Abstract

We propose and experimentally demonstrated an all-optical radio-frequency (RF) spectrum analyzer, based on asynchronous optical sampling (ASOPS) assisted temporal convolution. The RF spectrum is mapped onto the time axis with the help of the temporal convolution system. In combination with the bandwidth compression capability of the ASOPS scheme, up to 28-GHz RF spectrum can be directly read out by an acquisition system with bandwidth as low as 20 MHz. The experimental results demonstrated about 100-MHz resolution and 28-GHz observation bandwidth. The resolution can be improved by increasing the amount of temporal dispersion or optical spectral bandwidth, and the bandwidth can be further extended by compensating the higher-order dispersion, although it is currently mainly limited by that of the electro-optic modulator. The frame rate is flexibly tunable by changing the repetition rate difference between the two mode-locked fiber lasers. Moreover, nearly 25-dB dynamic range indicates this system has a promising application prospect.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Real-time broadband radio frequency spectrum analyzer based on parametric spectro-temporal analyzer (PASTA)

Liao Chen, Yuhua Duan, Haidong Zhou, Xi Zhou, Chi Zhang, and Xinliang Zhang
Opt. Express 25(8) 9416-9425 (2017)

Ultrafast electrical spectrum analyzer based on all-optical Fourier transform and temporal magnification

Yuhua Duan, Liao Chen, Haidong Zhou, Xi Zhou, Chi Zhang, and Xinliang Zhang
Opt. Express 25(7) 7520-7529 (2017)

