Abstract

We demonstrate that resonant wavelength of photonic crystal (PhC) nanobeam cavities can be individually post-fabrication tuned by electron beam irradiation. By measuring the transmission spectrum of the cavities before and after trimming, it is shown that resonant wavelength shifts are proportional to the scanning time and the acceleration voltage. Furthermore, larger resonant wavelength shifts can be achieved by scanning the region where the electric field is highly localized. The measurement results show that the resonant wavelength difference can be reduced from 5.5 nm (before trimming) to 0.4 nm (after trimming), while the quality factor of the cavities can be maintained.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Post-trimming of photonic crystal nanobeam cavities by controlled electron beam exposure

Yuguang Zhang and Yaocheng Shi
Opt. Express 24(12) 12542-12548 (2016)

Programmable photonic crystal nanobeam cavities

Ian W. Frank, Parag B. Deotare, Murray W. McCutcheon, and Marko Lončar
Opt. Express 18(8) 8705-8712 (2010)

Hydrogenated amorphous silicon photonic device trimming by UV-irradiation

Timo Lipka, Melanie Kiepsch, Hoc Khiem Trieu, and Jörg Müller
Opt. Express 22(10) 12122-12132 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Q. Quan, P. B. Deotare, and M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
    [Crossref]
  2. Q. Quan and M. Lončar, “Deterministic design of high Q, small mode volume photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
    [Crossref] [PubMed]
  3. Y. Zhang and Y. Shi, “Temperature insensitive lower-index-mode photonic crystal nanobeam cavity,” Opt. Lett. 40(2), 264–267 (2015).
    [Crossref] [PubMed]
  4. P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “All optical reconfiguration of optomechanical filters,” Nat. Commun. 3(1), 846 (2012).
    [Crossref] [PubMed]
  5. X. Ge, Y. Shi, and S. He, “Ultra-compact channel drop filter based on photonic crystal nanobeam cavities utilizing a resonant tunneling effect,” Opt. Lett. 39(24), 6973–6976 (2014).
    [Crossref] [PubMed]
  6. K. Y. Jeong, Y. S. No, Y. Hwang, K. S. Kim, M. K. Seo, H. G. Park, and Y. H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4(1), 2822 (2013).
    [Crossref]
  7. B. H. Ahn, J. H. Kang, M. K. Kim, J. H. Song, B. Min, K. S. Kim, and Y. H. Lee, “One-dimensional parabolic-beam photonic crystal laser,” Opt. Express 18(6), 5654–5660 (2010).
    [Crossref] [PubMed]
  8. D. Yang, H. Tian, and Y. Ji, “High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing,” Appl. Opt. 54(1), 1–5 (2015).
    [Crossref] [PubMed]
  9. W. Liu, J. Yan, and Y. Shi, “High sensitivity visible light refractive index sensor based on high order mode Si3N4 photonic crystal nanobeam cavity,” Opt. Express 25(25), 31739–31745 (2017).
    [Crossref] [PubMed]
  10. A. H. Atabaki, A. A. Eftekhar, M. Askari, and A. Adibi, “Accurate post-fabrication trimming of ultra-compact resonators on silicon,” Opt. Express 21(12), 14139–14145 (2013).
    [Crossref] [PubMed]
  11. A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
    [Crossref]
  12. W. S. Fegadolli, N. Pavarelli, P. O’Brien, S. Njoroge, V. R. Almeida, and A. Scherer, “Thermally controllable silicon photonic crystal nanobeam cavity without surface cladding for sensing applications,” ACS Photonics 2(4), 470–474 (2015).
    [Crossref]
  13. S. Ibrahim, N. K. Fontaine, S. S. Djordjevic, B. Guan, T. Su, S. Cheung, R. P. Scott, A. T. Pomerene, L. L. Seaford, C. M. Hill, S. Danziger, Z. Ding, K. Okamoto, and S. J. B. Yoo, “Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter,” Opt. Express 19(14), 13245–13256 (2011).
    [Crossref] [PubMed]
  14. A. Canciamilla, F. Morichetti, S. Grillanda, P. Velha, M. Sorel, V. Singh, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of chalcogenide-assisted silicon waveguides,” Opt. Express 20(14), 15807–15817 (2012).
    [Crossref] [PubMed]
  15. K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
    [Crossref]
  16. X. Yang, C. J. Chen, C. A. Husko, and C. W. Wong, “Digital resonance tuning of high-Q/Vm silicon photonic crystal nanocavities by atomic layer deposition,” Appl. Phys. Lett. 91(16), 161114 (2007).
    [Crossref]
  17. C. J. Chen, J. Zheng, T. Gu, J. F. McMillan, M. Yu, G. Q. Lo, D. L. Kwong, and C. W. Wong, “Selective tuning of high-Q silicon photonic crystal nanocavities via laser-assisted local oxidation,” Opt. Express 19(13), 12480–12489 (2011).
    [Crossref] [PubMed]
  18. D. Bachman, Z. Chen, A. M. Prabhu, R. Fedosejevs, Y. Y. Tsui, and V. Van, “Femtosecond laser tuning of silicon microring resonators,” Opt. Lett. 36(23), 4695–4697 (2011).
    [Crossref] [PubMed]
  19. F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100(3), 033116 (2012).
    [Crossref]
  20. A. Faraon, D. Englund, D. Bulla, B. L. Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
    [Crossref]
  21. S. Prorok, A. Y. Petrov, M. Eich, J. Luo, and A. K. Jen, “Trimming of high-Q-factor silicon ring resonators by electron beam bleaching,” Opt. Lett. 37(15), 3114–3116 (2012).
    [Crossref] [PubMed]
  22. Y. Zhang and Y. Shi, “Post-trimming of photonic crystal nanobeam cavities by controlled electron beam exposure,” Opt. Express 24(12), 12542–12548 (2016).
    [Crossref] [PubMed]
  23. J. Schrauwen, D. Van Thourhout, and R. Baets, “Trimming of silicon ring resonator by electron beam induced compaction and strain,” Opt. Express 16(6), 3738–3743 (2008).
    [Crossref] [PubMed]
  24. T. A. Dellin, D. A. Tichenor, and E. H. Barsis, “Surface Compaction in Irradiated Vitreous Silica,” Bull. Am. Phys. Soc. 21, 296 (1976).
  25. Lumerical Solutions, Inc., http://www.lumerical.com

