Abstract

Terahertz attenuated total reflection imaging has been used to develop preliminary applications without any in-depth analysis of the nature of present systems. Based on our proposed vertically scanning imaging system, an analysis of optimum prism design and polarization selection for error reduction is presented theoretically and experimentally, showing good agreement. By taking the secondary reflection inside the prism and the prism deflection into consideration, p-polarized terahertz waves are recommended for prisms with a base angle below 31°, leading to minimum error. This work will contribute to the development of more practical application of terahertz attenuated total reflection scanning imaging in various fields with enhanced performance.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Destructive interference effect on surface plasmon resonance in terahertz attenuated total reflection

Hideki Hirori, Masaya Nagai, and Koichiro Tanaka
Opt. Express 13(26) 10801-10814 (2005)

Optimum conditions in the attenuated total reflection technique

H. Kitajima, K. Hieda, and Y. Suematsu
Appl. Opt. 20(6) 1005-1010 (1981)

Accelerometer design based on attenuated total reflection

Bo-Shen Zhu, Mette Owner-Petersen, and Torben Licht
Appl. Opt. 27(14) 2972-2975 (1988)

References

  • View by:
  • |
  • |
  • |

  1. M. Hishida and K. Tanaka, “Long-range hydration effect of lipid membrane studied by terahertz time-domain spectroscopy,” Phys. Rev. Lett. 106(15), 158102 (2011).
    [Crossref] [PubMed]
  2. K. L. Andrew Chan and S. G. Kazarian, “Attenuated total reflection Fourier-transform infrared (ATR-FTIR) imaging of tissues and live cells,” Chem. Soc. Rev. 45(7), 1850–1864 (2016).
    [Crossref] [PubMed]
  3. S. Yousefinejad, L. Aalizadeh, and F. Honarasa, “Application of ATR-FTIR spectroscopy and chemometrics for the discrimination of furnace oil, gas oil and mazut oil,” Anal. Methods 8(23), 4640–4647 (2016).
    [Crossref]
  4. Y. Zou, Q. Liu, X. Yang, H. C. Huang, J. Li, L. H. Du, Z. R. Li, J. H. Zhao, and L. G. Zhu, “Label-free monitoring of cell death induced by oxidative stress in living human cells using terahertz ATR spectroscopy,” Biomed. Opt. Express 9(1), 14–24 (2017).
    [Crossref] [PubMed]
  5. K. Lee, K. Jeoung, S. H. Kim, Y. B. Ji, H. Son, Y. Choi, Y. M. Huh, J. S. Suh, and S. J. Oh, “Measuring water contents in animal organ tissues using terahertz spectroscopic imaging,” Biomed. Opt. Express 9(4), 1582–1589 (2018).
    [Crossref] [PubMed]
  6. P. C. Ashworth, E. Pickwell-MacPherson, E. Provenzano, S. E. Pinder, A. D. Purushotham, M. Pepper, and V. P. Wallace, “Terahertz pulsed spectroscopy of freshly excised human breast cancer,” Opt. Express 17(15), 12444–12454 (2009).
    [Crossref] [PubMed]
  7. S. Fan, E. Parrott, B. Ung, and E. Pickwell-MacPherson, “Calibration method to improve the accuracy of THz imaging and spectroscopy in reflection geometry,” Photon. Res. 4(3), A29–A35 (2016).
    [Crossref]
  8. T. Arikawa, M. Nagai, and K. Tanaka, “Characterizing hydration state in solution using terahertz time-domain attenuated total reflection spectroscopy,” Chem. Phys. Lett. 457(1), 12–17 (2008).
    [Crossref]
  9. K. Shiraga, Y. Ogawa, T. Suzuki, N. Kondo, A. Irisawa, and M. Imamura, “Characterization of dielectric responses of human cancer cells in the terahertz region,” J. Infrared Millim. Terahertz Waves 35(5), 493–502 (2014).
    [Crossref]
  10. O. Cherkasova, M. Nazarov, and A. Shkurinov, “Noninvasive blood glucose monitoring in the terahertz frequency range,” Opt. Quantum Electron. 48(3), 217 (2016).
    [Crossref]
  11. J. Qin, L. Xie, and Y. Ying, “Rapid analysis of tetracycline hydrochloride solution by attenuated total reflection terahertz time-domain spectroscopy,” Food Chem. 224, 262–269 (2017).
    [Crossref] [PubMed]
  12. T. P. Wrobel, K. M. Marzec, K. Majzner, K. Kochan, M. Bartus, S. Chlopicki, and M. Baranska, “Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy of a single endothelial cell,” Analyst (Lond.) 137(18), 4135–4139 (2012).
    [Crossref] [PubMed]
  13. B. M. Patterson and G. J. Havrilla, “Attenuated total internal reflection infrared microspectroscopic imaging using a large-radius germanium internal reflection element and a linear array detector,” Appl. Spectrosc. 60(11), 1256–1266 (2006).
    [Crossref] [PubMed]
  14. A. W. Lee and Q. Hu, “Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array,” Opt. Lett. 30(19), 2563–2565 (2005).
    [Crossref] [PubMed]
  15. V. V. Gerasimov, B. A. Knyazev, and V. S. Cherkassky, “Obtaining spectrally selective images of objects in attenuated total reflection regime in real time in visible and terahertz ranges,” Opt. Spectrosc. 108(6), 859–865 (2010).
    [Crossref]
  16. M. Grognot and G. Gallot, “Quantitative measurement of permeabilization of living cells by terahertz attenuated total reflection,” Appl. Phys. Lett. 107(10), 103702 (2015).
    [Crossref]
  17. H. Liu, Y. Wang, D. Xu, L. Wu, C. Yan, D. Yan, L. Tang, Y. He, H. Feng, and J. Yao, “High-sensitivity attenuated total internal reflection continuous-wave terahertz imaging,” J. Phys. D Appl. Phys. 50(37), 375103 (2017).
    [Crossref]
  18. A. Soltani, T. Probst, S. F. Busch, M. Schwerdtfeger, E. Castro-Camus, and M. Koch, “Error from delay drift in terahertz attenuated total reflection spectroscopy,” J. Infrared Millim. Terahertz Waves 35(5), 468–477 (2014).
    [Crossref]
  19. A. Soltani, D. Jahn, L. Duschek, E. Castro-Camus, M. Koch, and W. Withayachumnankul, “Attenuated total reflection terahertz time-domain spectroscopy: uncertainty analysis and reduction scheme,” IEEE. Trans. Terahz. Sci. Technol. 6(1), 32–39 (2016).
    [Crossref]
  20. R. E. Fischer, B. Tadic-Galeb, and P. R. Yoder, Optical System Design (McGraw Hill, 2008), Chap. 11.
  21. Orazio Svelto, Principles of Lasers (Springer, 2010), Chap. 4.

