Abstract

We demonstrate a simple method for quantitative phase imaging of tiny transparent objects such as living cells based on the transport of intensity equation. The experiments are performed using an inverted bright field microscope upgraded with a flipping imaging module, which enables to simultaneously create two laterally separated images with unequal defocus distances. This add-on module does not include any lenses or gratings and is cost-effective and easy-to-alignment. The validity of this method is confirmed by the measurement of microlens array and human osteoblastic cells in culture, indicating its potential in the applications of dynamically measuring living cells and other transparent specimens in a quantitative, non-invasive and label-free manner.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-speed transport-of-intensity phase microscopy with an electrically tunable lens

Chao Zuo, Qian Chen, Weijuan Qu, and Anand Asundi
Opt. Express 21(20) 24060-24075 (2013)

Noninterferometric single-shot quantitative phase microscopy

Chao Zuo, Qian Chen, Weijuan Qu, and Anand Asundi
Opt. Lett. 38(18) 3538-3541 (2013)

Quantitative phase microscopy via optimized inversion of the phase optical transfer function

Micah H. Jenkins and Thomas K. Gaylord
Appl. Opt. 54(28) 8566-8579 (2015)

References

  • View by:
  • |
  • |
  • |

  1. F. Zernike, “How I Discovered Phase Contrast,” Science 121(3141), 345–349 (1955).
    [Crossref] [PubMed]
  2. G. Nomarski, “Differential microinterferometer with polarized waves,” J. Phys. Radium 16, 9s13s (1955).
  3. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23(11), 817–819 (1998).
    [Crossref] [PubMed]
  4. S. S. Kou, L. Waller, G. Barbastathis, P. Marquet, C. Depeursinge, and C. J. R. Sheppard, “Quantitative phase restoration by direct inversion using the optical transfer function,” Opt. Lett. 36(14), 2671–2673 (2011).
    [Crossref] [PubMed]
  5. K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
    [Crossref] [PubMed]
  6. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
    [Crossref] [PubMed]
  7. C. Ma, Y. Li, J. Zhang, P. Li, T. Xi, J. Di, and J. Zhao, “Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer,” Opt. Express 25(12), 13659–13667 (2017).
    [Crossref] [PubMed]
  8. Q. Weijuan, Y. Yingjie, C. O. Choo, and A. Asundi, “Digital holographic microscopy with physical phase compensation,” Opt. Lett. 34(8), 1276–1278 (2009).
    [Crossref] [PubMed]
  9. J. Zhang, C. Ma, S. Dai, J. Di, Y. Li, T. Xi, and J. Zhao, “Transmission and total internal reflection integrated digital holographic microscopy,” Opt. Lett. 41(16), 3844–3847 (2016).
    [Crossref] [PubMed]
  10. J. Di, Y. Yu, Z. Wang, W. Qu, C. Y. Cheng, and J. Zhao, “Quantitative measurement of thermal lensing in diode-side-pumped Nd:YAG laser by use of digital holographic interferometry,” Opt. Express 24(25), 28185–28193 (2016).
    [Crossref] [PubMed]
  11. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
    [Crossref] [PubMed]
  12. B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37(6), 1094–1096 (2012).
    [Crossref] [PubMed]
  13. Y. Baek, K. Lee, J. Yoon, K. Kim, and Y. Park, “White-light quantitative phase imaging unit,” Opt. Express 24(9), 9308–9315 (2016).
    [Crossref] [PubMed]
  14. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. 73(11), 1434–1441 (1983).
    [Crossref]
  15. L. Waller, L. Tian, and G. Barbastathis, “Transport of intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18(12), 12552–12561 (2010).
    [Crossref] [PubMed]
  16. C. Zuo, Q. Chen, Y. Yu, and A. Asundi, “Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter--theory and applications,” Opt. Express 21(5), 5346–5362 (2013).
    [Crossref] [PubMed]
  17. Z. Jingshan, R. A. Claus, J. Dauwels, L. Tian, and L. Waller, “Transport of Intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes,” Opt. Express 22(9), 10661–10674 (2014).
    [Crossref] [PubMed]
