Abstract

In this paper, we present a heuristic method to simplify the liquid crystal adaptive optics system (LCAOS) into a single-input-single-output (SISO) system, then build the dynamic model of LCAOS based on subspace identification. Results show that the identified model could accurately describe the dynamical behavior of LCAOS (97% match), with extremely low complexity. The wonderful features of low complexity and high precision, make the identified model highly beneficial for model based controller design, system analysis and dynamical behavior simulation of liquid crystal adaptive optics systems.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improved bandwidth of open loop liquid crystal adaptive optics systems with a proportional-derivative controller

Xingyun Zhang, Zhaoliang Cao, Chengliang Yang, Zenghui Peng, Quanquan Mu, and Li Xuan
Opt. Express 27(8) 11651-11660 (2019)

Liquid Crystal based adaptive optics system to compensate both low and high order aberrations in a model eye

Quanquan Mu, Zhaoliang Cao, Dayu Li, Lifa Hu, and Li Xuan
Opt. Express 15(4) 1946-1953 (2007)

High-precision open-loop adaptive optics system based on LC-SLM

Chao Li, Mingliang Xia, Quanquan Mu, Baoguang Jiang, Li Xuan, and Zhaoliang Cao
Opt. Express 17(13) 10774-10781 (2009)

References

  • View by:
  • |
  • |
  • |

  1. H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65(386), 229–236 (1953).
    [Crossref]
  2. Z. Cao, Q. Mu, L. Hu, Y. Liu, Z. Peng, Q. Yang, H. Meng, L. Yao, and L. Xuan, “Optimal energy-splitting method for an open-loop liquid crystal adaptive optics system,” Opt. Express 20(17), 19331–19342 (2012).
    [Crossref] [PubMed]
  3. Z. H. Peng, Q. D. Wang, Y. G. Liu, Q. Q. Mu, Z. L. Cao, H. Y. Xu, P. G. Zhang, C. L. Yang, L. S. Yao, L. Xuan, and Z. Y. Zhang, “Electrooptical properties of new type fluorinated phenyl-tolane isothiocyanate liquid crystal compounds,” Liq. Cryst. 43(2), 276–284 (2016).
    [Crossref]
  4. H. Hu, L. Hu, Z. Peng, Q. Mu, X. Zhang, C. Liu, and L. Xuan, “Advanced single-frame overdriving for liquid-crystal spatial light modulators,” Opt. Lett. 37(16), 3324–3326 (2012).
    [Crossref] [PubMed]
  5. K. Takeno and T. Shirai, “Chromatic aberration free liquid crystal adaptive optics for flood illuminated retinal camera,” Opt. Commun. 285(12), 2967–2971 (2012).
    [Crossref]
  6. N. Kong, C. Li, M. Xia, D. Li, Y. Qi, and L. Xuan, “Optimization of the open-loop liquid crystal adaptive optics retinal imaging system,” J. Biomed. Opt. 17(2), 026001 (2012).
    [Crossref] [PubMed]
  7. F. Feng, I. H. White, and T. D. Wilkinson, “Aberration Correction for Free Space Optical Communications Using Rectangular Zernike Modal Wavefront Sensing,” J. Lightwave Technol. 32(6), 1239–1245 (2014).
    [Crossref]
  8. M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3(4), e165 (2014).
    [Crossref]
  9. D. Dayton, J. Gonglewski, S. Restaino, J. Martin, J. Phillips, M. Hartman, S. Browne, P. Kervin, J. Snodgrass, N. Heimann, M. Shilko, R. Pohle, B. Carrion, C. Smith, and D. Thiel, “Demonstration of new technology MEMS and liquid crystal adaptive optics on bright astronomical objects and satellites,” Opt. Express 10(25), 1508–1519 (2002).
    [Crossref] [PubMed]
  10. Q. Q. Mu, Z. L. Cao, L. F. Hu, Y. G. Liu, Z. H. Peng, L. S. Yao, and L. Xuan, “Open loop adaptive optics testbed on 2.16 meter telescope with liquid crystal corrector,” Opt. Commun. 285(6), 896–899 (2012).
    [Crossref]
  11. R. Muradore, E. Fedrigo, and C. Correia, “LQ control design for adaptive optics systems based on MIMO identified model,” Proc. SPIE 6272, 62725H (2006).
