhu, and J. Shi, “Selective coherent perfect absorption in metamaterials,” Appl. Phys. Lett. 105, 201909 (2014).
[Crossref]

Shi, Q.

G. Nie, Q. Shi, Z. Zhu, and J. Shi, “Selective coherent perfect absorption in metamaterials,” Appl. Phys. Lett. 105, 201909 (2014).
[Crossref]

Shi, Z.

Sibik, J.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8, 2548–2554 (2014).
[Crossref]

Song, Y.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6256–6532 (2014).
[Crossref]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

Stone, A. D.

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

Stone, AD.

W. Wan, Y. Chong, L. Ge, H. Noh, AD. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref] [PubMed]

Tang, Y.

Z. Yi, G. Niu, J. Chen, J. Luo, X. Liu, Y. Yi, T. Duan, X. li Kang, X. Ye, P. Wu, and Y. Tang, “Dipole, auadrupole, and octupole plasmon resonance modes in ag nanoring structure: local field enhancement in the visible and near infrared regions,” Plasmonics 11, 37–44 (2016).
[Crossref]

Taylor, A. J.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
[Crossref] [PubMed]

Tun, B. S.

B. S. Tun, B. X. Khuye, Y. Ju Kim, V. D. Lam, K. W. Kim, and Y. Lee, “Polarization-independent, wide-incident-angle and dual-band perfect absorption, based on near-field coupling in a symmetric metamaterial,” Sci. Rep. 7, 11507 (2017).
[Crossref]

Wan, W.

W. Wan, Y. Chong, L. Ge, H. Noh, AD. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref] [PubMed]

Wang, B. X.

B. X. Wang, G. Z. Wang, T. Sang, and L. L. Wang, “Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure,” Sci. Rep. 7, 41373 (2017).
[Crossref] [PubMed]

Wang, C.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91, 220301(R) (2015).
[Crossref]

M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, “Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination,” Opt. Express 20, 2246–2254 (2012).
[Crossref] [PubMed]

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, HA. Bechtel, X. Liang, A. Zettl, YR. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2014).
[Crossref]

Wang, G. Z.

B. X. Wang, G. Z. Wang, T. Sang, and L. L. Wang, “Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure,” Sci. Rep. 7, 41373 (2017).
[Crossref] [PubMed]

Wang, J.

Wang, L. L.

B. X. Wang, G. Z. Wang, T. Sang, and L. L. Wang, “Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure,” Sci. Rep. 7, 41373 (2017).
[Crossref] [PubMed]

Wang, M.

Wei, Z.

Wu, P.

Z. Yi, G. Niu, J. Chen, J. Luo, X. Liu, Y. Yi, T. Duan, X. li Kang, X. Ye, P. Wu, and Y. Tang, “Dipole, auadrupole, and octupole plasmon resonance modes in ag nanoring structure: local field enhancement in the visible and near infrared regions,” Plasmonics 11, 37–44 (2016).
[Crossref]

Xu, S.

Y. Zhang, T. Li, H. Lv, X. Huang, X. Zhang, S. Xu, and H. Zhang, “Graphene-based tunable polarization insensitive dual-band metamaterial absorber at mid-infrared frequencies,” Chin. Phys. Lett. 32, 169–172 (2015).

Yao, Y.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6256–6532 (2014).
[Crossref]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

Ye, W.

Ye, X.

Z. Yi, G. Niu, J. Chen, J. Luo, X. Liu, Y. Yi, T. Duan, X. li Kang, X. Ye, P. Wu, and Y. Tang, “Dipole, auadrupole, and octupole plasmon resonance modes in ag nanoring structure: local field enhancement in the visible and near infrared regions,” Plasmonics 11, 37–44 (2016).
[Crossref]

Ye, Y.

Yi, Y.

Z. Yi, G. Niu, J. Chen, J. Luo, X. Liu, Y. Yi, T. Duan, X. li Kang, X. Ye, P. Wu, and Y. Tang, “Dipole, auadrupole, and octupole plasmon resonance modes in ag nanoring structure: local field enhancement in the visible and near infrared regions,” Plasmonics 11, 37–44 (2016).
[Crossref]

Yi, Z.

Z. Yi, G. Niu, J. Chen, J. Luo, X. Liu, Y. Yi, T. Duan, X. li Kang, X. Ye, P. Wu, and Y. Tang, “Dipole, auadrupole, and octupole plasmon resonance modes in ag nanoring structure: local field enhancement in the visible and near infrared regions,” Plasmonics 11, 37–44 (2016).
[Crossref]

Yoon, J.

T. Y. Kim, Md. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General strategy for broadband coherent perfect absorption and multi-wavelength all-optical switching based on epsilon-zear zero multilayer films,” Sci. Rep. 6, 22941 (2016).
[Crossref]

J. Yoon, M. Zhou, Md. A. Badsha, T. Y. Kim, Y.C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref] [PubMed]

Yu, N.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

Yuan, X.