2018 (1)

2017 (3)

Y. Zou, Q. Liu, X. Yang, H. C. Huang, J. Li, L. H. Du, Z. R. Li, J. H. Zhao, and L. G. Zhu, “Label-free monitoring of cell death induced by oxidative stress in living human cells using terahertz ATR spectroscopy,” Biomed. Opt. Express 9(1), 14–24 (2017).
[Crossref] [PubMed]

J. Qin, L. Xie, and Y. Ying, “Rapid analysis of tetracycline hydrochloride solution by attenuated total reflection terahertz time-domain spectroscopy,” Food Chem. 224, 262–269 (2017).
[Crossref] [PubMed]

H. Liu, Y. Wang, D. Xu, L. Wu, C. Yan, D. Yan, L. Tang, Y. He, H. Feng, and J. Yao, “High-sensitivity attenuated total internal reflection continuous-wave terahertz imaging,” J. Phys. D Appl. Phys. 50(37), 375103 (2017).
[Crossref]

2016 (5)

A. Soltani, D. Jahn, L. Duschek, E. Castro-Camus, M. Koch, and W. Withayachumnankul, “Attenuated total reflection terahertz time-domain spectroscopy: uncertainty analysis and reduction scheme,” IEEE. Trans. Terahz. Sci. Technol. 6(1), 32–39 (2016).
[Crossref]

O. Cherkasova, M. Nazarov, and A. Shkurinov, “Noninvasive blood glucose monitoring in the terahertz frequency range,” Opt. Quantum Electron. 48(3), 217 (2016).
[Crossref]

K. L. Andrew Chan and S. G. Kazarian, “Attenuated total reflection Fourier-transform infrared (ATR-FTIR) imaging of tissues and live cells,” Chem. Soc. Rev. 45(7), 1850–1864 (2016).
[Crossref] [PubMed]

S. Yousefinejad, L. Aalizadeh, and F. Honarasa, “Application of ATR-FTIR spectroscopy and chemometrics for the discrimination of furnace oil, gas oil and mazut oil,” Anal. Methods 8(23), 4640–4647 (2016).
[Crossref]

S. Fan, E. Parrott, B. Ung, and E. Pickwell-MacPherson, “Calibration method to improve the accuracy of THz imaging and spectroscopy in reflection geometry,” Photon. Res. 4(3), A29–A35 (2016).
[Crossref]