Frequency-domain light intensity spectrum analyzer based on temporal convolution

Liao Chen, Yuhua Duan, Chi Zhang, and Xinliang Zhang
Opt. Lett. 42(14) 2726-2729 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. E. Spezio, “Electronic warfare systems,” IEEE Trans. Microw. Theory Tech. 50(3), 633–644 (2002).
    [Crossref]
  2. A. O. Benz, P. C. Grigis, V. Hungerbühler, H. Meyer, C. Monstein, B. Stuber, and D. Zardet, “A broadband FFT spectrometer for radio and millimeter astronomy,” Astron. Astrophys. 442(2), 767–773 (2008).
    [Crossref]
  3. K. Xu, R. Wang, Y. Dai, F. Yin, J. Li, Y. Ji, and J. Lin, “Microwave photonics: radio-over-fiber links, systems, and applications,” Photon. Res. 2(4), B54–B63 (2014).
    [Crossref]
  4. J. Duan, H. Huang, Z. G. Lu, P. J. Poole, C. Wang, and F. Grillot, “Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers,” Appl. Phys. Lett. 112(12), 121102 (2018).
    [Crossref]
  5. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  6. S. Pan and J. Yao, “Photonics-based broadband microwave measurement,” J. Lightwave Technol. 35(16), 3498–3513 (2017).
    [Crossref]
  7. H. Chi, X. Zou, and J. P. Yao, “An Approach to the Measurement of Microwave Frequency Based on Optical Power Monitoring,” IEEE Photonics Technol. Lett. 20(14), 1249–1251 (2008).
    [Crossref]
  8. L. V. T. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photonics Technol. Lett. 18(10), 1188–1190 (2006).
    [Crossref]
  9. W. Li, N. H. Zhu, and L. X. Wang, “Brillouin-assisted microwave frequency measurement with adjustable measurement range and resolution,” Opt. Lett. 37(2), 166–168 (2012).
    [Crossref] [PubMed]
  10. M. Pagani, B. Morrison, Y. Zhang, A. Casas-Bedoya, T. Aalto, M. Harjanne, M. Kapulainen, B. J. Eggleton, and D. Marpaung, “Low-error and broadband microwave frequency measurement in a silicon chip,” Optica 2(8), 751–756 (2015).
    [Crossref]
  11. H. Jiang, D. Marpaung, M. Pagani, K. Vu, D. Y. Choi, S. J. Madden, L. Yan, and B. J. Eggleton, “Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter,” Optica 3(1), 30–34 (2016).
    [Crossref]
  12. S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microw. Theory Tech. 54(2), 868–872 (2006).
    [Crossref]
  13. W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brook, and M. C. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49(10), 1996–2001 (2001).
    [Crossref]
  14. X. Zou, W. Pan, B. Luo, and L. Yan, “Photonic approach for multiple-frequency-component measurement using spectrally sliced incoherent source,” Opt. Lett. 35(3), 438–440 (2010).
    [Crossref] [PubMed]
  15. C.-S. Brès, S. Zlatanovic, A. O. J. Wiberg, and S. Radic, “Reconfigurable parametric channelized receiver for instantaneous spectral analysis,” Opt. Express 19(4), 3531–3541 (2011).
    [Crossref] [PubMed]
  16. X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-Assisted Microwave Channelizer With Improved Channel Characteristics Based on Spectrum-Controlled Stimulated Brillouin Scattering,” IEEE Trans. Microw. Theory Tech. 61(9), 3470–3478 (2013).
    [Crossref]
  17. S. T. Winnall and A. C. Lindsay, “A Fabry-Perot scanning receiver for microwave signal processing,” IEEE Trans. Microw. Theory Tech. 47(7), 1385–1390 (1999).
    [Crossref]
  18. P. Rugeland, Z. Yu, C. Sterner, O. Tarasenko, G. Tengstrand, and W. Margulis, “Photonic scanning receiver using an electrically tuned fiber Bragg grating,” Opt. Lett. 34(24), 3794–3796 (2009).
    [Crossref] [PubMed]
  19. S. Zheng, S. Ge, X. Zhang, H. Chi, and X. Jin, “High-Resolution Multiple Microwave Frequency Measurement Based on Stimulated Brillouin Scattering,” IEEE Photonics Technol. Lett. 24(13), 1115–1117 (2012).
    [Crossref]
  20. B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “Ultrawideband compressed sensing of arbitrary multi-tone sparse radio frequencies using spectrally encoded ultrafast laser pulses,” Opt. Lett. 40(13), 3045–3048 (2015).
    [Crossref] [PubMed]
  21. F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech. 47(7), 1309–1314 (1999).
    [Crossref]
  22. H. Chatellus, L. Cortés, and J. Azaña, “Optical real-time fourier transformation with kilohertz resolutions,” Optica 3(1), 1–8 (2016).
    [Crossref]
  23. Y. Dai, J. Li, Z. Zhang, F. Yin, W. Li, and K. Xu, “Real-time frequency-to-time mapping based on spectrally-discrete chromatic dispersion,” Opt. Express 25(14), 16660–16671 (2017).
    [Crossref] [PubMed]
  24. Y. Zheng, J. Li, Y. Dai, F. Yin, and K. Xu, “Real-time Fourier transformation based on the bandwidth magnification of RF signals,” Opt. Lett. 43(2), 194–197 (2018).
    [Crossref] [PubMed]
  25. T. A. Nguyen, E. H. W. Chan, and R. A. Minasian, “Instantaneous high-resolution multiple-frequency measurement system based on frequency-to-time mapping technique,” Opt. Lett. 39(8), 2419–2422 (2014).
    [Crossref] [PubMed]
  26. R. E. Saperstein, D. Panasenko, and Y. Fainman, “Demonstration of a microwave spectrum analyzer based on time-domain optical processing in fiber,” Opt. Lett. 29(5), 501–503 (2004).
    [Crossref] [PubMed]
  27. Y. Duan, L. Chen, H. Zhou, X. Zhou, C. Zhang, and X. Zhang, “Ultrafast electrical spectrum analyzer based on all-optical Fourier transform and temporal magnification,” Opt. Express 25(7), 7520–7529 (2017).
    [Crossref] [PubMed]
  28. J. Zhang and J. Yao, “Photonic-Assisted Microwave Temporal Convolution,” J. Lightwave Technol. 34(20), 4652–4657 (2016).
    [Crossref]
  29. P. A. Andrekson and M. Westlund, “Nonlinear optical fiber based high resolution all-optical waveform sampling,” Laser Photonics Rev. 1(3), 231–248 (2007).
    [Crossref]
  30. P. Giaccari, J.-D. Deschênes, P. Saucier, J. Genest, and P. Tremblay, “Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method,” Opt. Express 16(6), 4347–4365 (2008).
    [Crossref] [PubMed]
  31. L. Chen, Y. Duan, C. Zhang, and X. Zhang, “Frequency-domain light intensity spectrum analyzer based on temporal convolution,” Opt. Lett. 42(14), 2726–2729 (2017).
    [Crossref] [PubMed]
  32. H. Zhou, L. Chen, X. Zhou, C. Zhang, K. K. Y. Wong, and X. Zhang, “Temporal stability and spectral accuracy enhancement of the spectro-temporal analyzer,” IEEE Photonics Technol. Lett. 29(22), 1971–1974 (2017).
    [Crossref]
  33. Y. Duan, L. Zhang, L. Chen, X. Zhou, C. Zhang, and X. Zhang, “Resolution improvement of the large bandwidth and high-speed electrical spectrum analyzer based on dual optical frequency combs,” in Proceedings of IEEE Conference on Microwave Photonics (IEEE, 2017), paper Tu3.6.
    [Crossref]