  18. L. Waller, S. S. Kou, C. J. R. Sheppard, and G. Barbastathis, “Phase from chromatic aberrations,” Opt. Express 18(22), 22817–22825 (2010).
    [Crossref] [PubMed]
  19. L. Waller, Y. Luo, S. Y. Yang, and G. Barbastathis, “Transport of intensity phase imaging in a volume holographic microscope,” Opt. Lett. 35(17), 2961–2963 (2010).
    [Crossref] [PubMed]
  20. S. S. Gorthi and E. Schonbrun, “Phase imaging flow cytometry using a focus-stack collecting microscope,” Opt. Lett. 37(4), 707–709 (2012).
    [Crossref] [PubMed]
  21. C. Zuo, Q. Chen, W. Qu, and A. Asundi, “High-speed transport-of-intensity phase microscopy with an electrically tunable lens,” Opt. Express 21(20), 24060–24075 (2013).
    [Crossref] [PubMed]
  22. X. Tian, W. Yu, X. Meng, A. Sun, L. Xue, C. Liu, and S. Wang, “Real-time quantitative phase imaging based on transport of intensity equation with dual simultaneously recorded field of view,” Opt. Lett. 41(7), 1427–1430 (2016).
    [Crossref] [PubMed]
  23. P. F. Almoro, L. Waller, M. Agour, C. Falldorf, G. Pedrini, W. Osten, and S. G. Hanson, “Enhanced deterministic phase retrieval using a partially developed speckle field,” Opt. Lett. 37(11), 2088–2090 (2012).
    [Crossref] [PubMed]
  24. C. Zuo, Q. Chen, W. Qu, and A. Asundi, “Noninterferometric single-shot quantitative phase microscopy,” Opt. Lett. 38(18), 3538–3541 (2013).
    [Crossref] [PubMed]
  25. T. Nguyen and G. Nehmetallah, “Non-interferometric tomography of phase objects using spatial light modulators,” J. Imaging 2(4), 30 (2016).
    [Crossref]
  26. W. Yu, X. Tian, X. He, X. Song, L. Xue, C. Liu, and S. Wang, “Real time quantitative phase microscopy based on single-shot transport of intensity equation (ssTIE) method,” Appl. Phys. Lett. 109(7), 071112 (2016).
    [Crossref]
  27. J. M. Di Martino, G. A. Ayubi, E. A. Dalchiele, J. R. Alonso, A. Fernández, J. L. Flores, and J. A. Ferrari, “Single-shot phase recovery using two laterally separated defocused images,” Opt. Commun. 293, 1–3 (2013).
    [Crossref]
  28. D. Roitshtain, N. A. Turko, B. Javidi, and N. T. Shaked, “Flipping interferometry and its application for quantitative phase microscopy in a micro-channel,” Opt. Lett. 41(10), 2354–2357 (2016).
    [Crossref] [PubMed]
  29. J. A. Schmalz, T. E. Gureyev, D. M. Paganin, and K. M. Pavlov, “Phase retrieval using radiation and matter-wave fields: Validity of Teague’s method for solution of the transport-of-intensity equation,” Phys. Rev. A 84(2), 023808 (2011).
    [Crossref]
  30. M. Beleggia, M. A. Schofield, V. V. Volkov, and Y. Zhu, “On the transport of intensity technique for phase retrieval,” Ultramicroscopy 102(1), 37–49 (2004).
    [Crossref] [PubMed]
  31. D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. The effects of noise,” J. Microsc. 214(1), 51–61 (2004).
    [Crossref] [PubMed]
  32. C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Sci. Rep. 7(1), 7654 (2017).
    [Crossref] [PubMed]
  33. J. Li, Q. Chen, J. Zhang, Y. Zhang, L. Lu, and C. Zuo, “Efficient quantitative phase microscopy using programmable annular LED illumination,” Biomed. Opt. Express 8(10), 4687–4705 (2017).
    [Crossref] [PubMed]
  34. R. C. Gonzales and R. E. Woods, “Digital Image Processing (Chapter 2),” (Addison-Wesley, 1992).
  35. C. Zuo, Q. Chen, and A. Asundi, “Boundary-artifact-free phase retrieval with the transport of intensity equation: fast solution with use of discrete cosine transform,” Opt. Express 22(8), 9220–9244 (2014).
    [Crossref] [PubMed]
  36. T. Chakraborty and J. C. Petruccelli, “Source diversity for transport of intensity phase imaging,” Opt. Express 25(8), 9122–9137 (2017).
    [Crossref] [PubMed]
  37. T. Chakraborty and J. C. Petruccelli, “Optical convolution for quantitative phase retrieval using the transport of intensity equation,” Appl. Opt. 57(1), A134 (2018).
    [Crossref]
  38. N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 084101 (2012).
    [Crossref] [PubMed]