2015 (1)

M. Grognot and G. Gallot, “Quantitative measurement of permeabilization of living cells by terahertz attenuated total reflection,” Appl. Phys. Lett. 107(10), 103702 (2015).
[Crossref]

2014 (2)

K. Shiraga, Y. Ogawa, T. Suzuki, N. Kondo, A. Irisawa, and M. Imamura, “Characterization of dielectric responses of human cancer cells in the terahertz region,” J. Infrared Millim. Terahertz Waves 35(5), 493–502 (2014).
[Crossref]

A. Soltani, T. Probst, S. F. Busch, M. Schwerdtfeger, E. Castro-Camus, and M. Koch, “Error from delay drift in terahertz attenuated total reflection spectroscopy,” J. Infrared Millim. Terahertz Waves 35(5), 468–477 (2014).
[Crossref]

2012 (1)

T. P. Wrobel, K. M. Marzec, K. Majzner, K. Kochan, M. Bartus, S. Chlopicki, and M. Baranska, “Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy of a single endothelial cell,” Analyst (Lond.) 137(18), 4135–4139 (2012).
[Crossref] [PubMed]

2011 (1)

M. Hishida and K. Tanaka, “Long-range hydration effect of lipid membrane studied by terahertz time-domain spectroscopy,” Phys. Rev. Lett. 106(15), 158102 (2011).
[Crossref] [PubMed]

2010 (1)

V. V. Gerasimov, B. A. Knyazev, and V. S. Cherkassky, “Obtaining spectrally selective images of objects in attenuated total reflection regime in real time in visible and terahertz ranges,” Opt. Spectrosc. 108(6), 859–865 (2010).
[Crossref]

2009 (1)

2008 (1)

T. Arikawa, M. Nagai, and K. Tanaka, “Characterizing hydration state in solution using terahertz time-domain attenuated total reflection spectroscopy,” Chem. Phys. Lett. 457(1), 12–17 (2008).
[Crossref]

2006 (1)

2005 (1)

Aalizadeh, L.

S. Yousefinejad, L. Aalizadeh, and F. Honarasa, “Application of ATR-FTIR spectroscopy and chemometrics for the discrimination of furnace oil, gas oil and mazut oil,” Anal. Methods 8(23), 4640–4647 (2016).
[Crossref]

Andrew Chan, K. L.

K. L. Andrew Chan and S. G. Kazarian, “Attenuated total reflection Fourier-transform infrared (ATR-FTIR) imaging of tissues and live cells,” Chem. Soc. Rev. 45(7), 1850–1864 (2016).
[Crossref] [PubMed]

Arikawa, T.

T. Arikawa, M. Nagai, and K. Tanaka, “Characterizing hydration state in solution using terahertz time-domain attenuated total reflection spectroscopy,” Chem. Phys. Lett. 457(1), 12–17 (2008).
[Crossref]

Ashworth, P. C.

Baranska, M.

T. P. Wrobel, K. M. Marzec, K. Majzner, K. Kochan, M. Bartus, S. Chlopicki, and M. Baranska, “Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy of a single endothelial cell,” Analyst (Lond.) 137(18), 4135–4139 (2012).
[Crossref] [PubMed]

Bartus, M.

T. P. Wrobel, K. M. Marzec, K. Majzner, K. Kochan, M. Bartus, S. Chlopicki, and M. Baranska, “Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy of a single endothelial cell,” Analyst (Lond.) 137(18), 4135–4139 (2012).
[Crossref] [PubMed]

Busch, S. F.

A. Soltani, T. Probst, S. F. Busch, M. Schwerdtfeger, E. Castro-Camus, and M. Koch, “Error from delay drift in terahertz attenuated total reflection spectroscopy,” J. Infrared Millim. Terahertz Waves 35(5), 468–477 (2014).
[Crossref]

Castro-Camus, E.

A. Soltani, D. Jahn, L. Duschek, E. Castro-Camus, M. Koch, and W. Withayachumnankul, “Attenuated total reflection terahertz time-domain spectroscopy: uncertainty analysis and reduction scheme,” IEEE. Trans. Terahz. Sci. Technol. 6(1), 32–39 (2016).
[Crossref]

A. Soltani, T. Probst, S. F. Busch, M. Schwerdtfeger, E. Castro-Camus, and M. Koch, “Error from delay drift in terahertz attenuated total reflection spectroscopy,” J. Infrared Millim. Terahertz Waves 35(5), 468–477 (2014).
[Crossref]

Cherkasova, O.