2017 (1)

2016 (1)

2015 (3)

2014 (1)

2013 (2)

K. Y. Jeong, Y. S. No, Y. Hwang, K. S. Kim, M. K. Seo, H. G. Park, and Y. H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4(1), 2822 (2013).
[Crossref]

A. H. Atabaki, A. A. Eftekhar, M. Askari, and A. Adibi, “Accurate post-fabrication trimming of ultra-compact resonators on silicon,” Opt. Express 21(12), 14139–14145 (2013).
[Crossref] [PubMed]

2012 (4)

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “All optical reconfiguration of optomechanical filters,” Nat. Commun. 3(1), 846 (2012).
[Crossref] [PubMed]

A. Canciamilla, F. Morichetti, S. Grillanda, P. Velha, M. Sorel, V. Singh, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of chalcogenide-assisted silicon waveguides,” Opt. Express 20(14), 15807–15817 (2012).
[Crossref] [PubMed]

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100(3), 033116 (2012).
[Crossref]

S. Prorok, A. Y. Petrov, M. Eich, J. Luo, and A. K. Jen, “Trimming of high-Q-factor silicon ring resonators by electron beam bleaching,” Opt. Lett. 37(15), 3114–3116 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (3)

Q. Quan, P. B. Deotare, and M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[Crossref]

B. H. Ahn, J. H. Kang, M. K. Kim, J. H. Song, B. Min, K. S. Kim, and Y. H. Lee, “One-dimensional parabolic-beam photonic crystal laser,” Opt. Express 18(6), 5654–5660 (2010).
[Crossref] [PubMed]

2008 (2)

A. Faraon, D. Englund, D. Bulla, B. L. Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[Crossref]

J. Schrauwen, D. Van Thourhout, and R. Baets, “Trimming of silicon ring resonator by electron beam induced compaction and strain,” Opt. Express 16(6), 3738–3743 (2008).
[Crossref] [PubMed]

2007 (1)

X. Yang, C. J. Chen, C. A. Husko, and C. W. Wong, “Digital resonance tuning of high-Q/Vm silicon photonic crystal nanocavities by atomic layer deposition,” Appl. Phys. Lett. 91(16), 161114 (2007).
[Crossref]

2005 (1)

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[Crossref]

1976 (1)

T. A. Dellin, D. A. Tichenor, and E. H. Barsis, “Surface Compaction in Irradiated Vitreous Silica,” Bull. Am. Phys. Soc. 21, 296 (1976).