    [Crossref]
  12. T. Ruppel, S. H. Dong, F. Rooms, W. Osten, and O. Sawodny, “Feedforward Control of Deformable Membrane Mirrors for Adaptive Optics,” IEEE T. Contr. Syst. T. 21(3), 579–589 (2013).
    [Crossref]
  13. H. Song, R. Fraanje, G. Schitter, G. Vdovin, and M. Verhaegen, “Controller Design for a High-Sampling-Rate Closed-Loop Adaptive Optics System with Piezo-Driven Deformable Mirror,” Eur. J. Control 17(3), 290–301 (2011).
    [Crossref]
  14. D. T. Gavel, “Adaptive optics control strategies for extremely large telescopes,” Proc. SPIE 4494, 215–220 (2002).
    [Crossref]
  15. F. Vidal, E. Gendron, G. Rousset, T. Morris, A. Basden, R. Myers, M. Brangier, F. Chemla, N. Dipper, D. Gratadour, D. Henry, Z. Hubert, A. Longmore, O. Martin, G. Talbot, and E. Younger, “Analysis of on-sky MOAO performance of CANARY using natural guide stars,” Astron. Astrophys. 569(3), 1123–1133 (2014).
  16. A. Haber, A. Polo, S. Ravensbergen, H. P. Urbach, and M. Verhaegen, “Identification of a dynamical model of a thermally actuated deformable mirror,” Opt. Lett. 38(16), 3061–3064 (2013).
    [Crossref] [PubMed]
  17. S.-T. Wu and C.-S. Wu, “Experimental confirmation of the Osipov-Terentjev theory on the viscosity of nematic liquid crystals,” Phys. Rev. A 42(4), 2219–2227 (1990).
    [Crossref] [PubMed]
  18. C. R. Vogel, “Hysteresis Modeling and Go-To Control of Deformable Mirrors in Adaptive Optics,” in IEEE Aerospace Conference (2012).
    [Crossref]
  19. C. Vogel, G. Tyler, Y. Lu, T. Bifano, R. Conan, and C. Blain, “Modeling and parameter estimation for point-actuated continuous-facesheet deformable mirrors,” J. Opt. Soc. Am. A 27(11), A56–A63 (2010).
    [Crossref] [PubMed]
  20. D. P. Looze, “Discrete-time model for an adaptive optics system with input delay,” Int. J. Control 83(6), 1217–1231 (2010).
    [Crossref]
  21. X. Zhang, L. Hu, Z. Cao, Q. Mu, D. Li, and L. Xuan, “Improve the accuracy of interaction matrix measurement for liquid-crystal adaptive optics systems,” Opt. Express 22(12), 14221–14228 (2014).
    [Crossref] [PubMed]
  22. J. A. Jordan, P. M. Hirsch, L. B. Lesem, and D. L. Van Rooy, “Kinoform lenses,” Appl. Opt. 9(8), 1883–1887 (1970).
    [Crossref] [PubMed]
  23. Y. J. Liu, Z. L. Cao, D. Y. Li, Q. Q. Mu, L. F. Hu, X. H. Lu, and L. Xuan, “Correction for large aberration with phase-only liquid-crystal wavefront corrector,” Opt. Eng. 45(12), 128001 (2006).
    [Crossref]
  24. A. V. Kudryashov, J. Gonglewski, S. Browne, and R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characterization,” Opt. Commun. 141(5–6), 247–253 (1997).
    [Crossref]
  25. P. Prieto, E. Fernández, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12(17), 4059–4071 (2004).
    [Crossref] [PubMed]
  26. C. Li, M. Xia, Q. Mu, B. Jiang, L. Xuan, and Z. Cao, “High-precision open-loop adaptive optics system based on LC-SLM,” Opt. Express 17(13), 10774–10781 (2009).
    [Crossref] [PubMed]
  27. A. Chiuso, R. Muradore, and E. Marchetti, “Dynamic Calibration of Adaptive Optics Systems: A System Identification Approach,” in Proceedings of IEEE Conference on Decision and Control (IEEE, 2008), pp. 750–755.
    [Crossref]
  28. A. Chiuso, R. Muradore, and E. Marchetti, “Dynamic Calibration of Adaptive Optics Systems: A System Identification Approach,” IEEE T. Contr. Syst. T. 18(3), 705–713 (2010).
    [Crossref]
  29. M. Verhaegen and V. Verdult, Filtering and System Identification: A Least Squares Approach (Cambridge University, 2007), Chap. 10.