2018 (1)

2017 (4)

2016 (7)

2014 (2)

2013 (5)

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

J. M. Di Martino, G. A. Ayubi, E. A. Dalchiele, J. R. Alonso, A. Fernández, J. L. Flores, and J. A. Ferrari, “Single-shot phase recovery using two laterally separated defocused images,” Opt. Commun. 293, 1–3 (2013).
[Crossref]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “High-speed transport-of-intensity phase microscopy with an electrically tunable lens,” Opt. Express 21(20), 24060–24075 (2013).
[Crossref] [PubMed]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “Noninterferometric single-shot quantitative phase microscopy,” Opt. Lett. 38(18), 3538–3541 (2013).
[Crossref] [PubMed]

C. Zuo, Q. Chen, Y. Yu, and A. Asundi, “Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter--theory and applications,” Opt. Express 21(5), 5346–5362 (2013).
[Crossref] [PubMed]

2012 (4)

2011 (2)

S. S. Kou, L. Waller, G. Barbastathis, P. Marquet, C. Depeursinge, and C. J. R. Sheppard, “Quantitative phase restoration by direct inversion using the optical transfer function,” Opt. Lett. 36(14), 2671–2673 (2011).
[Crossref] [PubMed]

J. A. Schmalz, T. E. Gureyev, D. M. Paganin, and K. M. Pavlov, “Phase retrieval using radiation and matter-wave fields: Validity of Teague’s method for solution of the transport-of-intensity equation,” Phys. Rev. A 84(2), 023808 (2011).
[Crossref]

2010 (3)

2009 (1)

2006 (1)

2005 (1)

2004 (2)

M. Beleggia, M. A. Schofield, V. V. Volkov, and Y. Zhu, “On the transport of intensity technique for phase retrieval,” Ultramicroscopy 102(1), 37–49 (2004).
[Crossref] [PubMed]

D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. The effects of noise,” J. Microsc. 214(1), 51–61 (2004).
[Crossref] [PubMed]

1998 (1)

1983 (1)

1955 (2)

F. Zernike, “How I Discovered Phase Contrast,” Science 121(3141), 345–349 (1955).
[Crossref] [PubMed]

G. Nomarski, “Differential microinterferometer with polarized waves,” J. Phys. Radium 16, 9s13s (1955).

Agour, M.

Almoro, P. F.

Alonso, J. R.

J. M. Di Martino, G. A. Ayubi, E. A. Dalchiele, J. R. Alonso, A. Fernández, J. L. Flores, and J. A. Ferrari, “Single-shot phase recovery using two laterally separated defocused images,” Opt. Commun. 293, 1–3 (2013).
[Crossref]

Asundi, A.

Ayubi, G. A.

J. M. Di Martino, G. A. Ayubi, E. A. Dalchiele, J. R. Alonso, A. Fernández, J. L. Flores, and J. A. Ferrari, “Single-shot phase recovery using two laterally separated defocused images,” Opt. Commun. 293, 1–3 (2013).
[Crossref]

Baek, Y.

Barbastathis, G.

Barty, A.

D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. The effects of noise,” J. Microsc. 214(1), 51–61 (2004).
[Crossref] [PubMed]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23(11), 817–819 (1998).
[Crossref] [PubMed]

Beleggia, M.