2018 (2)

J. Duan, H. Huang, Z. G. Lu, P. J. Poole, C. Wang, and F. Grillot, “Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers,” Appl. Phys. Lett. 112(12), 121102 (2018).
[Crossref]

Y. Zheng, J. Li, Y. Dai, F. Yin, and K. Xu, “Real-time Fourier transformation based on the bandwidth magnification of RF signals,” Opt. Lett. 43(2), 194–197 (2018).
[Crossref] [PubMed]

2017 (5)

2016 (3)

2015 (2)

2014 (2)

2013 (1)

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-Assisted Microwave Channelizer With Improved Channel Characteristics Based on Spectrum-Controlled Stimulated Brillouin Scattering,” IEEE Trans. Microw. Theory Tech. 61(9), 3470–3478 (2013).
[Crossref]

2012 (2)

W. Li, N. H. Zhu, and L. X. Wang, “Brillouin-assisted microwave frequency measurement with adjustable measurement range and resolution,” Opt. Lett. 37(2), 166–168 (2012).
[Crossref] [PubMed]

S. Zheng, S. Ge, X. Zhang, H. Chi, and X. Jin, “High-Resolution Multiple Microwave Frequency Measurement Based on Stimulated Brillouin Scattering,” IEEE Photonics Technol. Lett. 24(13), 1115–1117 (2012).
[Crossref]

2011 (1)

2010 (1)

2009 (1)

2008 (3)

H. Chi, X. Zou, and J. P. Yao, “An Approach to the Measurement of Microwave Frequency Based on Optical Power Monitoring,” IEEE Photonics Technol. Lett. 20(14), 1249–1251 (2008).
[Crossref]

A. O. Benz, P. C. Grigis, V. Hungerbühler, H. Meyer, C. Monstein, B. Stuber, and D. Zardet, “A broadband FFT spectrometer for radio and millimeter astronomy,” Astron. Astrophys. 442(2), 767–773 (2008).
[Crossref]

P. Giaccari, J.-D. Deschênes, P. Saucier, J. Genest, and P. Tremblay, “Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method,” Opt. Express 16(6), 4347–4365 (2008).
[Crossref] [PubMed]

2007 (2)

P. A. Andrekson and M. Westlund, “Nonlinear optical fiber based high resolution all-optical waveform sampling,” Laser Photonics Rev. 1(3), 231–248 (2007).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

2006 (2)

L. V. T. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photonics Technol. Lett. 18(10), 1188–1190 (2006).
[Crossref]

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microw. Theory Tech. 54(2), 868–872 (2006).
[Crossref]

2004 (1)

2002 (1)

A. E. Spezio, “Electronic warfare systems,” IEEE Trans. Microw. Theory Tech. 50(3), 633–644 (2002).
[Crossref]

2001 (1)

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brook, and M. C. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49(10), 1996–2001 (2001).
[Crossref]

1999 (2)

S. T. Winnall and A. C. Lindsay, “A Fabry-Perot scanning receiver for microwave signal processing,” IEEE Trans. Microw. Theory Tech. 47(7), 1385–1390 (1999).
[Crossref]

F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech. 47(7), 1309–1314 (1999).
[Crossref]

Aalto, T.

Andrekson, P. A.

P. A. Andrekson and M. Westlund, “Nonlinear optical fiber based high resolution all-optical waveform sampling,” Laser Photonics Rev. 1(3), 231–248 (2007).
[Crossref]

Austin, M. W.

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microw. Theory Tech. 54(2), 868–872 (2006).
[Crossref]

Azaña, J.

Benz, A. O.