2016 (1)

Z. H. Peng, Q. D. Wang, Y. G. Liu, Q. Q. Mu, Z. L. Cao, H. Y. Xu, P. G. Zhang, C. L. Yang, L. S. Yao, L. Xuan, and Z. Y. Zhang, “Electrooptical properties of new type fluorinated phenyl-tolane isothiocyanate liquid crystal compounds,” Liq. Cryst. 43(2), 276–284 (2016).
[Crossref]

2014 (4)

F. Feng, I. H. White, and T. D. Wilkinson, “Aberration Correction for Free Space Optical Communications Using Rectangular Zernike Modal Wavefront Sensing,” J. Lightwave Technol. 32(6), 1239–1245 (2014).
[Crossref]

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3(4), e165 (2014).
[Crossref]

F. Vidal, E. Gendron, G. Rousset, T. Morris, A. Basden, R. Myers, M. Brangier, F. Chemla, N. Dipper, D. Gratadour, D. Henry, Z. Hubert, A. Longmore, O. Martin, G. Talbot, and E. Younger, “Analysis of on-sky MOAO performance of CANARY using natural guide stars,” Astron. Astrophys. 569(3), 1123–1133 (2014).

X. Zhang, L. Hu, Z. Cao, Q. Mu, D. Li, and L. Xuan, “Improve the accuracy of interaction matrix measurement for liquid-crystal adaptive optics systems,” Opt. Express 22(12), 14221–14228 (2014).
[Crossref] [PubMed]

2013 (2)

A. Haber, A. Polo, S. Ravensbergen, H. P. Urbach, and M. Verhaegen, “Identification of a dynamical model of a thermally actuated deformable mirror,” Opt. Lett. 38(16), 3061–3064 (2013).
[Crossref] [PubMed]

T. Ruppel, S. H. Dong, F. Rooms, W. Osten, and O. Sawodny, “Feedforward Control of Deformable Membrane Mirrors for Adaptive Optics,” IEEE T. Contr. Syst. T. 21(3), 579–589 (2013).
[Crossref]

2012 (5)

Q. Q. Mu, Z. L. Cao, L. F. Hu, Y. G. Liu, Z. H. Peng, L. S. Yao, and L. Xuan, “Open loop adaptive optics testbed on 2.16 meter telescope with liquid crystal corrector,” Opt. Commun. 285(6), 896–899 (2012).
[Crossref]

Z. Cao, Q. Mu, L. Hu, Y. Liu, Z. Peng, Q. Yang, H. Meng, L. Yao, and L. Xuan, “Optimal energy-splitting method for an open-loop liquid crystal adaptive optics system,” Opt. Express 20(17), 19331–19342 (2012).
[Crossref] [PubMed]

H. Hu, L. Hu, Z. Peng, Q. Mu, X. Zhang, C. Liu, and L. Xuan, “Advanced single-frame overdriving for liquid-crystal spatial light modulators,” Opt. Lett. 37(16), 3324–3326 (2012).
[Crossref] [PubMed]

K. Takeno and T. Shirai, “Chromatic aberration free liquid crystal adaptive optics for flood illuminated retinal camera,” Opt. Commun. 285(12), 2967–2971 (2012).
[Crossref]

N. Kong, C. Li, M. Xia, D. Li, Y. Qi, and L. Xuan, “Optimization of the open-loop liquid crystal adaptive optics retinal imaging system,” J. Biomed. Opt. 17(2), 026001 (2012).
[Crossref] [PubMed]

2011 (1)

H. Song, R. Fraanje, G. Schitter, G. Vdovin, and M. Verhaegen, “Controller Design for a High-Sampling-Rate Closed-Loop Adaptive Optics System with Piezo-Driven Deformable Mirror,” Eur. J. Control 17(3), 290–301 (2011).
[Crossref]

2010 (3)