M. Beleggia, M. A. Schofield, V. V. Volkov, and Y. Zhu, “On the transport of intensity technique for phase retrieval,” Ultramicroscopy 102(1), 37–49 (2004).
[Crossref] [PubMed]

Bhaduri, B.

Chakraborty, T.

Chang, G.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Chen, Q.

Cheng, C. Y.

Cho, S.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Choo, C. O.

Claus, R. A.

Colomb, T.

Cuche, E.

Dai, S.

Dalchiele, E. A.

J. M. Di Martino, G. A. Ayubi, E. A. Dalchiele, J. R. Alonso, A. Fernández, J. L. Flores, and J. A. Ferrari, “Single-shot phase recovery using two laterally separated defocused images,” Opt. Commun. 293, 1–3 (2013).
[Crossref]

Dasari, R. R.

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 084101 (2012).
[Crossref] [PubMed]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
[Crossref] [PubMed]

Dauwels, J.

Depeursinge, C.

Di, J.

Di Martino, J. M.

J. M. Di Martino, G. A. Ayubi, E. A. Dalchiele, J. R. Alonso, A. Fernández, J. L. Flores, and J. A. Ferrari, “Single-shot phase recovery using two laterally separated defocused images,” Opt. Commun. 293, 1–3 (2013).
[Crossref]

Emery, Y.

Falldorf, C.

Feld, M. S.

Fernández, A.

J. M. Di Martino, G. A. Ayubi, E. A. Dalchiele, J. R. Alonso, A. Fernández, J. L. Flores, and J. A. Ferrari, “Single-shot phase recovery using two laterally separated defocused images,” Opt. Commun. 293, 1–3 (2013).
[Crossref]

Ferrari, J. A.

J. M. Di Martino, G. A. Ayubi, E. A. Dalchiele, J. R. Alonso, A. Fernández, J. L. Flores, and J. A. Ferrari, “Single-shot phase recovery using two laterally separated defocused images,” Opt. Commun. 293, 1–3 (2013).
[Crossref]

Flores, J. L.

J. M. Di Martino, G. A. Ayubi, E. A. Dalchiele, J. R. Alonso, A. Fernández, J. L. Flores, and J. A. Ferrari, “Single-shot phase recovery using two laterally separated defocused images,” Opt. Commun. 293, 1–3 (2013).
[Crossref]

Gorthi, S. S.

Gureyev, T. E.

J. A. Schmalz, T. E. Gureyev, D. M. Paganin, and K. M. Pavlov, “Phase retrieval using radiation and matter-wave fields: Validity of Teague’s method for solution of the transport-of-intensity equation,” Phys. Rev. A 84(2), 023808 (2011).
[Crossref]

Hanson, S. G.

He, X.

W. Yu, X. Tian, X. He, X. Song, L. Xue, C. Liu, and S. Wang, “Real time quantitative phase microscopy based on single-shot transport of intensity equation (ssTIE) method,” Appl. Phys. Lett. 109(7), 071112 (2016).
[Crossref]

Heo, J.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Hillman, T. R.

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 084101 (2012).
[Crossref] [PubMed]

Ikeda, T.

Javidi, B.

Jingshan, Z.

Jo, Y.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Jung, J.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Kang, J. W.

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 084101 (2012).
[Crossref] [PubMed]

Kim, K.

Y. Baek, K. Lee, J. Yoon, K. Kim, and Y. Park, “White-light quantitative phase imaging unit,” Opt. Express 24(9), 9308–9315 (2016).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Kou, S. S.

Lee, K.

Y. Baek, K. Lee, J. Yoon, K. Kim, and Y. Park, “White-light quantitative phase imaging unit,” Opt. Express 24(9), 9308–9315 (2016).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Lee, S.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Li, J.

J. Li, Q. Chen, J. Zhang, Y. Zhang, L. Lu, and C. Zuo, “Efficient quantitative phase microscopy using programmable annular LED illumination,” Biomed. Opt. Express 8(10), 4687–4705 (2017).
[Crossref] [PubMed]

C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Sci. Rep. 7(1), 7654 (2017).
[Crossref] [PubMed]

Li, P.

