Abstract

Single-mode oscillation is crucial to the practicality of optoelectronic oscillator (OEO). Due to the limited by bandwidth and precision of radio frequency (RF) filters, it is difficult to be achieved for the OEO based on the long fiber-optic delay line. So instead of the long fiber-optic delay line, SiO2 optical waveguide ring resonator (OWRR) with high-Q and mode selection is first presented to be applied to OEO. The OEOs based on the minimum loop and SiO2 OWRR are constructed. The oscillation characteristics of the minimum loop OEO and the transmission characteristics of the SiO2 OWRR are simulated by MATLAB, respectively. The filtering effect of the SiO2 OWRR applied to the OEO is verified theoretically by comparing these simulation results. Subsequently, the contrastive experiments of the above two OEOs on oscillation modes are carried out. The oscillation mode spacing of 40.32 MHz and 2.137 GHz are obtained. These results show that the SiO2 OWRR can function as an excellent ‘filter’ in the minimum loop of the OEO. Moreover, the side mode suppression ratio and the phase noise of the OEO have been improved. Our experimental results demonstrate that the OEO adopting SiO2 OWRR is feasible to achieve the single-mode oscillation and obtain better performance microwave signals.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
An optically tunable wideband optoelectronic oscillator based on a bandpass microwave photonic filter

Fan Jiang, Jia Haur Wong, Huy Quoc Lam, Junqiang Zhou, Sheel Aditya, Peng Huei Lim, Kenneth Eng Kian Lee, Perry Ping Shum, and Xinliang Zhang
Opt. Express 21(14) 16381-16389 (2013)

Low phase noise optoelectronic oscillator based on an electroabsorption modulated laser

Siyu Zhao and Juanjuan Yan
Appl. Opt. 58(16) 4512-4517 (2019)

Amplifier-free slab-coupled optical waveguide optoelectronic oscillator systems

William Loh, Siva Yegnanarayanan, Jonathan Klamkin, Shannon M. Duff, Jason J. Plant, Frederick J. O’Donnell, and Paul W. Juodawlkis
Opt. Express 20(17) 19589-19598 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. Pan, D. Zhu, S. Liu, K. Xu, Y. Dai, T. Wang, J. Liu, N. Zhu, Y. Xue, and N. Liu, “Satellite Payloads Pay Off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
    [Crossref]
  2. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in Radar Systems: RF Integration for State-of-the-Art Functionality,” IEEE Microw. Mag. 16(8), 74–83 (2015).
    [Crossref]
  3. Z. Xie, S. Li, H. Yan, X. Xiao, X. Xue, X. Zheng, and B. Zhou, “Tunable ultraflat optical frequency comb generator based on optoelectronic oscillator using dual-parallel Mach–Zehnder modulator,” Opt. Eng. 56(6), 066115 (2017).
    [Crossref]
  4. D. Dolfi, F. V. Dijk, G. Kervella, G. Pillet, H. Lanctuit, J. Maxin, L. Morvan, M. Faugeron, and P. Berger, “Laser sources for microwave to millimeter-wave applications [Invited],” Photon. Res. 2(4), B70–B79 (2014).
    [Crossref]
  5. J. Yao, “Microwave Photonics,” in Proceedings of 2012 IEEE International Workshop on Electromagnetics; Applications and Student Innovation, (iWEM, 2012), pp. 1–2.
  6. O. Lelièvre, V. Crozatier, P. Berger, G. Baili, O. Llopis, D. Dolfi, P. Nouchi, F. Goldfarb, F. Bretenaker, L. Morvan, and G. Pillet, “A Model for Designing Ultralow Noise Single- and Dual-Loop 10-GHz Optoelectronic Oscillators,” J. Lightwave Technol. 35(20), 4366–4374 (2017).
    [Crossref]
  7. Y. Chen, S. Liu, and S. Pan, “Multi-format signal generation using a frequency-tunable optoelectronic oscillator,” Opt. Express 26(3), 3404–3420 (2018).
    [Crossref] [PubMed]
  8. H. Peng, Y. Xu, X. Peng, X. Zhu, R. Guo, F. Chen, H. Du, Y. Chen, C. Zhang, L. Zhu, W. Hu, and Z. Chen, “Wideband tunable optoelectronic oscillator based on the deamplification of stimulated Brillouin scattering,” Opt. Express 25(9), 10287–10305 (2017).
    [Crossref] [PubMed]
  9. O. Okusaga, E. J. Adles, E. C. Levy, W. Zhou, G. M. Carter, C. R. Menyuk, and M. Horowitz, “Spurious mode reduction in dual injection-locked optoelectronic oscillators,” Opt. Express 19(7), 5839–5854 (2011).
    [Crossref] [PubMed]
  10. S. E. Hosseini and A. Banai, “Analytical Prediction of the Main Oscillation Power and Spurious Levels in Optoelectronic Oscillators,” J. Lightwave Technol. 32(5), 978–985 (2014).
    [Crossref]
  11. L. Bogataj, M. Vidmar, and B. Batagelj, “Opto-Electronic Oscillator with Quality Multiplier,” IEEE T. Microw. Theory 64(2), 663–668 (2016).
  12. J. H. Cho, H. Kim, and H. K. Sung, “Reduction of Spurious Tones and Phase Noise in Dual-Loop OEO by Loop-Gain Control,” IEEE Photonics Technol. Lett. 27(13), 1391–1393 (2015).
    [Crossref]
  13. Y. Jiang, G. Bai, L. Hu, H. Li, Z. Zhou, J. Xu, and S. Wang, “Frequency Locked Single-Mode Optoelectronic Oscillator by Using Low Frequency RF Signal Injection,” IEEE Photonics Technol. Lett. 25(4), 382–384 (2013).
    [Crossref]
  14. X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
    [Crossref]
  15. W. Zhou and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory 53(3), 929–933 (2005).
    [Crossref]
  16. J. Yang, J. L. Yu, Y. T. Wang, L. T. Zhang, and E. Z. Yang, “An Optical Domain Combined Dual-Loop Optoelectronic Oscillator,” IEEE Photonics Technol. Lett. 19(11), 807–809 (2007).
    [Crossref]
  17. A. A. Savchenkov, V. S. Ilchenko, J. Byrd, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-Gallery Mode Based Opto-Electronic Oscillators,” in Proceedings of 2010 IEEE International Conference on Frequency Control Symposium, (FCS, 2010), pp. 554–557.
    [Crossref]
  18. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2015).
    [Crossref]
  19. D. T. Spencer, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime,” Optica 1(3), 153 (2014).
    [Crossref]
  20. L. Maleki and X. S. Yao, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
    [Crossref]