Adibi, A.

Agarwal, A.

Ahn, B. H.

Almeida, V. R.

W. S. Fegadolli, N. Pavarelli, P. O’Brien, S. Njoroge, V. R. Almeida, and A. Scherer, “Thermally controllable silicon photonic crystal nanobeam cavity without surface cladding for sensing applications,” ACS Photonics 2(4), 470–474 (2015).
[Crossref]

Askari, M.

Atabaki, A. H.

Atatüre, M.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[Crossref]

Bachman, D.

Badolato, A.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[Crossref]

Baets, R.

Balet, L.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100(3), 033116 (2012).
[Crossref]

Barsis, E. H.

T. A. Dellin, D. A. Tichenor, and E. H. Barsis, “Surface Compaction in Irradiated Vitreous Silica,” Bull. Am. Phys. Soc. 21, 296 (1976).

Bulla, D.

A. Faraon, D. Englund, D. Bulla, B. L. Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[Crossref]

Bulu, I.

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “All optical reconfiguration of optomechanical filters,” Nat. Commun. 3(1), 846 (2012).
[Crossref] [PubMed]

Canciamilla, A.

A. Canciamilla, F. Morichetti, S. Grillanda, P. Velha, M. Sorel, V. Singh, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of chalcogenide-assisted silicon waveguides,” Opt. Express 20(14), 15807–15817 (2012).
[Crossref] [PubMed]

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[Crossref]

Caselli, N.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100(3), 033116 (2012).
[Crossref]

Chen, C. J.

C. J. Chen, J. Zheng, T. Gu, J. F. McMillan, M. Yu, G. Q. Lo, D. L. Kwong, and C. W. Wong, “Selective tuning of high-Q silicon photonic crystal nanocavities via laser-assisted local oxidation,” Opt. Express 19(13), 12480–12489 (2011).
[Crossref] [PubMed]

X. Yang, C. J. Chen, C. A. Husko, and C. W. Wong, “Digital resonance tuning of high-Q/Vm silicon photonic crystal nanocavities by atomic layer deposition,” Appl. Phys. Lett. 91(16), 161114 (2007).
[Crossref]

Chen, Z.

Cheung, S.

Danziger, S.

Davies, B. L.

A. Faraon, D. Englund, D. Bulla, B. L. Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[Crossref]

De La Rue, R.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[Crossref]

Dellin, T. A.

T. A. Dellin, D. A. Tichenor, and E. H. Barsis, “Surface Compaction in Irradiated Vitreous Silica,” Bull. Am. Phys. Soc. 21, 296 (1976).

Deotare, P. B.

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “All optical reconfiguration of optomechanical filters,” Nat. Commun. 3(1), 846 (2012).
[Crossref] [PubMed]

Q. Quan, P. B. Deotare, and M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

Ding, Z.

Djordjevic, S. S.

Dreiser, J.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[Crossref]

Eftekhar, A. A.

Eggleton, B. J.

A. Faraon, D. Englund, D. Bulla, B. L. Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[Crossref]

Eich, M.

Englund, D.

A. Faraon, D. Englund, D. Bulla, B. L. Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[Crossref]

Faraon, A.

A. Faraon, D. Englund, D. Bulla, B. L. Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[Crossref]

Fedosejevs, R.

Fegadolli, W. S.

W. S. Fegadolli, N. Pavarelli, P. O’Brien, S. Njoroge, V. R. Almeida, and A. Scherer, “Thermally controllable silicon photonic crystal nanobeam cavity without surface cladding for sensing applications,” ACS Photonics 2(4), 470–474 (2015).
[Crossref]

Ferrari, C.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[Crossref]

Fiore, A.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100(3), 033116 (2012).
[Crossref]

Fontaine, N. K.

Francardi, M.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100(3), 033116 (2012).
[Crossref]

Frank, I. W.

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “All optical reconfiguration of optomechanical filters,” Nat. Commun. 3(1), 846 (2012).
[Crossref] [PubMed]

Ge, X.

Gerardino, A.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100(3), 033116 (2012).
[Crossref]

Grillanda, S.

Gu, T.

Guan, B.

Gurioli, M.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100(3), 033116 (2012).
[Crossref]

He, S.

Hennessy, K.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[Crossref]

Hill, C. M.

Hu, E.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[Crossref]

Husko, C. A.