C. Vogel, G. Tyler, Y. Lu, T. Bifano, R. Conan, and C. Blain, “Modeling and parameter estimation for point-actuated continuous-facesheet deformable mirrors,” J. Opt. Soc. Am. A 27(11), A56–A63 (2010).
[Crossref] [PubMed]

D. P. Looze, “Discrete-time model for an adaptive optics system with input delay,” Int. J. Control 83(6), 1217–1231 (2010).
[Crossref]

A. Chiuso, R. Muradore, and E. Marchetti, “Dynamic Calibration of Adaptive Optics Systems: A System Identification Approach,” IEEE T. Contr. Syst. T. 18(3), 705–713 (2010).
[Crossref]

2009 (1)

2006 (2)

Y. J. Liu, Z. L. Cao, D. Y. Li, Q. Q. Mu, L. F. Hu, X. H. Lu, and L. Xuan, “Correction for large aberration with phase-only liquid-crystal wavefront corrector,” Opt. Eng. 45(12), 128001 (2006).
[Crossref]

R. Muradore, E. Fedrigo, and C. Correia, “LQ control design for adaptive optics systems based on MIMO identified model,” Proc. SPIE 6272, 62725H (2006).
[Crossref]

2004 (1)

2002 (2)

1997 (1)

A. V. Kudryashov, J. Gonglewski, S. Browne, and R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characterization,” Opt. Commun. 141(5–6), 247–253 (1997).
[Crossref]

1990 (1)

S.-T. Wu and C.-S. Wu, “Experimental confirmation of the Osipov-Terentjev theory on the viscosity of nematic liquid crystals,” Phys. Rev. A 42(4), 2219–2227 (1990).
[Crossref] [PubMed]

1970 (1)

1953 (1)

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65(386), 229–236 (1953).
[Crossref]

Artal, P.

Babcock, H. W.

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65(386), 229–236 (1953).
[Crossref]

Basden, A.

F. Vidal, E. Gendron, G. Rousset, T. Morris, A. Basden, R. Myers, M. Brangier, F. Chemla, N. Dipper, D. Gratadour, D. Henry, Z. Hubert, A. Longmore, O. Martin, G. Talbot, and E. Younger, “Analysis of on-sky MOAO performance of CANARY using natural guide stars,” Astron. Astrophys. 569(3), 1123–1133 (2014).

Bifano, T.

Blain, C.

Booth, M. J.

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3(4), e165 (2014).
[Crossref]

Brangier, M.

F. Vidal, E. Gendron, G. Rousset, T. Morris, A. Basden, R. Myers, M. Brangier, F. Chemla, N. Dipper, D. Gratadour, D. Henry, Z. Hubert, A. Longmore, O. Martin, G. Talbot, and E. Younger, “Analysis of on-sky MOAO performance of CANARY using natural guide stars,” Astron. Astrophys. 569(3), 1123–1133 (2014).

Browne, S.

Cao, Z.

Cao, Z. L.

Z. H. Peng, Q. D. Wang, Y. G. Liu, Q. Q. Mu, Z. L. Cao, H. Y. Xu, P. G. Zhang, C. L. Yang, L. S. Yao, L. Xuan, and Z. Y. Zhang, “Electrooptical properties of new type fluorinated phenyl-tolane isothiocyanate liquid crystal compounds,” Liq. Cryst. 43(2), 276–284 (2016).
[Crossref]

Q. Q. Mu, Z. L. Cao, L. F. Hu, Y. G. Liu, Z. H. Peng, L. S. Yao, and L. Xuan, “Open loop adaptive optics testbed on 2.16 meter telescope with liquid crystal corrector,” Opt. Commun. 285(6), 896–899 (2012).
[Crossref]

Y. J. Liu, Z. L. Cao, D. Y. Li, Q. Q. Mu, L. F. Hu, X. H. Lu, and L. Xuan, “Correction for large aberration with phase-only liquid-crystal wavefront corrector,” Opt. Eng. 45(12), 128001 (2006).
[Crossref]

Carrion, B.

Chemla, F.

F. Vidal, E. Gendron, G. Rousset, T. Morris, A. Basden, R. Myers, M. Brangier, F. Chemla, N. Dipper, D. Gratadour, D. Henry, Z. Hubert, A. Longmore, O. Martin, G. Talbot, and E. Younger, “Analysis of on-sky MOAO performance of CANARY using natural guide stars,” Astron. Astrophys. 569(3), 1123–1133 (2014).