2018 (1)

2017 (3)

2016 (1)

L. Bogataj, M. Vidmar, and B. Batagelj, “Opto-Electronic Oscillator with Quality Multiplier,” IEEE T. Microw. Theory 64(2), 663–668 (2016).

2015 (4)

J. H. Cho, H. Kim, and H. K. Sung, “Reduction of Spurious Tones and Phase Noise in Dual-Loop OEO by Loop-Gain Control,” IEEE Photonics Technol. Lett. 27(13), 1391–1393 (2015).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2015).
[Crossref]

S. Pan, D. Zhu, S. Liu, K. Xu, Y. Dai, T. Wang, J. Liu, N. Zhu, Y. Xue, and N. Liu, “Satellite Payloads Pay Off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in Radar Systems: RF Integration for State-of-the-Art Functionality,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

2014 (3)

2013 (1)

Y. Jiang, G. Bai, L. Hu, H. Li, Z. Zhou, J. Xu, and S. Wang, “Frequency Locked Single-Mode Optoelectronic Oscillator by Using Low Frequency RF Signal Injection,” IEEE Photonics Technol. Lett. 25(4), 382–384 (2013).
[Crossref]

2011 (1)

2007 (1)

J. Yang, J. L. Yu, Y. T. Wang, L. T. Zhang, and E. Z. Yang, “An Optical Domain Combined Dual-Loop Optoelectronic Oscillator,” IEEE Photonics Technol. Lett. 19(11), 807–809 (2007).
[Crossref]

2005 (1)

W. Zhou and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory 53(3), 929–933 (2005).
[Crossref]

2000 (1)

X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
[Crossref]

1996 (1)

Adles, E. J.

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2015).
[Crossref]

Bai, G.

Y. Jiang, G. Bai, L. Hu, H. Li, Z. Zhou, J. Xu, and S. Wang, “Frequency Locked Single-Mode Optoelectronic Oscillator by Using Low Frequency RF Signal Injection,” IEEE Photonics Technol. Lett. 25(4), 382–384 (2013).
[Crossref]

Baili, G.