Li, Y.

Liu, C.

X. Tian, W. Yu, X. Meng, A. Sun, L. Xue, C. Liu, and S. Wang, “Real-time quantitative phase imaging based on transport of intensity equation with dual simultaneously recorded field of view,” Opt. Lett. 41(7), 1427–1430 (2016).
[Crossref] [PubMed]

W. Yu, X. Tian, X. He, X. Song, L. Xue, C. Liu, and S. Wang, “Real time quantitative phase microscopy based on single-shot transport of intensity equation (ssTIE) method,” Appl. Phys. Lett. 109(7), 071112 (2016).
[Crossref]

Lu, L.

Lue, N.

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 084101 (2012).
[Crossref] [PubMed]

Luo, Y.

Ma, C.

Magistretti, P. J.

Marquet, P.

McMahon, P. J.

D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. The effects of noise,” J. Microsc. 214(1), 51–61 (2004).
[Crossref] [PubMed]

Meng, X.

Mir, M.

Nehmetallah, G.

T. Nguyen and G. Nehmetallah, “Non-interferometric tomography of phase objects using spatial light modulators,” J. Imaging 2(4), 30 (2016).
[Crossref]

Nguyen, T.

T. Nguyen and G. Nehmetallah, “Non-interferometric tomography of phase objects using spatial light modulators,” J. Imaging 2(4), 30 (2016).
[Crossref]

Nomarski, G.

G. Nomarski, “Differential microinterferometer with polarized waves,” J. Phys. Radium 16, 9s13s (1955).

Nugent, K. A.

D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. The effects of noise,” J. Microsc. 214(1), 51–61 (2004).
[Crossref] [PubMed]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23(11), 817–819 (1998).
[Crossref] [PubMed]

Osten, W.

Paganin, D.

D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. The effects of noise,” J. Microsc. 214(1), 51–61 (2004).
[Crossref] [PubMed]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23(11), 817–819 (1998).
[Crossref] [PubMed]

Paganin, D. M.

J. A. Schmalz, T. E. Gureyev, D. M. Paganin, and K. M. Pavlov, “Phase retrieval using radiation and matter-wave fields: Validity of Teague’s method for solution of the transport-of-intensity equation,” Phys. Rev. A 84(2), 023808 (2011).
[Crossref]

Park, H.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Park, Y.

Y. Baek, K. Lee, J. Yoon, K. Kim, and Y. Park, “White-light quantitative phase imaging unit,” Opt. Express 24(9), 9308–9315 (2016).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Pavlov, K. M.

J. A. Schmalz, T. E. Gureyev, D. M. Paganin, and K. M. Pavlov, “Phase retrieval using radiation and matter-wave fields: Validity of Teague’s method for solution of the transport-of-intensity equation,” Phys. Rev. A 84(2), 023808 (2011).
[Crossref]

Pedrini, G.

Petruccelli, J. C.

Pham, H.

Popescu, G.

Qu, W.

Rappaz, B.

Roberts, A.

Roitshtain, D.

Schmalz, J. A.

J. A. Schmalz, T. E. Gureyev, D. M. Paganin, and K. M. Pavlov, “Phase retrieval using radiation and matter-wave fields: Validity of Teague’s method for solution of the transport-of-intensity equation,” Phys. Rev. A 84(2), 023808 (2011).
[Crossref]

Schofield, M. A.

M. Beleggia, M. A. Schofield, V. V. Volkov, and Y. Zhu, “On the transport of intensity technique for phase retrieval,” Ultramicroscopy 102(1), 37–49 (2004).
[Crossref] [PubMed]

Schonbrun, E.

Shaked, N. T.

Sheppard, C. J. R.

Song, X.

W. Yu, X. Tian, X. He, X. Song, L. Xue, C. Liu, and S. Wang, “Real time quantitative phase microscopy based on single-shot transport of intensity equation (ssTIE) method,” Appl. Phys. Lett. 109(7), 071112 (2016).
[Crossref]

Sun, A.