A. O. Benz, P. C. Grigis, V. Hungerbühler, H. Meyer, C. Monstein, B. Stuber, and D. Zardet, “A broadband FFT spectrometer for radio and millimeter astronomy,” Astron. Astrophys. 442(2), 767–773 (2008).
[Crossref]

Bhushan, A. S.

F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech. 47(7), 1309–1314 (1999).
[Crossref]

Bosworth, B. T.

Brès, C.-S.

Brook, J. C.

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brook, and M. C. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49(10), 1996–2001 (2001).
[Crossref]

Canning, J.

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microw. Theory Tech. 54(2), 868–872 (2006).
[Crossref]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Casas-Bedoya, A.

Chan, E. H. W.

Chatellus, H.

Chen, L.

Chi, H.

S. Zheng, S. Ge, X. Zhang, H. Chi, and X. Jin, “High-Resolution Multiple Microwave Frequency Measurement Based on Stimulated Brillouin Scattering,” IEEE Photonics Technol. Lett. 24(13), 1115–1117 (2012).
[Crossref]

H. Chi, X. Zou, and J. P. Yao, “An Approach to the Measurement of Microwave Frequency Based on Optical Power Monitoring,” IEEE Photonics Technol. Lett. 20(14), 1249–1251 (2008).
[Crossref]

Chin, S.

Choi, D. Y.

Coppinger, F.

F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech. 47(7), 1309–1314 (1999).
[Crossref]

Cortés, L.

Dai, Y.

Davis, R. L.

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brook, and M. C. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49(10), 1996–2001 (2001).
[Crossref]

Deschênes, J.-D.

Duan, J.

J. Duan, H. Huang, Z. G. Lu, P. J. Poole, C. Wang, and F. Grillot, “Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers,” Appl. Phys. Lett. 112(12), 121102 (2018).
[Crossref]

Duan, Y.

Eggleton, B. J.

Fainman, Y.

Foster, M. A.

Ge, S.

S. Zheng, S. Ge, X. Zhang, H. Chi, and X. Jin, “High-Resolution Multiple Microwave Frequency Measurement Based on Stimulated Brillouin Scattering,” IEEE Photonics Technol. Lett. 24(13), 1115–1117 (2012).
[Crossref]

Genest, J.

Giaccari, P.

Grigis, P. C.

A. O. Benz, P. C. Grigis, V. Hungerbühler, H. Meyer, C. Monstein, B. Stuber, and D. Zardet, “A broadband FFT spectrometer for radio and millimeter astronomy,” Astron. Astrophys. 442(2), 767–773 (2008).
[Crossref]

Grillot, F.

J. Duan, H. Huang, Z. G. Lu, P. J. Poole, C. Wang, and F. Grillot, “Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers,” Appl. Phys. Lett. 112(12), 121102 (2018).
[Crossref]

Harjanne, M.

Huang, H.

J. Duan, H. Huang, Z. G. Lu, P. J. Poole, C. Wang, and F. Grillot, “Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers,” Appl. Phys. Lett. 112(12), 121102 (2018).
[Crossref]

Hungerbühler, V.

A. O. Benz, P. C. Grigis, V. Hungerbühler, H. Meyer, C. Monstein, B. Stuber, and D. Zardet, “A broadband FFT spectrometer for radio and millimeter astronomy,” Astron. Astrophys. 442(2), 767–773 (2008).
[Crossref]

Hunter, D. B.

L. V. T. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photonics Technol. Lett. 18(10), 1188–1190 (2006).
[Crossref]

Jalali, B.

F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech. 47(7), 1309–1314 (1999).
[Crossref]

Ji, Y.

Jiang, H.

Jin, X.

S. Zheng, S. Ge, X. Zhang, H. Chi, and X. Jin, “High-Resolution Multiple Microwave Frequency Measurement Based on Stimulated Brillouin Scattering,” IEEE Photonics Technol. Lett. 24(13), 1115–1117 (2012).
[Crossref]

Jung, T. J.

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brook, and M. C. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49(10), 1996–2001 (2001).
[Crossref]

Kapulainen, M.

Lembo, L. J.

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brook, and M. C. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49(10), 1996–2001 (2001).
[Crossref]

Li, J.

Li, W.

Lin, J.

Lindsay, A. C.