Banai, A.

Batagelj, B.

L. Bogataj, M. Vidmar, and B. Batagelj, “Opto-Electronic Oscillator with Quality Multiplier,” IEEE T. Microw. Theory 64(2), 663–668 (2016).

Bauters, J. F.

Berger, P.

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2015).
[Crossref]

Blasche, G.

W. Zhou and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory 53(3), 929–933 (2005).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2015).
[Crossref]

Bogataj, L.

L. Bogataj, M. Vidmar, and B. Batagelj, “Opto-Electronic Oscillator with Quality Multiplier,” IEEE T. Microw. Theory 64(2), 663–668 (2016).

Bogoni, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in Radar Systems: RF Integration for State-of-the-Art Functionality,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

Bowers, J. E.

Bretenaker, F.

Byrd, J.

A. A. Savchenkov, V. S. Ilchenko, J. Byrd, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-Gallery Mode Based Opto-Electronic Oscillators,” in Proceedings of 2010 IEEE International Conference on Frequency Control Symposium, (FCS, 2010), pp. 554–557.
[Crossref]

Carter, G. M.

Chen, F.

Chen, Y.

Chen, Z.

Cho, J. H.

J. H. Cho, H. Kim, and H. K. Sung, “Reduction of Spurious Tones and Phase Noise in Dual-Loop OEO by Loop-Gain Control,” IEEE Photonics Technol. Lett. 27(13), 1391–1393 (2015).
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2015).
[Crossref]

Crozatier, V.

Dai, Y.

S. Pan, D. Zhu, S. Liu, K. Xu, Y. Dai, T. Wang, J. Liu, N. Zhu, Y. Xue, and N. Liu, “Satellite Payloads Pay Off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2015).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2015).
[Crossref]

Dijk, F. V.

Dolfi, D.

Du, H.

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2015).
[Crossref]

Eliyahu, D.

A. A. Savchenkov, V. S. Ilchenko, J. Byrd, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-Gallery Mode Based Opto-Electronic Oscillators,” in Proceedings of 2010 IEEE International Conference on Frequency Control Symposium, (FCS, 2010), pp. 554–557.
[Crossref]

Faugeron, M.

Ghelfi, P.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in Radar Systems: RF Integration for State-of-the-Art Functionality,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

Goldfarb, F.

Guo, R.

Heck, M. J. R.

Horowitz, M.

Hosseini, S. E.

Hu, L.

Y. Jiang, G. Bai, L. Hu, H. Li, Z. Zhou, J. Xu, and S. Wang, “Frequency Locked Single-Mode Optoelectronic Oscillator by Using Low Frequency RF Signal Injection,” IEEE Photonics Technol. Lett. 25(4), 382–384 (2013).
[Crossref]

Hu, W.

Ilchenko, V. S.

A. A. Savchenkov, V. S. Ilchenko, J. Byrd, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-Gallery Mode Based Opto-Electronic Oscillators,” in Proceedings of 2010 IEEE International Conference on Frequency Control Symposium, (FCS, 2010), pp. 554–557.
[Crossref]

Jiang, Y.

Y. Jiang, G. Bai, L. Hu, H. Li, Z. Zhou, J. Xu, and S. Wang, “Frequency Locked Single-Mode Optoelectronic Oscillator by Using Low Frequency RF Signal Injection,” IEEE Photonics Technol. Lett. 25(4), 382–384 (2013).
[Crossref]

Kervella, G.

Kim, H.

J. H. Cho, H. Kim, and H. K. Sung, “Reduction of Spurious Tones and Phase Noise in Dual-Loop OEO by Loop-Gain Control,” IEEE Photonics Technol. Lett. 27(13), 1391–1393 (2015).
[Crossref]

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2015).
[Crossref]

Laghezza, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in Radar Systems: RF Integration for State-of-the-Art Functionality,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

Lanctuit, H.

Lazzeri, E.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in Radar Systems: RF Integration for State-of-the-Art Functionality,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

Lelièvre, O.

Levy, E. C.

Li, H.

Y. Jiang, G. Bai, L. Hu, H. Li, Z. Zhou, J. Xu, and S. Wang, “Frequency Locked Single-Mode Optoelectronic Oscillator by Using Low Frequency RF Signal Injection,” IEEE Photonics Technol. Lett. 25(4), 382–384 (2013).
[Crossref]

Li, S.