Sun, J.

C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Sci. Rep. 7(1), 7654 (2017).
[Crossref] [PubMed]

Teague, M. R.

Tian, L.

Tian, X.

X. Tian, W. Yu, X. Meng, A. Sun, L. Xue, C. Liu, and S. Wang, “Real-time quantitative phase imaging based on transport of intensity equation with dual simultaneously recorded field of view,” Opt. Lett. 41(7), 1427–1430 (2016).
[Crossref] [PubMed]

W. Yu, X. Tian, X. He, X. Song, L. Xue, C. Liu, and S. Wang, “Real time quantitative phase microscopy based on single-shot transport of intensity equation (ssTIE) method,” Appl. Phys. Lett. 109(7), 071112 (2016).
[Crossref]

Turko, N. A.

Volkov, V. V.

M. Beleggia, M. A. Schofield, V. V. Volkov, and Y. Zhu, “On the transport of intensity technique for phase retrieval,” Ultramicroscopy 102(1), 37–49 (2004).
[Crossref] [PubMed]

Waller, L.

Wang, S.

X. Tian, W. Yu, X. Meng, A. Sun, L. Xue, C. Liu, and S. Wang, “Real-time quantitative phase imaging based on transport of intensity equation with dual simultaneously recorded field of view,” Opt. Lett. 41(7), 1427–1430 (2016).
[Crossref] [PubMed]

W. Yu, X. Tian, X. He, X. Song, L. Xue, C. Liu, and S. Wang, “Real time quantitative phase microscopy based on single-shot transport of intensity equation (ssTIE) method,” Appl. Phys. Lett. 109(7), 071112 (2016).
[Crossref]

Wang, Z.

Weijuan, Q.

Xi, T.

Xue, L.

W. Yu, X. Tian, X. He, X. Song, L. Xue, C. Liu, and S. Wang, “Real time quantitative phase microscopy based on single-shot transport of intensity equation (ssTIE) method,” Appl. Phys. Lett. 109(7), 071112 (2016).
[Crossref]

X. Tian, W. Yu, X. Meng, A. Sun, L. Xue, C. Liu, and S. Wang, “Real-time quantitative phase imaging based on transport of intensity equation with dual simultaneously recorded field of view,” Opt. Lett. 41(7), 1427–1430 (2016).
[Crossref] [PubMed]

Yang, S. Y.

Yaqoob, Z.

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 084101 (2012).
[Crossref] [PubMed]

Yingjie, Y.

Yoon, J.

Yu, W.

X. Tian, W. Yu, X. Meng, A. Sun, L. Xue, C. Liu, and S. Wang, “Real-time quantitative phase imaging based on transport of intensity equation with dual simultaneously recorded field of view,” Opt. Lett. 41(7), 1427–1430 (2016).
[Crossref] [PubMed]

W. Yu, X. Tian, X. He, X. Song, L. Xue, C. Liu, and S. Wang, “Real time quantitative phase microscopy based on single-shot transport of intensity equation (ssTIE) method,” Appl. Phys. Lett. 109(7), 071112 (2016).
[Crossref]

Yu, Y.

Zernike, F.

F. Zernike, “How I Discovered Phase Contrast,” Science 121(3141), 345–349 (1955).
[Crossref] [PubMed]

Zhang, J.

Zhang, Y.

Zhao, J.

Zhu, Y.

M. Beleggia, M. A. Schofield, V. V. Volkov, and Y. Zhu, “On the transport of intensity technique for phase retrieval,” Ultramicroscopy 102(1), 37–49 (2004).
[Crossref] [PubMed]

Zuo, C.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 084101 (2012).
[Crossref] [PubMed]

W. Yu, X. Tian, X. He, X. Song, L. Xue, C. Liu, and S. Wang, “Real time quantitative phase microscopy based on single-shot transport of intensity equation (ssTIE) method,” Appl. Phys. Lett. 109(7), 071112 (2016).
[Crossref]

Biomed. Opt. Express (1)