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microw. Theory Tech. 54(2), 868–872 (2006).
[Crossref]

S. T. Winnall and A. C. Lindsay, “A Fabry-Perot scanning receiver for microwave signal processing,” IEEE Trans. Microw. Theory Tech. 47(7), 1385–1390 (1999).
[Crossref]

Lodenkamper, R.

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brook, and M. C. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49(10), 1996–2001 (2001).
[Crossref]

Lu, Z. G.

J. Duan, H. Huang, Z. G. Lu, P. J. Poole, C. Wang, and F. Grillot, “Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers,” Appl. Phys. Lett. 112(12), 121102 (2018).
[Crossref]

Luo, B.

Madden, S. J.

Margulis, W.

Marpaung, D.

Meyer, H.

A. O. Benz, P. C. Grigis, V. Hungerbühler, H. Meyer, C. Monstein, B. Stuber, and D. Zardet, “A broadband FFT spectrometer for radio and millimeter astronomy,” Astron. Astrophys. 442(2), 767–773 (2008).
[Crossref]

Minasian, R. A.

Mitchell, A.

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microw. Theory Tech. 54(2), 868–872 (2006).
[Crossref]

Monstein, C.

A. O. Benz, P. C. Grigis, V. Hungerbühler, H. Meyer, C. Monstein, B. Stuber, and D. Zardet, “A broadband FFT spectrometer for radio and millimeter astronomy,” Astron. Astrophys. 442(2), 767–773 (2008).
[Crossref]

Morrison, B.

Nguyen, L. V. T.

L. V. T. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photonics Technol. Lett. 18(10), 1188–1190 (2006).
[Crossref]

Nguyen, T. A.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Pagani, M.

Pan, S.

Pan, W.

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-Assisted Microwave Channelizer With Improved Channel Characteristics Based on Spectrum-Controlled Stimulated Brillouin Scattering,” IEEE Trans. Microw. Theory Tech. 61(9), 3470–3478 (2013).
[Crossref]

X. Zou, W. Pan, B. Luo, and L. Yan, “Photonic approach for multiple-frequency-component measurement using spectrally sliced incoherent source,” Opt. Lett. 35(3), 438–440 (2010).
[Crossref] [PubMed]

Panasenko, D.

Poole, P. J.

J. Duan, H. Huang, Z. G. Lu, P. J. Poole, C. Wang, and F. Grillot, “Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers,” Appl. Phys. Lett. 112(12), 121102 (2018).
[Crossref]

Radic, S.

Rugeland, P.

Saperstein, R. E.

Saucier, P.

Spezio, A. E.

A. E. Spezio, “Electronic warfare systems,” IEEE Trans. Microw. Theory Tech. 50(3), 633–644 (2002).
[Crossref]

Sterner, C.

Stroud, J. R.

Stuber, B.

A. O. Benz, P. C. Grigis, V. Hungerbühler, H. Meyer, C. Monstein, B. Stuber, and D. Zardet, “A broadband FFT spectrometer for radio and millimeter astronomy,” Astron. Astrophys. 442(2), 767–773 (2008).
[Crossref]

Tarasenko, O.

Tengstrand, G.

Tran, D. N.

Tran, T. D.

Tremblay, P.

Vu, K.

Wang, C.

J. Duan, H. Huang, Z. G. Lu, P. J. Poole, C. Wang, and F. Grillot, “Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers,” Appl. Phys. Lett. 112(12), 121102 (2018).
[Crossref]

Wang, L. X.

Wang, R.

Wang, W.

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brook, and M. C. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49(10), 1996–2001 (2001).
[Crossref]

Westlund, M.

P. A. Andrekson and M. Westlund, “Nonlinear optical fiber based high resolution all-optical waveform sampling,” Laser Photonics Rev. 1(3), 231–248 (2007).
[Crossref]

Wiberg, A. O. J.

Winnall, S. T.

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microw. Theory Tech. 54(2), 868–872 (2006).
[Crossref]

S. T. Winnall and A. C. Lindsay, “A Fabry-Perot scanning receiver for microwave signal processing,” IEEE Trans. Microw. Theory Tech. 47(7), 1385–1390 (1999).
[Crossref]

Wong, K. K. Y.