O. Cherkasova, M. Nazarov, and A. Shkurinov, “Noninvasive blood glucose monitoring in the terahertz frequency range,” Opt. Quantum Electron. 48(3), 217 (2016).
[Crossref]

Cherkassky, V. S.

V. V. Gerasimov, B. A. Knyazev, and V. S. Cherkassky, “Obtaining spectrally selective images of objects in attenuated total reflection regime in real time in visible and terahertz ranges,” Opt. Spectrosc. 108(6), 859–865 (2010).
[Crossref]

Chlopicki, S.

T. P. Wrobel, K. M. Marzec, K. Majzner, K. Kochan, M. Bartus, S. Chlopicki, and M. Baranska, “Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy of a single endothelial cell,” Analyst (Lond.) 137(18), 4135–4139 (2012).
[Crossref] [PubMed]

Choi, Y.

Du, L. H.

Duschek, L.

A. Soltani, D. Jahn, L. Duschek, E. Castro-Camus, M. Koch, and W. Withayachumnankul, “Attenuated total reflection terahertz time-domain spectroscopy: uncertainty analysis and reduction scheme,” IEEE. Trans. Terahz. Sci. Technol. 6(1), 32–39 (2016).
[Crossref]

Fan, S.

Feng, H.

H. Liu, Y. Wang, D. Xu, L. Wu, C. Yan, D. Yan, L. Tang, Y. He, H. Feng, and J. Yao, “High-sensitivity attenuated total internal reflection continuous-wave terahertz imaging,” J. Phys. D Appl. Phys. 50(37), 375103 (2017).
[Crossref]

Gallot, G.

M. Grognot and G. Gallot, “Quantitative measurement of permeabilization of living cells by terahertz attenuated total reflection,” Appl. Phys. Lett. 107(10), 103702 (2015).
[Crossref]

Gerasimov, V. V.

V. V. Gerasimov, B. A. Knyazev, and V. S. Cherkassky, “Obtaining spectrally selective images of objects in attenuated total reflection regime in real time in visible and terahertz ranges,” Opt. Spectrosc. 108(6), 859–865 (2010).
[Crossref]

Grognot, M.

M. Grognot and G. Gallot, “Quantitative measurement of permeabilization of living cells by terahertz attenuated total reflection,” Appl. Phys. Lett. 107(10), 103702 (2015).
[Crossref]

Havrilla, G. J.

He, Y.

H. Liu, Y. Wang, D. Xu, L. Wu, C. Yan, D. Yan, L. Tang, Y. He, H. Feng, and J. Yao, “High-sensitivity attenuated total internal reflection continuous-wave terahertz imaging,” J. Phys. D Appl. Phys. 50(37), 375103 (2017).
[Crossref]

Hishida, M.

M. Hishida and K. Tanaka, “Long-range hydration effect of lipid membrane studied by terahertz time-domain spectroscopy,” Phys. Rev. Lett. 106(15), 158102 (2011).
[Crossref] [PubMed]

Honarasa, F.

S. Yousefinejad, L. Aalizadeh, and F. Honarasa, “Application of ATR-FTIR spectroscopy and chemometrics for the discrimination of furnace oil, gas oil and mazut oil,” Anal. Methods 8(23), 4640–4647 (2016).
[Crossref]

Hu, Q.

Huang, H. C.

Huh, Y. M.

Imamura, M.

K. Shiraga, Y. Ogawa, T. Suzuki, N. Kondo, A. Irisawa, and M. Imamura, “Characterization of dielectric responses of human cancer cells in the terahertz region,” J. Infrared Millim. Terahertz Waves 35(5), 493–502 (2014).
[Crossref]

Irisawa, A.

K. Shiraga, Y. Ogawa, T. Suzuki, N. Kondo, A. Irisawa, and M. Imamura, “Characterization of dielectric responses of human cancer cells in the terahertz region,” J. Infrared Millim. Terahertz Waves 35(5), 493–502 (2014).
[Crossref]

Jahn, D.

A. Soltani, D. Jahn, L. Duschek, E. Castro-Camus, M. Koch, and W. Withayachumnankul, “Attenuated total reflection terahertz time-domain spectroscopy: uncertainty analysis and reduction scheme,” IEEE. Trans. Terahz. Sci. Technol. 6(1), 32–39 (2016).
[Crossref]

Jeoung, K.

Ji, Y. B.

Kazarian, S. G.

K. L. Andrew Chan and S. G. Kazarian, “Attenuated total reflection Fourier-transform infrared (ATR-FTIR) imaging of tissues and live cells,” Chem. Soc. Rev. 45(7), 1850–1864 (2016).
[Crossref] [PubMed]

Kim, S. H.