J. Imaging (1)

T. Nguyen and G. Nehmetallah, “Non-interferometric tomography of phase objects using spatial light modulators,” J. Imaging 2(4), 30 (2016).
[Crossref]

J. Microsc. (1)

D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. The effects of noise,” J. Microsc. 214(1), 51–61 (2004).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Phys. Radium (1)

G. Nomarski, “Differential microinterferometer with polarized waves,” J. Phys. Radium 16, 9s13s (1955).

Opt. Commun. (1)

J. M. Di Martino, G. A. Ayubi, E. A. Dalchiele, J. R. Alonso, A. Fernández, J. L. Flores, and J. A. Ferrari, “Single-shot phase recovery using two laterally separated defocused images,” Opt. Commun. 293, 1–3 (2013).
[Crossref]

Opt. Express (10)

Y. Baek, K. Lee, J. Yoon, K. Kim, and Y. Park, “White-light quantitative phase imaging unit,” Opt. Express 24(9), 9308–9315 (2016).
[Crossref] [PubMed]

J. Di, Y. Yu, Z. Wang, W. Qu, C. Y. Cheng, and J. Zhao, “Quantitative measurement of thermal lensing in diode-side-pumped Nd:YAG laser by use of digital holographic interferometry,” Opt. Express 24(25), 28185–28193 (2016).
[Crossref] [PubMed]

C. Zuo, Q. Chen, and A. Asundi, “Boundary-artifact-free phase retrieval with the transport of intensity equation: fast solution with use of discrete cosine transform,” Opt. Express 22(8), 9220–9244 (2014).
[Crossref] [PubMed]

T. Chakraborty and J. C. Petruccelli, “Source diversity for transport of intensity phase imaging,” Opt. Express 25(8), 9122–9137 (2017).
[Crossref] [PubMed]

C. Ma, Y. Li, J. Zhang, P. Li, T. Xi, J. Di, and J. Zhao, “Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer,” Opt. Express 25(12), 13659–13667 (2017).
[Crossref] [PubMed]

L. Waller, L. Tian, and G. Barbastathis, “Transport of intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18(12), 12552–12561 (2010).
[Crossref] [PubMed]

C. Zuo, Q. Chen, Y. Yu, and A. Asundi, “Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter--theory and applications,” Opt. Express 21(5), 5346–5362 (2013).
[Crossref] [PubMed]

Z. Jingshan, R. A. Claus, J. Dauwels, L. Tian, and L. Waller, “Transport of Intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes,” Opt. Express 22(9), 10661–10674 (2014).
[Crossref] [PubMed]

L. Waller, S. S. Kou, C. J. R. Sheppard, and G. Barbastathis, “Phase from chromatic aberrations,” Opt. Express 18(22), 22817–22825 (2010).
[Crossref] [PubMed]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “High-speed transport-of-intensity phase microscopy with an electrically tunable lens,” Opt. Express 21(20), 24060–24075 (2013).
[Crossref] [PubMed]

Opt. Lett. (13)

X. Tian, W. Yu, X. Meng, A. Sun, L. Xue, C. Liu, and S. Wang, “Real-time quantitative phase imaging based on transport of intensity equation with dual simultaneously recorded field of view,” Opt. Lett. 41(7), 1427–1430 (2016).
[Crossref] [PubMed]

P. F. Almoro, L. Waller, M. Agour, C. Falldorf, G. Pedrini, W. Osten, and S. G. Hanson, “Enhanced deterministic phase retrieval using a partially developed speckle field,” Opt. Lett. 37(11), 2088–2090 (2012).
[Crossref] [PubMed]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “Noninterferometric single-shot quantitative phase microscopy,” Opt. Lett. 38(18), 3538–3541 (2013).
[Crossref] [PubMed]

L. Waller, Y. Luo, S. Y. Yang, and G. Barbastathis, “Transport of intensity phase imaging in a volume holographic microscope,” Opt. Lett. 35(17), 2961–2963 (2010).
[Crossref] [PubMed]