H. Zhou, L. Chen, X. Zhou, C. Zhang, K. K. Y. Wong, and X. Zhang, “Temporal stability and spectral accuracy enhancement of the spectro-temporal analyzer,” IEEE Photonics Technol. Lett. 29(22), 1971–1974 (2017).
[Crossref]

Wu, M. C.

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brook, and M. C. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49(10), 1996–2001 (2001).
[Crossref]

Xu, K.

Yan, L.

Yao, J.

S. Pan and J. Yao, “Photonics-based broadband microwave measurement,” J. Lightwave Technol. 35(16), 3498–3513 (2017).
[Crossref]

J. Zhang and J. Yao, “Photonic-Assisted Microwave Temporal Convolution,” J. Lightwave Technol. 34(20), 4652–4657 (2016).
[Crossref]

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-Assisted Microwave Channelizer With Improved Channel Characteristics Based on Spectrum-Controlled Stimulated Brillouin Scattering,” IEEE Trans. Microw. Theory Tech. 61(9), 3470–3478 (2013).
[Crossref]

Yao, J. P.

H. Chi, X. Zou, and J. P. Yao, “An Approach to the Measurement of Microwave Frequency Based on Optical Power Monitoring,” IEEE Photonics Technol. Lett. 20(14), 1249–1251 (2008).
[Crossref]

Yin, F.

Yu, Z.

Zardet, D.

A. O. Benz, P. C. Grigis, V. Hungerbühler, H. Meyer, C. Monstein, B. Stuber, and D. Zardet, “A broadband FFT spectrometer for radio and millimeter astronomy,” Astron. Astrophys. 442(2), 767–773 (2008).
[Crossref]

Zhang, C.

Zhang, J.

Zhang, X.

Y. Duan, L. Chen, H. Zhou, X. Zhou, C. Zhang, and X. Zhang, “Ultrafast electrical spectrum analyzer based on all-optical Fourier transform and temporal magnification,” Opt. Express 25(7), 7520–7529 (2017).
[Crossref] [PubMed]

L. Chen, Y. Duan, C. Zhang, and X. Zhang, “Frequency-domain light intensity spectrum analyzer based on temporal convolution,” Opt. Lett. 42(14), 2726–2729 (2017).
[Crossref] [PubMed]

H. Zhou, L. Chen, X. Zhou, C. Zhang, K. K. Y. Wong, and X. Zhang, “Temporal stability and spectral accuracy enhancement of the spectro-temporal analyzer,” IEEE Photonics Technol. Lett. 29(22), 1971–1974 (2017).
[Crossref]

S. Zheng, S. Ge, X. Zhang, H. Chi, and X. Jin, “High-Resolution Multiple Microwave Frequency Measurement Based on Stimulated Brillouin Scattering,” IEEE Photonics Technol. Lett. 24(13), 1115–1117 (2012).
[Crossref]

Zhang, Y.

Zhang, Z.

Zheng, S.

S. Zheng, S. Ge, X. Zhang, H. Chi, and X. Jin, “High-Resolution Multiple Microwave Frequency Measurement Based on Stimulated Brillouin Scattering,” IEEE Photonics Technol. Lett. 24(13), 1115–1117 (2012).
[Crossref]

Zheng, Y.

Zhou, H.

H. Zhou, L. Chen, X. Zhou, C. Zhang, K. K. Y. Wong, and X. Zhang, “Temporal stability and spectral accuracy enhancement of the spectro-temporal analyzer,” IEEE Photonics Technol. Lett. 29(22), 1971–1974 (2017).
[Crossref]

Y. Duan, L. Chen, H. Zhou, X. Zhou, C. Zhang, and X. Zhang, “Ultrafast electrical spectrum analyzer based on all-optical Fourier transform and temporal magnification,” Opt. Express 25(7), 7520–7529 (2017).
[Crossref] [PubMed]

Zhou, X.

Y. Duan, L. Chen, H. Zhou, X. Zhou, C. Zhang, and X. Zhang, “Ultrafast electrical spectrum analyzer based on all-optical Fourier transform and temporal magnification,” Opt. Express 25(7), 7520–7529 (2017).
[Crossref] [PubMed]

H. Zhou, L. Chen, X. Zhou, C. Zhang, K. K. Y. Wong, and X. Zhang, “Temporal stability and spectral accuracy enhancement of the spectro-temporal analyzer,” IEEE Photonics Technol. Lett. 29(22), 1971–1974 (2017).
[Crossref]

Zhu, N. H.