Knyazev, B. A.

V. V. Gerasimov, B. A. Knyazev, and V. S. Cherkassky, “Obtaining spectrally selective images of objects in attenuated total reflection regime in real time in visible and terahertz ranges,” Opt. Spectrosc. 108(6), 859–865 (2010).
[Crossref]

Koch, M.

A. Soltani, D. Jahn, L. Duschek, E. Castro-Camus, M. Koch, and W. Withayachumnankul, “Attenuated total reflection terahertz time-domain spectroscopy: uncertainty analysis and reduction scheme,” IEEE. Trans. Terahz. Sci. Technol. 6(1), 32–39 (2016).
[Crossref]

A. Soltani, T. Probst, S. F. Busch, M. Schwerdtfeger, E. Castro-Camus, and M. Koch, “Error from delay drift in terahertz attenuated total reflection spectroscopy,” J. Infrared Millim. Terahertz Waves 35(5), 468–477 (2014).
[Crossref]

Kochan, K.

T. P. Wrobel, K. M. Marzec, K. Majzner, K. Kochan, M. Bartus, S. Chlopicki, and M. Baranska, “Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy of a single endothelial cell,” Analyst (Lond.) 137(18), 4135–4139 (2012).
[Crossref] [PubMed]

Kondo, N.

K. Shiraga, Y. Ogawa, T. Suzuki, N. Kondo, A. Irisawa, and M. Imamura, “Characterization of dielectric responses of human cancer cells in the terahertz region,” J. Infrared Millim. Terahertz Waves 35(5), 493–502 (2014).
[Crossref]

Lee, A. W.

Lee, K.

Li, J.

Li, Z. R.

Liu, H.

H. Liu, Y. Wang, D. Xu, L. Wu, C. Yan, D. Yan, L. Tang, Y. He, H. Feng, and J. Yao, “High-sensitivity attenuated total internal reflection continuous-wave terahertz imaging,” J. Phys. D Appl. Phys. 50(37), 375103 (2017).
[Crossref]

Liu, Q.

Majzner, K.

T. P. Wrobel, K. M. Marzec, K. Majzner, K. Kochan, M. Bartus, S. Chlopicki, and M. Baranska, “Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy of a single endothelial cell,” Analyst (Lond.) 137(18), 4135–4139 (2012).
[Crossref] [PubMed]

Marzec, K. M.

T. P. Wrobel, K. M. Marzec, K. Majzner, K. Kochan, M. Bartus, S. Chlopicki, and M. Baranska, “Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy of a single endothelial cell,” Analyst (Lond.) 137(18), 4135–4139 (2012).
[Crossref] [PubMed]

Nagai, M.

T. Arikawa, M. Nagai, and K. Tanaka, “Characterizing hydration state in solution using terahertz time-domain attenuated total reflection spectroscopy,” Chem. Phys. Lett. 457(1), 12–17 (2008).
[Crossref]

Nazarov, M.

O. Cherkasova, M. Nazarov, and A. Shkurinov, “Noninvasive blood glucose monitoring in the terahertz frequency range,” Opt. Quantum Electron. 48(3), 217 (2016).
[Crossref]

Ogawa, Y.

K. Shiraga, Y. Ogawa, T. Suzuki, N. Kondo, A. Irisawa, and M. Imamura, “Characterization of dielectric responses of human cancer cells in the terahertz region,” J. Infrared Millim. Terahertz Waves 35(5), 493–502 (2014).
[Crossref]

Oh, S. J.

Parrott, E.

Patterson, B. M.

Pepper, M.

Pickwell-MacPherson, E.

Pinder, S. E.

Probst, T.

A. Soltani, T. Probst, S. F. Busch, M. Schwerdtfeger, E. Castro-Camus, and M. Koch, “Error from delay drift in terahertz attenuated total reflection spectroscopy,” J. Infrared Millim. Terahertz Waves 35(5), 468–477 (2014).
[Crossref]

Provenzano, E.

Purushotham, A. D.

Qin, J.

J. Qin, L. Xie, and Y. Ying, “Rapid analysis of tetracycline hydrochloride solution by attenuated total reflection terahertz time-domain spectroscopy,” Food Chem. 224, 262–269 (2017).
[Crossref] [PubMed]

Schwerdtfeger, M.

A. Soltani, T. Probst, S. F. Busch, M. Schwerdtfeger, E. Castro-Camus, and M. Koch, “Error from delay drift in terahertz attenuated total reflection spectroscopy,” J. Infrared Millim. Terahertz Waves 35(5), 468–477 (2014).
[Crossref]

Shiraga, K.