Z. Xie, S. Li, H. Yan, X. Xiao, X. Xue, X. Zheng, and B. Zhou, “Tunable ultraflat optical frequency comb generator based on optoelectronic oscillator using dual-parallel Mach–Zehnder modulator,” Opt. Eng. 56(6), 066115 (2017).
[Crossref]

Liang, W.

A. A. Savchenkov, V. S. Ilchenko, J. Byrd, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-Gallery Mode Based Opto-Electronic Oscillators,” in Proceedings of 2010 IEEE International Conference on Frequency Control Symposium, (FCS, 2010), pp. 554–557.
[Crossref]

Liu, J.

S. Pan, D. Zhu, S. Liu, K. Xu, Y. Dai, T. Wang, J. Liu, N. Zhu, Y. Xue, and N. Liu, “Satellite Payloads Pay Off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Liu, N.

S. Pan, D. Zhu, S. Liu, K. Xu, Y. Dai, T. Wang, J. Liu, N. Zhu, Y. Xue, and N. Liu, “Satellite Payloads Pay Off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Liu, S.

Y. Chen, S. Liu, and S. Pan, “Multi-format signal generation using a frequency-tunable optoelectronic oscillator,” Opt. Express 26(3), 3404–3420 (2018).
[Crossref] [PubMed]

S. Pan, D. Zhu, S. Liu, K. Xu, Y. Dai, T. Wang, J. Liu, N. Zhu, Y. Xue, and N. Liu, “Satellite Payloads Pay Off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Llopis, O.

Maleki, L.

X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
[Crossref]

L. Maleki and X. S. Yao, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, J. Byrd, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-Gallery Mode Based Opto-Electronic Oscillators,” in Proceedings of 2010 IEEE International Conference on Frequency Control Symposium, (FCS, 2010), pp. 554–557.
[Crossref]

Matsko, A. B.

A. A. Savchenkov, V. S. Ilchenko, J. Byrd, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-Gallery Mode Based Opto-Electronic Oscillators,” in Proceedings of 2010 IEEE International Conference on Frequency Control Symposium, (FCS, 2010), pp. 554–557.
[Crossref]

Maxin, J.

Menyuk, C. R.

Morvan, L.

Nouchi, P.

Okusaga, O.

Onori, D.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in Radar Systems: RF Integration for State-of-the-Art Functionality,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

Pan, S.

Y. Chen, S. Liu, and S. Pan, “Multi-format signal generation using a frequency-tunable optoelectronic oscillator,” Opt. Express 26(3), 3404–3420 (2018).
[Crossref] [PubMed]

S. Pan, D. Zhu, S. Liu, K. Xu, Y. Dai, T. Wang, J. Liu, N. Zhu, Y. Xue, and N. Liu, “Satellite Payloads Pay Off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Peng, H.

Peng, X.

Pillet, G.

Pinna, S.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in Radar Systems: RF Integration for State-of-the-Art Functionality,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

Savchenkov, A. A.

A. A. Savchenkov, V. S. Ilchenko, J. Byrd, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-Gallery Mode Based Opto-Electronic Oscillators,” in Proceedings of 2010 IEEE International Conference on Frequency Control Symposium, (FCS, 2010), pp. 554–557.
[Crossref]

Scotti, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in Radar Systems: RF Integration for State-of-the-Art Functionality,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

Seidel, D.

A. A. Savchenkov, V. S. Ilchenko, J. Byrd, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-Gallery Mode Based Opto-Electronic Oscillators,” in Proceedings of 2010 IEEE International Conference on Frequency Control Symposium, (FCS, 2010), pp. 554–557.
[Crossref]

Serafino, G.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in Radar Systems: RF Integration for State-of-the-Art Functionality,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

Spencer, D. T.

Sung, H. K.

J. H. Cho, H. Kim, and H. K. Sung, “Reduction of Spurious Tones and Phase Noise in Dual-Loop OEO by Loop-Gain Control,” IEEE Photonics Technol. Lett. 27(13), 1391–1393 (2015).
[Crossref]

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2015).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2015).
[Crossref]

Vidmar, M.

L. Bogataj, M. Vidmar, and B. Batagelj, “Opto-Electronic Oscillator with Quality Multiplier,” IEEE T. Microw. Theory 64(2), 663–668 (2016).