Zlatanovic, S.

Zou, X.

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-Assisted Microwave Channelizer With Improved Channel Characteristics Based on Spectrum-Controlled Stimulated Brillouin Scattering,” IEEE Trans. Microw. Theory Tech. 61(9), 3470–3478 (2013).
[Crossref]

X. Zou, W. Pan, B. Luo, and L. Yan, “Photonic approach for multiple-frequency-component measurement using spectrally sliced incoherent source,” Opt. Lett. 35(3), 438–440 (2010).
[Crossref] [PubMed]

H. Chi, X. Zou, and J. P. Yao, “An Approach to the Measurement of Microwave Frequency Based on Optical Power Monitoring,” IEEE Photonics Technol. Lett. 20(14), 1249–1251 (2008).
[Crossref]

Appl. Phys. Lett. (1)

J. Duan, H. Huang, Z. G. Lu, P. J. Poole, C. Wang, and F. Grillot, “Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers,” Appl. Phys. Lett. 112(12), 121102 (2018).
[Crossref]

Astron. Astrophys. (1)

A. O. Benz, P. C. Grigis, V. Hungerbühler, H. Meyer, C. Monstein, B. Stuber, and D. Zardet, “A broadband FFT spectrometer for radio and millimeter astronomy,” Astron. Astrophys. 442(2), 767–773 (2008).
[Crossref]

IEEE Photonics Technol. Lett. (4)

H. Chi, X. Zou, and J. P. Yao, “An Approach to the Measurement of Microwave Frequency Based on Optical Power Monitoring,” IEEE Photonics Technol. Lett. 20(14), 1249–1251 (2008).
[Crossref]

L. V. T. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photonics Technol. Lett. 18(10), 1188–1190 (2006).
[Crossref]

S. Zheng, S. Ge, X. Zhang, H. Chi, and X. Jin, “High-Resolution Multiple Microwave Frequency Measurement Based on Stimulated Brillouin Scattering,” IEEE Photonics Technol. Lett. 24(13), 1115–1117 (2012).
[Crossref]

H. Zhou, L. Chen, X. Zhou, C. Zhang, K. K. Y. Wong, and X. Zhang, “Temporal stability and spectral accuracy enhancement of the spectro-temporal analyzer,” IEEE Photonics Technol. Lett. 29(22), 1971–1974 (2017).
[Crossref]

IEEE Trans. Microw. Theory Tech. (6)

F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech. 47(7), 1309–1314 (1999).
[Crossref]

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microw. Theory Tech. 54(2), 868–872 (2006).
[Crossref]

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brook, and M. C. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49(10), 1996–2001 (2001).
[Crossref]

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-Assisted Microwave Channelizer With Improved Channel Characteristics Based on Spectrum-Controlled Stimulated Brillouin Scattering,” IEEE Trans. Microw. Theory Tech. 61(9), 3470–3478 (2013).
[Crossref]

S. T. Winnall and A. C. Lindsay, “A Fabry-Perot scanning receiver for microwave signal processing,” IEEE Trans. Microw. Theory Tech. 47(7), 1385–1390 (1999).
[Crossref]

A. E. Spezio, “Electronic warfare systems,” IEEE Trans. Microw. Theory Tech. 50(3), 633–644 (2002).
[Crossref]

J. Lightwave Technol. (2)

Laser Photonics Rev. (1)

P. A. Andrekson and M. Westlund, “Nonlinear optical fiber based high resolution all-optical waveform sampling,” Laser Photonics Rev. 1(3), 231–248 (2007).
[Crossref]

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (8)

L. Chen, Y. Duan, C. Zhang, and X. Zhang, “Frequency-domain light intensity spectrum analyzer based on temporal convolution,” Opt. Lett. 42(14), 2726–2729 (2017).
[Crossref] [PubMed]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “Ultrawideband compressed sensing of arbitrary multi-tone sparse radio frequencies using spectrally encoded ultrafast laser pulses,” Opt. Lett. 40(13), 3045–3048 (2015).
[Crossref] [PubMed]

P. Rugeland, Z. Yu, C. Sterner, O. Tarasenko, G. Tengstrand, and W. Margulis, “Photonic scanning receiver using an electrically tuned fiber Bragg grating,” Opt. Lett. 34(24), 3794–3796 (2009).
[Crossref] [PubMed]