K. Shiraga, Y. Ogawa, T. Suzuki, N. Kondo, A. Irisawa, and M. Imamura, “Characterization of dielectric responses of human cancer cells in the terahertz region,” J. Infrared Millim. Terahertz Waves 35(5), 493–502 (2014).
[Crossref]

Shkurinov, A.

O. Cherkasova, M. Nazarov, and A. Shkurinov, “Noninvasive blood glucose monitoring in the terahertz frequency range,” Opt. Quantum Electron. 48(3), 217 (2016).
[Crossref]

Soltani, A.

A. Soltani, D. Jahn, L. Duschek, E. Castro-Camus, M. Koch, and W. Withayachumnankul, “Attenuated total reflection terahertz time-domain spectroscopy: uncertainty analysis and reduction scheme,” IEEE. Trans. Terahz. Sci. Technol. 6(1), 32–39 (2016).
[Crossref]

A. Soltani, T. Probst, S. F. Busch, M. Schwerdtfeger, E. Castro-Camus, and M. Koch, “Error from delay drift in terahertz attenuated total reflection spectroscopy,” J. Infrared Millim. Terahertz Waves 35(5), 468–477 (2014).
[Crossref]

Son, H.

Suh, J. S.

Suzuki, T.

K. Shiraga, Y. Ogawa, T. Suzuki, N. Kondo, A. Irisawa, and M. Imamura, “Characterization of dielectric responses of human cancer cells in the terahertz region,” J. Infrared Millim. Terahertz Waves 35(5), 493–502 (2014).
[Crossref]

Tanaka, K.

M. Hishida and K. Tanaka, “Long-range hydration effect of lipid membrane studied by terahertz time-domain spectroscopy,” Phys. Rev. Lett. 106(15), 158102 (2011).
[Crossref] [PubMed]

T. Arikawa, M. Nagai, and K. Tanaka, “Characterizing hydration state in solution using terahertz time-domain attenuated total reflection spectroscopy,” Chem. Phys. Lett. 457(1), 12–17 (2008).
[Crossref]

Tang, L.

H. Liu, Y. Wang, D. Xu, L. Wu, C. Yan, D. Yan, L. Tang, Y. He, H. Feng, and J. Yao, “High-sensitivity attenuated total internal reflection continuous-wave terahertz imaging,” J. Phys. D Appl. Phys. 50(37), 375103 (2017).
[Crossref]

Ung, B.

Wallace, V. P.

Wang, Y.

H. Liu, Y. Wang, D. Xu, L. Wu, C. Yan, D. Yan, L. Tang, Y. He, H. Feng, and J. Yao, “High-sensitivity attenuated total internal reflection continuous-wave terahertz imaging,” J. Phys. D Appl. Phys. 50(37), 375103 (2017).
[Crossref]

Withayachumnankul, W.

A. Soltani, D. Jahn, L. Duschek, E. Castro-Camus, M. Koch, and W. Withayachumnankul, “Attenuated total reflection terahertz time-domain spectroscopy: uncertainty analysis and reduction scheme,” IEEE. Trans. Terahz. Sci. Technol. 6(1), 32–39 (2016).
[Crossref]

Wrobel, T. P.

T. P. Wrobel, K. M. Marzec, K. Majzner, K. Kochan, M. Bartus, S. Chlopicki, and M. Baranska, “Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy of a single endothelial cell,” Analyst (Lond.) 137(18), 4135–4139 (2012).
[Crossref] [PubMed]

Wu, L.

H. Liu, Y. Wang, D. Xu, L. Wu, C. Yan, D. Yan, L. Tang, Y. He, H. Feng, and J. Yao, “High-sensitivity attenuated total internal reflection continuous-wave terahertz imaging,” J. Phys. D Appl. Phys. 50(37), 375103 (2017).
[Crossref]

Xie, L.

J. Qin, L. Xie, and Y. Ying, “Rapid analysis of tetracycline hydrochloride solution by attenuated total reflection terahertz time-domain spectroscopy,” Food Chem. 224, 262–269 (2017).
[Crossref] [PubMed]

Xu, D.

H. Liu, Y. Wang, D. Xu, L. Wu, C. Yan, D. Yan, L. Tang, Y. He, H. Feng, and J. Yao, “High-sensitivity attenuated total internal reflection continuous-wave terahertz imaging,” J. Phys. D Appl. Phys. 50(37), 375103 (2017).
[Crossref]

Yan, C.