Wang, S.

Y. Jiang, G. Bai, L. Hu, H. Li, Z. Zhou, J. Xu, and S. Wang, “Frequency Locked Single-Mode Optoelectronic Oscillator by Using Low Frequency RF Signal Injection,” IEEE Photonics Technol. Lett. 25(4), 382–384 (2013).
[Crossref]

Wang, T.

S. Pan, D. Zhu, S. Liu, K. Xu, Y. Dai, T. Wang, J. Liu, N. Zhu, Y. Xue, and N. Liu, “Satellite Payloads Pay Off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Wang, Y. T.

J. Yang, J. L. Yu, Y. T. Wang, L. T. Zhang, and E. Z. Yang, “An Optical Domain Combined Dual-Loop Optoelectronic Oscillator,” IEEE Photonics Technol. Lett. 19(11), 807–809 (2007).
[Crossref]

Xiao, X.

Z. Xie, S. Li, H. Yan, X. Xiao, X. Xue, X. Zheng, and B. Zhou, “Tunable ultraflat optical frequency comb generator based on optoelectronic oscillator using dual-parallel Mach–Zehnder modulator,” Opt. Eng. 56(6), 066115 (2017).
[Crossref]

Xie, Z.

Z. Xie, S. Li, H. Yan, X. Xiao, X. Xue, X. Zheng, and B. Zhou, “Tunable ultraflat optical frequency comb generator based on optoelectronic oscillator using dual-parallel Mach–Zehnder modulator,” Opt. Eng. 56(6), 066115 (2017).
[Crossref]

Xu, J.

Y. Jiang, G. Bai, L. Hu, H. Li, Z. Zhou, J. Xu, and S. Wang, “Frequency Locked Single-Mode Optoelectronic Oscillator by Using Low Frequency RF Signal Injection,” IEEE Photonics Technol. Lett. 25(4), 382–384 (2013).
[Crossref]

Xu, K.

S. Pan, D. Zhu, S. Liu, K. Xu, Y. Dai, T. Wang, J. Liu, N. Zhu, Y. Xue, and N. Liu, “Satellite Payloads Pay Off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Xu, Y.

Xue, X.

Z. Xie, S. Li, H. Yan, X. Xiao, X. Xue, X. Zheng, and B. Zhou, “Tunable ultraflat optical frequency comb generator based on optoelectronic oscillator using dual-parallel Mach–Zehnder modulator,” Opt. Eng. 56(6), 066115 (2017).
[Crossref]

Xue, Y.

S. Pan, D. Zhu, S. Liu, K. Xu, Y. Dai, T. Wang, J. Liu, N. Zhu, Y. Xue, and N. Liu, “Satellite Payloads Pay Off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Yan, H.

Z. Xie, S. Li, H. Yan, X. Xiao, X. Xue, X. Zheng, and B. Zhou, “Tunable ultraflat optical frequency comb generator based on optoelectronic oscillator using dual-parallel Mach–Zehnder modulator,” Opt. Eng. 56(6), 066115 (2017).
[Crossref]

Yang, E. Z.

J. Yang, J. L. Yu, Y. T. Wang, L. T. Zhang, and E. Z. Yang, “An Optical Domain Combined Dual-Loop Optoelectronic Oscillator,” IEEE Photonics Technol. Lett. 19(11), 807–809 (2007).
[Crossref]

Yang, J.

J. Yang, J. L. Yu, Y. T. Wang, L. T. Zhang, and E. Z. Yang, “An Optical Domain Combined Dual-Loop Optoelectronic Oscillator,” IEEE Photonics Technol. Lett. 19(11), 807–809 (2007).
[Crossref]

Yao, J.

J. Yao, “Microwave Photonics,” in Proceedings of 2012 IEEE International Workshop on Electromagnetics; Applications and Student Innovation, (iWEM, 2012), pp. 1–2.

Yao, X. S.

X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
[Crossref]

L. Maleki and X. S. Yao, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
[Crossref]

Yu, J. L.

J. Yang, J. L. Yu, Y. T. Wang, L. T. Zhang, and E. Z. Yang, “An Optical Domain Combined Dual-Loop Optoelectronic Oscillator,” IEEE Photonics Technol. Lett. 19(11), 807–809 (2007).
[Crossref]

Zhang, C.