X. Yang, C. J. Chen, C. A. Husko, and C. W. Wong, “Digital resonance tuning of high-Q/Vm silicon photonic crystal nanocavities by atomic layer deposition,” Appl. Phys. Lett. 91(16), 161114 (2007).
[Crossref]

Hwang, Y.

K. Y. Jeong, Y. S. No, Y. Hwang, K. S. Kim, M. K. Seo, H. G. Park, and Y. H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4(1), 2822 (2013).
[Crossref]

Ibrahim, S.

Ilic, R.

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “All optical reconfiguration of optomechanical filters,” Nat. Commun. 3(1), 846 (2012).
[Crossref] [PubMed]

Imamoglu, A.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[Crossref]

Intonti, F.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100(3), 033116 (2012).
[Crossref]

Jen, A. K.

Jeong, K. Y.

K. Y. Jeong, Y. S. No, Y. Hwang, K. S. Kim, M. K. Seo, H. G. Park, and Y. H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4(1), 2822 (2013).
[Crossref]

Ji, Y.

Kang, J. H.

Kim, K. S.

K. Y. Jeong, Y. S. No, Y. Hwang, K. S. Kim, M. K. Seo, H. G. Park, and Y. H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4(1), 2822 (2013).
[Crossref]

B. H. Ahn, J. H. Kang, M. K. Kim, J. H. Song, B. Min, K. S. Kim, and Y. H. Lee, “One-dimensional parabolic-beam photonic crystal laser,” Opt. Express 18(6), 5654–5660 (2010).
[Crossref] [PubMed]

Kim, M. K.

Kimerling, L. C.

Krauss, T. F.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[Crossref]

Kumar, S.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100(3), 033116 (2012).
[Crossref]

Kwong, D. L.

Lee, Y. H.

K. Y. Jeong, Y. S. No, Y. Hwang, K. S. Kim, M. K. Seo, H. G. Park, and Y. H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4(1), 2822 (2013).
[Crossref]

B. H. Ahn, J. H. Kang, M. K. Kim, J. H. Song, B. Min, K. S. Kim, and Y. H. Lee, “One-dimensional parabolic-beam photonic crystal laser,” Opt. Express 18(6), 5654–5660 (2010).
[Crossref] [PubMed]

Li, L. H.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100(3), 033116 (2012).
[Crossref]

Liu, W.

Lo, G. Q.

Loncar, M.

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “All optical reconfiguration of optomechanical filters,” Nat. Commun. 3(1), 846 (2012).
[Crossref] [PubMed]

Q. Quan and M. Lončar, “Deterministic design of high Q, small mode volume photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[Crossref] [PubMed]

Q. Quan, P. B. Deotare, and M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

Luo, J.

McMillan, J. F.

Melloni, A.

A. Canciamilla, F. Morichetti, S. Grillanda, P. Velha, M. Sorel, V. Singh, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of chalcogenide-assisted silicon waveguides,” Opt. Express 20(14), 15807–15817 (2012).
[Crossref] [PubMed]

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[Crossref]

Min, B.

Morichetti, F.

A. Canciamilla, F. Morichetti, S. Grillanda, P. Velha, M. Sorel, V. Singh, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of chalcogenide-assisted silicon waveguides,” Opt. Express 20(14), 15807–15817 (2012).
[Crossref] [PubMed]

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[Crossref]

Njoroge, S.

W. S. Fegadolli, N. Pavarelli, P. O’Brien, S. Njoroge, V. R. Almeida, and A. Scherer, “Thermally controllable silicon photonic crystal nanobeam cavity without surface cladding for sensing applications,” ACS Photonics 2(4), 470–474 (2015).
[Crossref]

No, Y. S.

K. Y. Jeong, Y. S. No, Y. Hwang, K. S. Kim, M. K. Seo, H. G. Park, and Y. H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4(1), 2822 (2013).
[Crossref]

O’Brien, P.

W. S. Fegadolli, N. Pavarelli, P. O’Brien, S. Njoroge, V. R. Almeida, and A. Scherer, “Thermally controllable silicon photonic crystal nanobeam cavity without surface cladding for sensing applications,” ACS Photonics 2(4), 470–474 (2015).
[Crossref]

O’Faolain, L.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[Crossref]

Okamoto, K.

Park, H. G.

K. Y. Jeong, Y. S. No, Y. Hwang, K. S. Kim, M. K. Seo, H. G. Park, and Y. H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4(1), 2822 (2013).
[Crossref]

Pavarelli, N.