H. Liu, Y. Wang, D. Xu, L. Wu, C. Yan, D. Yan, L. Tang, Y. He, H. Feng, and J. Yao, “High-sensitivity attenuated total internal reflection continuous-wave terahertz imaging,” J. Phys. D Appl. Phys. 50(37), 375103 (2017).
[Crossref]

Yan, D.

H. Liu, Y. Wang, D. Xu, L. Wu, C. Yan, D. Yan, L. Tang, Y. He, H. Feng, and J. Yao, “High-sensitivity attenuated total internal reflection continuous-wave terahertz imaging,” J. Phys. D Appl. Phys. 50(37), 375103 (2017).
[Crossref]

Yang, X.

Yao, J.

H. Liu, Y. Wang, D. Xu, L. Wu, C. Yan, D. Yan, L. Tang, Y. He, H. Feng, and J. Yao, “High-sensitivity attenuated total internal reflection continuous-wave terahertz imaging,” J. Phys. D Appl. Phys. 50(37), 375103 (2017).
[Crossref]

Ying, Y.

J. Qin, L. Xie, and Y. Ying, “Rapid analysis of tetracycline hydrochloride solution by attenuated total reflection terahertz time-domain spectroscopy,” Food Chem. 224, 262–269 (2017).
[Crossref] [PubMed]

Yousefinejad, S.

S. Yousefinejad, L. Aalizadeh, and F. Honarasa, “Application of ATR-FTIR spectroscopy and chemometrics for the discrimination of furnace oil, gas oil and mazut oil,” Anal. Methods 8(23), 4640–4647 (2016).
[Crossref]

Zhao, J. H.

Zhu, L. G.

Zou, Y.

Anal. Methods (1)

S. Yousefinejad, L. Aalizadeh, and F. Honarasa, “Application of ATR-FTIR spectroscopy and chemometrics for the discrimination of furnace oil, gas oil and mazut oil,” Anal. Methods 8(23), 4640–4647 (2016).
[Crossref]

Analyst (Lond.) (1)

T. P. Wrobel, K. M. Marzec, K. Majzner, K. Kochan, M. Bartus, S. Chlopicki, and M. Baranska, “Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy of a single endothelial cell,” Analyst (Lond.) 137(18), 4135–4139 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

M. Grognot and G. Gallot, “Quantitative measurement of permeabilization of living cells by terahertz attenuated total reflection,” Appl. Phys. Lett. 107(10), 103702 (2015).
[Crossref]

Appl. Spectrosc. (1)

Biomed. Opt. Express (2)

Chem. Phys. Lett. (1)

T. Arikawa, M. Nagai, and K. Tanaka, “Characterizing hydration state in solution using terahertz time-domain attenuated total reflection spectroscopy,” Chem. Phys. Lett. 457(1), 12–17 (2008).
[Crossref]

Chem. Soc. Rev. (1)

K. L. Andrew Chan and S. G. Kazarian, “Attenuated total reflection Fourier-transform infrared (ATR-FTIR) imaging of tissues and live cells,” Chem. Soc. Rev. 45(7), 1850–1864 (2016).
[Crossref] [PubMed]

Food Chem. (1)

J. Qin, L. Xie, and Y. Ying, “Rapid analysis of tetracycline hydrochloride solution by attenuated total reflection terahertz time-domain spectroscopy,” Food Chem. 224, 262–269 (2017).
[Crossref] [PubMed]

IEEE. Trans. Terahz. Sci. Technol. (1)

A. Soltani, D. Jahn, L. Duschek, E. Castro-Camus, M. Koch, and W. Withayachumnankul, “Attenuated total reflection terahertz time-domain spectroscopy: uncertainty analysis and reduction scheme,” IEEE. Trans. Terahz. Sci. Technol. 6(1), 32–39 (2016).
[Crossref]

J. Infrared Millim. Terahertz Waves (2)

A. Soltani, T. Probst, S. F. Busch, M. Schwerdtfeger, E. Castro-Camus, and M. Koch, “Error from delay drift in terahertz attenuated total reflection spectroscopy,” J. Infrared Millim. Terahertz Waves 35(5), 468–477 (2014).
[Crossref]

K. Shiraga, Y. Ogawa, T. Suzuki, N. Kondo, A. Irisawa, and M. Imamura, “Characterization of dielectric responses of human cancer cells in the terahertz region,” J. Infrared Millim. Terahertz Waves 35(5), 493–502 (2014).
[Crossref]