Zhang, L. T.

J. Yang, J. L. Yu, Y. T. Wang, L. T. Zhang, and E. Z. Yang, “An Optical Domain Combined Dual-Loop Optoelectronic Oscillator,” IEEE Photonics Technol. Lett. 19(11), 807–809 (2007).
[Crossref]

Zheng, X.

Z. Xie, S. Li, H. Yan, X. Xiao, X. Xue, X. Zheng, and B. Zhou, “Tunable ultraflat optical frequency comb generator based on optoelectronic oscillator using dual-parallel Mach–Zehnder modulator,” Opt. Eng. 56(6), 066115 (2017).
[Crossref]

Zhou, B.

Z. Xie, S. Li, H. Yan, X. Xiao, X. Xue, X. Zheng, and B. Zhou, “Tunable ultraflat optical frequency comb generator based on optoelectronic oscillator using dual-parallel Mach–Zehnder modulator,” Opt. Eng. 56(6), 066115 (2017).
[Crossref]

Zhou, W.

O. Okusaga, E. J. Adles, E. C. Levy, W. Zhou, G. M. Carter, C. R. Menyuk, and M. Horowitz, “Spurious mode reduction in dual injection-locked optoelectronic oscillators,” Opt. Express 19(7), 5839–5854 (2011).
[Crossref] [PubMed]

W. Zhou and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory 53(3), 929–933 (2005).
[Crossref]

Zhou, Z.

Y. Jiang, G. Bai, L. Hu, H. Li, Z. Zhou, J. Xu, and S. Wang, “Frequency Locked Single-Mode Optoelectronic Oscillator by Using Low Frequency RF Signal Injection,” IEEE Photonics Technol. Lett. 25(4), 382–384 (2013).
[Crossref]

Zhu, D.

S. Pan, D. Zhu, S. Liu, K. Xu, Y. Dai, T. Wang, J. Liu, N. Zhu, Y. Xue, and N. Liu, “Satellite Payloads Pay Off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Zhu, L.

Zhu, N.

S. Pan, D. Zhu, S. Liu, K. Xu, Y. Dai, T. Wang, J. Liu, N. Zhu, Y. Xue, and N. Liu, “Satellite Payloads Pay Off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Zhu, X.

IEEE J. Quantum Electron. (1)

X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
[Crossref]

IEEE Microw. Mag. (2)

S. Pan, D. Zhu, S. Liu, K. Xu, Y. Dai, T. Wang, J. Liu, N. Zhu, Y. Xue, and N. Liu, “Satellite Payloads Pay Off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in Radar Systems: RF Integration for State-of-the-Art Functionality,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (3)

J. H. Cho, H. Kim, and H. K. Sung, “Reduction of Spurious Tones and Phase Noise in Dual-Loop OEO by Loop-Gain Control,” IEEE Photonics Technol. Lett. 27(13), 1391–1393 (2015).
[Crossref]

Y. Jiang, G. Bai, L. Hu, H. Li, Z. Zhou, J. Xu, and S. Wang, “Frequency Locked Single-Mode Optoelectronic Oscillator by Using Low Frequency RF Signal Injection,” IEEE Photonics Technol. Lett. 25(4), 382–384 (2013).
[Crossref]

J. Yang, J. L. Yu, Y. T. Wang, L. T. Zhang, and E. Z. Yang, “An Optical Domain Combined Dual-Loop Optoelectronic Oscillator,” IEEE Photonics Technol. Lett. 19(11), 807–809 (2007).
[Crossref]

IEEE T. Microw. Theory (1)

L. Bogataj, M. Vidmar, and B. Batagelj, “Opto-Electronic Oscillator with Quality Multiplier,” IEEE T. Microw. Theory 64(2), 663–668 (2016).