W. S. Fegadolli, N. Pavarelli, P. O’Brien, S. Njoroge, V. R. Almeida, and A. Scherer, “Thermally controllable silicon photonic crystal nanobeam cavity without surface cladding for sensing applications,” ACS Photonics 2(4), 470–474 (2015).
[Crossref]

Petroff, P.

A. Faraon, D. Englund, D. Bulla, B. L. Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[Crossref]

Petroff, P. M.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[Crossref]

Petrov, A. Y.

Pomerene, A. T.

Prabhu, A. M.

Prorok, S.

Quan, Q.

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “All optical reconfiguration of optomechanical filters,” Nat. Commun. 3(1), 846 (2012).
[Crossref] [PubMed]

Q. Quan and M. Lončar, “Deterministic design of high Q, small mode volume photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[Crossref] [PubMed]

Q. Quan, P. B. Deotare, and M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

Rastelli, A.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100(3), 033116 (2012).
[Crossref]

Riboli, F.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100(3), 033116 (2012).
[Crossref]

Samarelli, A.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[Crossref]

Scherer, A.

W. S. Fegadolli, N. Pavarelli, P. O’Brien, S. Njoroge, V. R. Almeida, and A. Scherer, “Thermally controllable silicon photonic crystal nanobeam cavity without surface cladding for sensing applications,” ACS Photonics 2(4), 470–474 (2015).
[Crossref]

Schmidt, O. G.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100(3), 033116 (2012).
[Crossref]

Schrauwen, J.

Scott, R. P.

Seaford, L. L.

Seo, M. K.

K. Y. Jeong, Y. S. No, Y. Hwang, K. S. Kim, M. K. Seo, H. G. Park, and Y. H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4(1), 2822 (2013).
[Crossref]

Shi, Y.

Singh, V.

Song, J. H.

Sorel, M.

A. Canciamilla, F. Morichetti, S. Grillanda, P. Velha, M. Sorel, V. Singh, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of chalcogenide-assisted silicon waveguides,” Opt. Express 20(14), 15807–15817 (2012).
[Crossref] [PubMed]

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[Crossref]

Stoltz, N.

A. Faraon, D. Englund, D. Bulla, B. L. Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[Crossref]

Su, T.

Tamboli, A.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[Crossref]

Tian, H.

Tichenor, D. A.

T. A. Dellin, D. A. Tichenor, and E. H. Barsis, “Surface Compaction in Irradiated Vitreous Silica,” Bull. Am. Phys. Soc. 21, 296 (1976).

Tsui, Y. Y.

Van, V.

Van Thourhout, D.

Velha, P.

Vignolini, S.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100(3), 033116 (2012).
[Crossref]

Vuckovic, J.

A. Faraon, D. Englund, D. Bulla, B. L. Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[Crossref]

Wong, C. W.

C. J. Chen, J. Zheng, T. Gu, J. F. McMillan, M. Yu, G. Q. Lo, D. L. Kwong, and C. W. Wong, “Selective tuning of high-Q silicon photonic crystal nanocavities via laser-assisted local oxidation,” Opt. Express 19(13), 12480–12489 (2011).
[Crossref] [PubMed]

X. Yang, C. J. Chen, C. A. Husko, and C. W. Wong, “Digital resonance tuning of high-Q/Vm silicon photonic crystal nanocavities by atomic layer deposition,” Appl. Phys. Lett. 91(16), 161114 (2007).
[Crossref]

Yan, J.

Yang, D.

Yang, X.

X. Yang, C. J. Chen, C. A. Husko, and C. W. Wong, “Digital resonance tuning of high-Q/Vm silicon photonic crystal nanocavities by atomic layer deposition,” Appl. Phys. Lett. 91(16), 161114 (2007).
[Crossref]

Yoo, S. J. B.

Yu, M.

Zhang, Y.

Zheng, J.

ACS Photonics (1)

W. S. Fegadolli, N. Pavarelli, P. O’Brien, S. Njoroge, V. R. Almeida, and A. Scherer, “Thermally controllable silicon photonic crystal nanobeam cavity without surface cladding for sensing applications,” ACS Photonics 2(4), 470–474 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

Q. Quan, P. B. Deotare, and M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[Crossref]

X. Yang, C. J. Chen, C. A. Husko, and C. W. Wong, “Digital resonance tuning of high-Q/Vm silicon photonic crystal nanocavities by atomic layer deposition,” Appl. Phys. Lett. 91(16), 161114 (2007).
[Crossref]

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100(3), 033116 (2012).
[Crossref]

A. Faraon, D. Englund, D. Bulla, B. L. Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[Crossref]

Bull. Am. Phys. Soc. (1)

T. A. Dellin, D. A. Tichenor, and E. H. Barsis, “Surface Compaction in Irradiated Vitreous Silica,” Bull. Am. Phys. Soc. 21, 296 (1976).