J. Phys. D Appl. Phys. (1)

H. Liu, Y. Wang, D. Xu, L. Wu, C. Yan, D. Yan, L. Tang, Y. He, H. Feng, and J. Yao, “High-sensitivity attenuated total internal reflection continuous-wave terahertz imaging,” J. Phys. D Appl. Phys. 50(37), 375103 (2017).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

O. Cherkasova, M. Nazarov, and A. Shkurinov, “Noninvasive blood glucose monitoring in the terahertz frequency range,” Opt. Quantum Electron. 48(3), 217 (2016).
[Crossref]

Opt. Spectrosc. (1)

V. V. Gerasimov, B. A. Knyazev, and V. S. Cherkassky, “Obtaining spectrally selective images of objects in attenuated total reflection regime in real time in visible and terahertz ranges,” Opt. Spectrosc. 108(6), 859–865 (2010).
[Crossref]

Photon. Res. (1)

Phys. Rev. Lett. (1)

M. Hishida and K. Tanaka, “Long-range hydration effect of lipid membrane studied by terahertz time-domain spectroscopy,” Phys. Rev. Lett. 106(15), 158102 (2011).
[Crossref] [PubMed]

Other (2)

R. E. Fischer, B. Tadic-Galeb, and P. R. Yoder, Optical System Design (McGraw Hill, 2008), Chap. 11.

Orazio Svelto, Principles of Lasers (Springer, 2010), Chap. 4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Experimental setup and (b) principle of the THz-ATR scanning imaging system.
Fig. 2
Fig. 2 (a) and (c) scanning process and THz-ATR imaging results, respectively, of Prism 1; (b) and (d) scanning process and THz-ATR imaging results, respectively, of Prism 2.
Fig. 3
Fig. 3 Effective ATR imaging area percentage and the utilization curve of the prism.
Fig. 4
Fig. 4 (a) Schematic diagram of the height difference of the output beams. (b) Dependence of the height difference on the base angle and scanning length.
Fig. 5
Fig. 5 Schematic diagram of the focal deviation.
Fig. 6
Fig. 6 Dependence of the focal deviation on the base angle and scanning length.
Fig. 7
Fig. 7 THz-ATR imaging of solid blood agars with different lengths.
Fig. 8
Fig. 8 Schematic diagram of the secondary reflection effect with the investigated sampling spot in the (a) background region and (b) sample region, respectively. Attenuation rate of the investigated sampling spot in the (c) background region and (d) sample region, respectively, under different polarizations and various secondary reflection situations.
Fig. 9
Fig. 9 THz-ATR imaging results of a drop of water that prove the secondary reflection effect. (a) and (b) correspond to the base angle of 30° under p- and s-polarizations, respectively. (c) and (d) correspond to the base angle of 49° under p- and s-polarizations, respectively.
Fig. 10
Fig. 10 Prism undergoing a counter-clockwise (left) or a clockwise (right) deflection.
Fig. 11
Fig. 11 Simulated change of the attenuation rate of distilled water on the prism encountering a deflection angle ranging from 0° to 1° in the counter-clockwise and clockwise directions.

Tables (3)

Tables Icon

Table 1 Simulated and measured attenuation rate of the shaded area and the sample

Tables Icon

Table 2 Changes in the attenuation rate of the sample (deflection angle: 1°, base angle: 30°)

Tables Icon

Table 3 Changes in the attenuation rate of the sample (deflection angle: 1°, base angle: 49°)

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

d = r sin θ cos θ 3 cos θ 2 .
l = f m 2 [ 1 + sin θ cos θ 2 ( 1 n p sin θ 3 ) ] .
d 1 = d 2 = m sin θ 2 cos θ 2 . d 1 ' = ( m 2 ± r ) sin θ cos θ 2 , d 2 ' = ( m 2 r ) sin θ cos θ 2 .
η e f f = { tan θ tan θ 3 1 21 θ 38 θ > 38 ,
η u t i = { 2 sin θ sin θ 3 / cos θ 2 2 cos θ cos θ 3 / cos θ 2 21 θ 38 θ > 38
Δ h = 2 m s sin θ cos θ 3 cos θ 2 .
{ q A + f = q 0 q A + l A B = q B 1 q B 2 = n p q B 1 q B 2 + l B C = q C .
{ q A + f = q 0 q A + l A D = q D 1 q D 2 = n p q D 1 q D 2 + l D E = q E q E + l E F = q F .
Δ f = m s 2 [ 1 + sin θ cos θ 2 ( 1 n p sin θ 3 ) ] .
a t t e n u a t i o n r a t e = 1 I t a r g e t I b a c k g r o u n d .

Metrics