X. Zou, W. Pan, B. Luo, and L. Yan, “Photonic approach for multiple-frequency-component measurement using spectrally sliced incoherent source,” Opt. Lett. 35(3), 438–440 (2010).
[Crossref] [PubMed]

Y. Zheng, J. Li, Y. Dai, F. Yin, and K. Xu, “Real-time Fourier transformation based on the bandwidth magnification of RF signals,” Opt. Lett. 43(2), 194–197 (2018).
[Crossref] [PubMed]

R. E. Saperstein, D. Panasenko, and Y. Fainman, “Demonstration of a microwave spectrum analyzer based on time-domain optical processing in fiber,” Opt. Lett. 29(5), 501–503 (2004).
[Crossref] [PubMed]

W. Li, N. H. Zhu, and L. X. Wang, “Brillouin-assisted microwave frequency measurement with adjustable measurement range and resolution,” Opt. Lett. 37(2), 166–168 (2012).
[Crossref] [PubMed]

T. A. Nguyen, E. H. W. Chan, and R. A. Minasian, “Instantaneous high-resolution multiple-frequency measurement system based on frequency-to-time mapping technique,” Opt. Lett. 39(8), 2419–2422 (2014).
[Crossref] [PubMed]

Optica (3)

Photon. Res. (1)

Other (1)

Y. Duan, L. Zhang, L. Chen, X. Zhou, C. Zhang, and X. Zhang, “Resolution improvement of the large bandwidth and high-speed electrical spectrum analyzer based on dual optical frequency combs,” in Proceedings of IEEE Conference on Microwave Photonics (IEEE, 2017), paper Tu3.6.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of the proposed RF spectrum analyzer. TCS: temporal convolution system, ASOPS: asynchronous optical sampling.
Fig. 2
Fig. 2 Detailed experimental setup. EDF: Erbium doped fiber, PC: polarization controller, PZT: piezoelectric ceramic transducer; PID: proportional-integral-differential controller; SG: signal generator.
Fig. 3
Fig. 3 (a) Stretched probe pulses before (blue) and after (red) the EOM. (b) Spectra of the FWM process. (c) The output signal of the system (black), its envelope (red) is extracted through 20-MHz filtering in the post-processing. (d) Results of the dispersion optimization. (e) Measurement results of an RF signal with three components at 1-kHz frame rate. (f) Zoom-in observation of a single frame.
Fig. 4
Fig. 4 (a) (b) Bandwidth test results. (c) (d) Resolution degeneration at different frequencies. (e) Multi-tone resolution of the system. (f) Dynamic range of the system.
Fig. 5
Fig. 5 Time position fluctuation of the two sidebands pulse (blue and red line) and the calibrated right side pulse (black line) in 50 measurements at constant (a) and varying (b) temperature. Overlay drawing of the 50 measurement results after calibration at constant (c) and varying (d) temperature.
Fig. 6
Fig. 6 Measurement results of 10-GHz RF signal at different frame rates.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I o ( t ) u 1 ( t ) [ δ ( t + Φ ω 0 ) + δ ( t Φ ω 0 ) ] n δ ( t n / f 1 )
I i d l e r ( t ) [ u 2 2 ( t ) m δ ( t m / f 2 ) ] × [ u 1 ' ( t ) n δ ( t n / f 1 ) ] = m U 2 [ 2 π m f 2 ] exp ( j 2 π m f 2 t ) × n U 1 ' ( 2 π n f 1 ) exp ( j 2 π n f 1 t ) ,
I i d l e r ( t ) p { exp ( j 2 π p f 2 t ) n U 2 [ 2 π ( n p ) f 1 ] U 1 ' ( 2 π n f 1 ) exp ( j 2 π n Δ f t ) } = p exp ( j 2 π p f 2 t ) g ( t )
U o ' ( ω ) U 2 ( M ω ) U 1 ' ( M ω ) n δ ( ω 2 π n Δ f )
I o ' ( t ) u 2 2 ( t M ) u 1 ' ( t M ) n δ ( t n Δ f ) [ u 1 ( t M + Φ ω 0 ) + u 1 ( t M Φ ω 0 ) ] n δ ( t n Δ f )

Metrics