Zeitler, J. A.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8, 2548–2554 (2014).
[Crossref]

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, HA. Bechtel, X. Liang, A. Zettl, YR. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2014).
[Crossref]

Zhang, F.

Zhang, H.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
[Crossref] [PubMed]

Y. Zhang, T. Li, H. Lv, X. Huang, X. Zhang, S. Xu, and H. Zhang, “Graphene-based tunable polarization insensitive dual-band metamaterial absorber at mid-infrared frequencies,” Chin. Phys. Lett. 32, 169–172 (2015).

Zhang, J.

Zhang, X.

Y. Zhang, T. Li, H. Lv, X. Huang, X. Zhang, S. Xu, and H. Zhang, “Graphene-based tunable polarization insensitive dual-band metamaterial absorber at mid-infrared frequencies,” Chin. Phys. Lett. 32, 169–172 (2015).

Zhang, Y.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
[Crossref] [PubMed]

Y. Zhang, T. Li, H. Lv, X. Huang, X. Zhang, S. Xu, and H. Zhang, “Graphene-based tunable polarization insensitive dual-band metamaterial absorber at mid-infrared frequencies,” Chin. Phys. Lett. 32, 169–172 (2015).

Zhang, Z.

Zhao, Q.

Zhao, Z.

Zhou, M.

J. Yoon, M. Zhou, Md. A. Badsha, T. Y. Kim, Y.C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref] [PubMed]

Zhu, Z.

ACS Nano (1)

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8, 2548–2554 (2014).
[Crossref]

ACS Photonics (1)

A. M. Aygar, O. Balci, S. Cakmakyapan, C. Kocabas, H. Caglayan, and E. Ozbay, “Comparison of back and top gating schemes with tunable graphene fractal metasurfaces,” ACS Photonics 3, 2303–2307 (2016).
[Crossref]

Appl. Phys. Lett. (1)

G. Nie, Q. Shi, Z. Zhu, and J. Shi, “Selective coherent perfect absorption in metamaterials,” Appl. Phys. Lett. 105, 201909 (2014).
[Crossref]

Carbon (1)

O. Ozdemir, A. M. Ayga, O. Balci, C. Kocabas, H. Caglayan, and E. Ozbay, “Enhanced tunability of V-shaped plasmonic structures using ionic liquid gating and graphene,” Carbon 108, 515–520 (2016).
[Crossref]

Chin. Phys. Lett. (1)

Y. Zhang, T. Li, H. Lv, X. Huang, X. Zhang, S. Xu, and H. Zhang, “Graphene-based tunable polarization insensitive dual-band metamaterial absorber at mid-infrared frequencies,” Chin. Phys. Lett. 32, 169–172 (2015).

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103, 064302 (2008).
[Crossref]

Nano Lett. (3)

B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, and J. H. Cho, “High-performance flexible graphene field effect transistors with ion gel gate dielectrics,” Nano Lett. 10, 3464–3466 (2010).
[Crossref] [PubMed]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6256–6532 (2014).
[Crossref]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517(2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, HA. Bechtel, X. Liang, A. Zettl, YR. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (9)

X. Hu and J. Wang, “High-speed gate-tunable terahertz coherent perfect absorption using a split-ring graphene,” Opt. Lett. 40, 5538–5541 (2015).
[Crossref] [PubMed]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39, 6269–6272 (2014).
[Crossref] [PubMed]

S. Dutta-Gupta, R. Deshmukh, A. V. Gopal, O. J. F. Martin, and S. D. Gupta, “Coherent perfect absorption mediated anomalous reflection and refraction,” Opt. Lett. 37, 4452–4454 (2012).
[Crossref] [PubMed]

Y. Ye, D. Hay, and Z. Shi, “Coherent perfect absorption in chiral metamaterials,” Opt. Lett. 41, 3359–3362 (2016).
[Crossref] [PubMed]

J. M. Rothenberg, C. P. Chen, J. J. Ackert, J. I. Dadap, A. P. Knights, K. Bergman, R. M. Osgood, and R. R. Grote, “Experimental demonstration of coherent perfect absorption in a silicon photonic racetrack resonator,” Opt. Lett. 41, 2537–2540 (2016).
[Crossref] [PubMed]

Y. Fan, Z. Wei, Z. Zhang, and H. Li, “Enhancing infrared extinction and absorption in a monolayer graphene sheet by harvesting the electric dipolar mode of split ring resonators,” Opt. Lett. 38, 5410–5413 (2013).
[Crossref] [PubMed]

S. Abdollahramezani, K. Arik, A. Khavasi, and Z. Kavehvash, “Analog computing using graphene-based metalines,” Opt. Lett. 40, 5239–5242 (2015).
[Crossref] [PubMed]

S. Abdollahramezani, K. Arik, S. Farajollahi, A. Khavasi, and Z. Kavehvash, “Beam manipulating by gate-tunable graphene-based metasurfaces,” Opt. Lett. 40, 5383–5386 (2015).
[Crossref] [PubMed]