IEEE Trans. Microw. Theory (1)

W. Zhou and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory 53(3), 929–933 (2005).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2015).
[Crossref]

Opt. Eng. (1)

Z. Xie, S. Li, H. Yan, X. Xiao, X. Xue, X. Zheng, and B. Zhou, “Tunable ultraflat optical frequency comb generator based on optoelectronic oscillator using dual-parallel Mach–Zehnder modulator,” Opt. Eng. 56(6), 066115 (2017).
[Crossref]

Opt. Express (3)

Optica (1)

Photon. Res. (1)

Other (2)

A. A. Savchenkov, V. S. Ilchenko, J. Byrd, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-Gallery Mode Based Opto-Electronic Oscillators,” in Proceedings of 2010 IEEE International Conference on Frequency Control Symposium, (FCS, 2010), pp. 554–557.
[Crossref]

J. Yao, “Microwave Photonics,” in Proceedings of 2012 IEEE International Workshop on Electromagnetics; Applications and Student Innovation, (iWEM, 2012), pp. 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic diagram of the OEO based on the minimum loop. MZM: Mach-Zehnder modulator; PD: photodetector; AMP: amplifier; EC: electrical coupler; ESA: electrical spectrum analyzer. The optical path is in blue, and the electric path is in black.
Fig. 2
Fig. 2 Simulated oscillation spectrum of the OEO based on the minimum loop by MATLAB. The calculated FSR is 41MHz, where the loop length is 5 meters.
Fig. 3
Fig. 3 Structure diagram of the SiO2 optical waveguide ring resonator. The transmission-type SiO2 optical waveguide ring resonator has four ports that are input, output, drop and add.
Fig. 4
Fig. 4 The simulated resonance spectrum of the resonator by MATLAB. The simulated FWHM, FSR and Q value of the resonator are 41 MHz, 2.173 GHz and 4.72× 10 6 , respectively.
Fig. 5
Fig. 5 The pictures of the SiO2 OWRR: (a) The SiO2 OWRR chips. (b) Packaged SiO2 OWRR and the packaging material is EVA rubber and plastic products with good heat insulation and shock-absorbing properties.
Fig. 6
Fig. 6 The test results of the resonator. The laser scanning curve is in blue, and the resonance spectrum of the resonator is in red. The pressure difference of the laser scanning curve at the FWHM of the resonance spectrum is 28 mV, therefore the 42 MHz FWHM can be obtained.
Fig. 7
Fig. 7 Spectrum of the OEO based on minimum loop under 20GHz span. The FSR of the closely spaced frequency spectrum is 40.32 MHz, which is shown in the inset.
Fig. 8
Fig. 8 Schematic diagram of the OEO based on SiO2 optical waveguide ring resonator. OWRR: optical waveguide ring resonator; PM: phase modulator; FBC: feedback controller. The optical path is in blue, and the electric path is in black.
Fig. 9
Fig. 9 Measuring system of the OEO based on SiO2 OWRR. The resonance spectrum of the resonator is transmitted by a1, and the demodulated signal spectrum is transmitted by a2. The two spectrums can be obtained through oscilloscope (OSC). The oscillation spectrum of the OEO is transmitted by a3 and can be obtained by ESA.
Fig. 10
Fig. 10 Spectrum of the OEO based on SiO2 OWRR under 20GHz span. The FSR of the broadly spaced frequency spectrum is 2.137 GHz, which is shown in the inset.
Fig. 11
Fig. 11 Oscillation spectrum comparison of the OEO based on SiO2 OWRR (OWRR-OEO) and the OEO based on the minimum loop (ML-OEO) under 10 MHz RBW. The spectrum of the OWRR-OEO is in blue-black, and the ML-OEO is in pink.
Fig. 12
Fig. 12 (a) Phase noise performance of the OWRR-OEO and the ML-OEO. Green line: the phase noise of the OWRR-OEO; Purple line: the phase noise of the ML-OEO. At 10 kHz offset frequency, the phase noise values of the OWRR-OEO and the ML-OEO are −100.54 dBc/Hz and −87.9 dBc/Hz respectively. (b) Phase noise measurement results of the OEO based on SiO2 OWRR at different oscillation frequencies.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P(ω)= | V ˜ (ω,t) | 2 2R = G A 2 | V ˜ in (ω) | 2 / (2R) 1+ | F(ω)G( V 0 ) | 2 2F(ω)| G( V 0 ) |cos[ωτ+ϕ(ω)+ ϕ 0 ] ,
FSR= 1 τ = c nL ,
T d (φ)= a k 1 2 k 2 2 1+ a 2 t 1 2 t 2 2 2a t 1 t 2 cosφ ,
Q= f Δf ,
FWHM= c nπL ×φ',
T max + T min 2 = a k 1 2 k 2 2 1+ a 2 t 1 2 t 2 2 2a t 1 t 2 cosφ .

Metrics