IEEE Photonics J. (1)

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[Crossref]

Nat. Commun. (2)

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “All optical reconfiguration of optomechanical filters,” Nat. Commun. 3(1), 846 (2012).
[Crossref] [PubMed]

K. Y. Jeong, Y. S. No, Y. Hwang, K. S. Kim, M. K. Seo, H. G. Park, and Y. H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4(1), 2822 (2013).
[Crossref]

Opt. Express (9)

A. Canciamilla, F. Morichetti, S. Grillanda, P. Velha, M. Sorel, V. Singh, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of chalcogenide-assisted silicon waveguides,” Opt. Express 20(14), 15807–15817 (2012).
[Crossref] [PubMed]

A. H. Atabaki, A. A. Eftekhar, M. Askari, and A. Adibi, “Accurate post-fabrication trimming of ultra-compact resonators on silicon,” Opt. Express 21(12), 14139–14145 (2013).
[Crossref] [PubMed]

J. Schrauwen, D. Van Thourhout, and R. Baets, “Trimming of silicon ring resonator by electron beam induced compaction and strain,” Opt. Express 16(6), 3738–3743 (2008).
[Crossref] [PubMed]

B. H. Ahn, J. H. Kang, M. K. Kim, J. H. Song, B. Min, K. S. Kim, and Y. H. Lee, “One-dimensional parabolic-beam photonic crystal laser,” Opt. Express 18(6), 5654–5660 (2010).
[Crossref] [PubMed]

C. J. Chen, J. Zheng, T. Gu, J. F. McMillan, M. Yu, G. Q. Lo, D. L. Kwong, and C. W. Wong, “Selective tuning of high-Q silicon photonic crystal nanocavities via laser-assisted local oxidation,” Opt. Express 19(13), 12480–12489 (2011).
[Crossref] [PubMed]

S. Ibrahim, N. K. Fontaine, S. S. Djordjevic, B. Guan, T. Su, S. Cheung, R. P. Scott, A. T. Pomerene, L. L. Seaford, C. M. Hill, S. Danziger, Z. Ding, K. Okamoto, and S. J. B. Yoo, “Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter,” Opt. Express 19(14), 13245–13256 (2011).
[Crossref] [PubMed]

Q. Quan and M. Lončar, “Deterministic design of high Q, small mode volume photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[Crossref] [PubMed]

Y. Zhang and Y. Shi, “Post-trimming of photonic crystal nanobeam cavities by controlled electron beam exposure,” Opt. Express 24(12), 12542–12548 (2016).
[Crossref] [PubMed]

W. Liu, J. Yan, and Y. Shi, “High sensitivity visible light refractive index sensor based on high order mode Si3N4 photonic crystal nanobeam cavity,” Opt. Express 25(25), 31739–31745 (2017).
[Crossref] [PubMed]

Opt. Lett. (4)

Other (1)

Lumerical Solutions, Inc., http://www.lumerical.com

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of the PhC dielectric mode nanobeam cavity; (b) Band diagram of the PhC dielectric mode nanobeam cavity; (c) Electric field intensity profile of the resonant mode of the cavity (top view).
Fig. 2
Fig. 2 Calculated resonant wavelength shifts vary with (a) the width variations; (b) the radius variations of the circle hole in the center.
Fig. 3
Fig. 3 (a) Microscope image of the fabricated PhC nanobeam cavities with input/output grating couplers; SEM image of (b) the PhC nanobeam cavity; (c) the grating coupler.
Fig. 4
Fig. 4 Measured normalized transmission spectra of the PhC nanobeam cavities right after fabrication.
Fig. 5
Fig. 5 Measured resonant wavelength shifts vary with the scanning time (a) with different magnifications; (b) at different scanned regions; (c) under different acceleration voltages.
Fig. 6
Fig. 6 (a) Measured normalized transmission spectra of PhC nanobeam cavities after trimming; (b) Normalized transmission with Lorentz fitting for cavity B before and after trimming.

Metrics