S. S. Gorthi and E. Schonbrun, “Phase imaging flow cytometry using a focus-stack collecting microscope,” Opt. Lett. 37(4), 707–709 (2012).
[Crossref] [PubMed]

Q. Weijuan, Y. Yingjie, C. O. Choo, and A. Asundi, “Digital holographic microscopy with physical phase compensation,” Opt. Lett. 34(8), 1276–1278 (2009).
[Crossref] [PubMed]

J. Zhang, C. Ma, S. Dai, J. Di, Y. Li, T. Xi, and J. Zhao, “Transmission and total internal reflection integrated digital holographic microscopy,” Opt. Lett. 41(16), 3844–3847 (2016).
[Crossref] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[Crossref] [PubMed]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23(11), 817–819 (1998).
[Crossref] [PubMed]

S. S. Kou, L. Waller, G. Barbastathis, P. Marquet, C. Depeursinge, and C. J. R. Sheppard, “Quantitative phase restoration by direct inversion using the optical transfer function,” Opt. Lett. 36(14), 2671–2673 (2011).
[Crossref] [PubMed]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
[Crossref] [PubMed]

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37(6), 1094–1096 (2012).
[Crossref] [PubMed]

D. Roitshtain, N. A. Turko, B. Javidi, and N. T. Shaked, “Flipping interferometry and its application for quantitative phase microscopy in a micro-channel,” Opt. Lett. 41(10), 2354–2357 (2016).
[Crossref] [PubMed]

Phys. Rev. A (1)

J. A. Schmalz, T. E. Gureyev, D. M. Paganin, and K. M. Pavlov, “Phase retrieval using radiation and matter-wave fields: Validity of Teague’s method for solution of the transport-of-intensity equation,” Phys. Rev. A 84(2), 023808 (2011).
[Crossref]

Sci. Rep. (1)

C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Sci. Rep. 7(1), 7654 (2017).
[Crossref] [PubMed]

Science (1)

F. Zernike, “How I Discovered Phase Contrast,” Science 121(3141), 345–349 (1955).
[Crossref] [PubMed]

Sensors (Basel) (1)

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Ultramicroscopy (1)

M. Beleggia, M. A. Schofield, V. V. Volkov, and Y. Zhu, “On the transport of intensity technique for phase retrieval,” Ultramicroscopy 102(1), 37–49 (2004).
[Crossref] [PubMed]

Other (1)

R. C. Gonzales and R. E. Woods, “Digital Image Processing (Chapter 2),” (Addison-Wesley, 1992).

Supplementary Material (3)

NameDescription
» Visualization 1       dynamic division process of one selected human osteoblastic cell
» Visualization 2       phase changes of the cell over the whole 2h in the translocation process
» Visualization 3       temporal dynamics of the two-dimensional cell morphometry and cellular thickness during the translocation process

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup and beam tracing inside the module. D, diaphragm; BS, beam splitter; RR, retro reflector.
Fig. 2
Fig. 2 Recorded intensity images of the microlens array and its reconstructed results. (a) Recorded images in one shot. (b) Unwrapped phase map by DHM. (c) Phase map obtained by TIE. (d) 3D thickness profiles of (c). (e) Comparison of thickness across the central lines indicated in (b) and (c).
Fig. 3
Fig. 3 Color-coded morphology changes during different phases of mitosis (see Visualization 1).
Fig. 4
Fig. 4 Phase variation with time of three points [indicated by the (A) red, (B) yellow, (C) pink dots in Fig. 3(a)].
Fig. 5
Fig. 5 (a) Raw image of a single human osteoblastic cell. (b) Intensity derivative. (c) In focus bright field image. (d) Recovered phase map of (c). (e) 3D phase profiles at different moments (see Visualization 2).
Fig. 6
Fig. 6 Cell morphometry and cellular thickness at one selected moment (see Visualization 3).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k I( x,y ) z = [ I( x,y ) φ( x,y ) ],
ψ( x,y )=I( x,y )φ( x,y ),
k I( x,y ) z = 2 ψ( x,y ),
2 φ( x,y )=[ I ( x,y ) 1 ψ( x,y ) ].

Metrics