S. Dutta-Gupta, “Strong-interaction-mediated critical coupling at two distinct frequencies,” Opt. Lett. 32, 1483–11078 (2007).
[Crossref]

Opt. Material Express (1)

M. Habib, A. R. Rashed, E. Ozbay, and H. Caglayan, “Graphene-based tunable plasmon induced transparency in gold strips,” Opt. Material Express 8, 1069–1074 (2018).
[Crossref]

Phys. Rev. B (1)

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91, 220301(R) (2015).
[Crossref]

Phys. Rev. Lett. (1)

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

Plasmonics (2)

K. Arik, S. Abdollahramezani, and A. Khavasi, “Polarization insensitive and broadband terahertz absorber using graphene disks,” Plasmonics 12, 393–398 (2017).
[Crossref]

Z. Yi, G. Niu, J. Chen, J. Luo, X. Liu, Y. Yi, T. Duan, X. li Kang, X. Ye, P. Wu, and Y. Tang, “Dipole, auadrupole, and octupole plasmon resonance modes in ag nanoring structure: local field enhancement in the visible and near infrared regions,” Plasmonics 11, 37–44 (2016).
[Crossref]

Sci. Rep. (5)

T. Y. Kim, Md. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General strategy for broadband coherent perfect absorption and multi-wavelength all-optical switching based on epsilon-zear zero multilayer films,” Sci. Rep. 6, 22941 (2016).
[Crossref]

B. S. Tun, B. X. Khuye, Y. Ju Kim, V. D. Lam, K. W. Kim, and Y. Lee, “Polarization-independent, wide-incident-angle and dual-band perfect absorption, based on near-field coupling in a symmetric metamaterial,” Sci. Rep. 7, 11507 (2017).
[Crossref]

B. X. Wang, G. Z. Wang, T. Sang, and L. L. Wang, “Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure,” Sci. Rep. 7, 41373 (2017).
[Crossref] [PubMed]

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
[Crossref] [PubMed]

J. Yoon, M. Zhou, Md. A. Badsha, T. Y. Kim, Y.C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref] [PubMed]

Science (1)

W. Wan, Y. Chong, L. Ge, H. Noh, AD. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref] [PubMed]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic University, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of the dual-band metal-graphene CPA. The black dashed box represents a unit cell. (b) Top view of the unit cell.
Fig. 2
Fig. 2 The simulated absorption (A), reflection (R) and transmission (T) spectra with Fermi energy EF = 0.35 eV under (a) incoherent illumination of big-size golden nanorings only structure, (b) coherent illumination of big-size golden nanorings only structure, (c) incoherent illumination of small-size golden nanorings only structure, (d) coherent illumination of small-size golden nanorings only structure. And (e) are the unit cell of the big-size golden nanoring only structure and small-size golden nanoring only structure.
Fig. 3
Fig. 3 (a) The simulated absorption spectra of the dual-band metal-graphene CPA under incoherent illumination with p polarization (black curve) and under coherent illumination with p polarization (red curve) and s polarization (purple dash curve). (b) The electric filed distribution at resonance frequencies under s polarization. (c) The electric filed distribution at resonance frequencies under p polarization.
Fig. 4
Fig. 4 The simulated absorption spectra of CPA with various phase difference φ. The black dash-dotted line is the maximum coherent absorption Acobigmax induced by small nanorings at frequency of 50.54 THz with various φ. The red dash-dotted line is the maximum coherent absorption Acosmallmax induced by big nanorings at frequency of 43.60 THz with various φ.
Fig. 5
Fig. 5 The absorption spectra with (a) different inner semi-diameter of small nanoring, (b) different outer semi-diameter of small nanoring, (c) different inner semi-diameter of big nanoring, (d) different outer semi-diameter of big nanoring.
Fig. 6
Fig. 6 (a) The simulated absorption spectra of the metal-graphene CPA with different Fermi energies. (b) The simulated absorption spectra of the golden nanorings only structure and graphene layer only structure. The electrical field distributions (c–d) without graphene layer, (e–f) with Fermi energy EF = 0.35 eV, (g–h) with Fermi energy EF = 0.75 eV on the vertical section along the diameter of the big golden nanoring at 43.17 THz and small golden nanoring at 50.00 THz.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A = 2 η 2 2 η .
( O 2 O 1 ) = ( r 1 , 1 t 1 , 2 t 2 , 1 r 2 , 2 ) ( I 1 I 2 )
A c o = 1 1 + α 2 2 α cos ( φ ) 1 + α 2
σ ( ω ) = i e 2 ( ω + 2 i Γ ) π 2 [ 1 ( ω + 2 i Γ ) 2 0 ( f d ( ) f d ( ) ) d 0 f d ( ) f d ( ) ( ω + 2 i Γ ) 2 4 ( / ) 2 d ]

Metrics