Chiuso, A.

A. Chiuso, R. Muradore, and E. Marchetti, “Dynamic Calibration of Adaptive Optics Systems: A System Identification Approach,” IEEE T. Contr. Syst. T. 18(3), 705–713 (2010).
[Crossref]

A. Chiuso, R. Muradore, and E. Marchetti, “Dynamic Calibration of Adaptive Optics Systems: A System Identification Approach,” in Proceedings of IEEE Conference on Decision and Control (IEEE, 2008), pp. 750–755.
[Crossref]

Conan, R.

Correia, C.

R. Muradore, E. Fedrigo, and C. Correia, “LQ control design for adaptive optics systems based on MIMO identified model,” Proc. SPIE 6272, 62725H (2006).
[Crossref]

Dayton, D.

Dipper, N.

F. Vidal, E. Gendron, G. Rousset, T. Morris, A. Basden, R. Myers, M. Brangier, F. Chemla, N. Dipper, D. Gratadour, D. Henry, Z. Hubert, A. Longmore, O. Martin, G. Talbot, and E. Younger, “Analysis of on-sky MOAO performance of CANARY using natural guide stars,” Astron. Astrophys. 569(3), 1123–1133 (2014).

Dong, S. H.

T. Ruppel, S. H. Dong, F. Rooms, W. Osten, and O. Sawodny, “Feedforward Control of Deformable Membrane Mirrors for Adaptive Optics,” IEEE T. Contr. Syst. T. 21(3), 579–589 (2013).
[Crossref]

Fedrigo, E.

R. Muradore, E. Fedrigo, and C. Correia, “LQ control design for adaptive optics systems based on MIMO identified model,” Proc. SPIE 6272, 62725H (2006).
[Crossref]

Feng, F.

Fernández, E.

Fraanje, R.

H. Song, R. Fraanje, G. Schitter, G. Vdovin, and M. Verhaegen, “Controller Design for a High-Sampling-Rate Closed-Loop Adaptive Optics System with Piezo-Driven Deformable Mirror,” Eur. J. Control 17(3), 290–301 (2011).
[Crossref]

Gavel, D. T.

D. T. Gavel, “Adaptive optics control strategies for extremely large telescopes,” Proc. SPIE 4494, 215–220 (2002).
[Crossref]

Gendron, E.

F. Vidal, E. Gendron, G. Rousset, T. Morris, A. Basden, R. Myers, M. Brangier, F. Chemla, N. Dipper, D. Gratadour, D. Henry, Z. Hubert, A. Longmore, O. Martin, G. Talbot, and E. Younger, “Analysis of on-sky MOAO performance of CANARY using natural guide stars,” Astron. Astrophys. 569(3), 1123–1133 (2014).

Gonglewski, J.

Gratadour, D.

F. Vidal, E. Gendron, G. Rousset, T. Morris, A. Basden, R. Myers, M. Brangier, F. Chemla, N. Dipper, D. Gratadour, D. Henry, Z. Hubert, A. Longmore, O. Martin, G. Talbot, and E. Younger, “Analysis of on-sky MOAO performance of CANARY using natural guide stars,” Astron. Astrophys. 569(3), 1123–1133 (2014).

Haber, A.

Hartman, M.

Heimann, N.

Henry, D.

F. Vidal, E. Gendron, G. Rousset, T. Morris, A. Basden, R. Myers, M. Brangier, F. Chemla, N. Dipper, D. Gratadour, D. Henry, Z. Hubert, A. Longmore, O. Martin, G. Talbot, and E. Younger, “Analysis of on-sky MOAO performance of CANARY using natural guide stars,” Astron. Astrophys. 569(3), 1123–1133 (2014).

Highland, R.

A. V. Kudryashov, J. Gonglewski, S. Browne, and R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characterization,” Opt. Commun. 141(5–6), 247–253 (1997).
[Crossref]

Hirsch, P. M.

Hu, H.

Hu, L.

Hu, L. F.

Q. Q. Mu, Z. L. Cao, L. F. Hu, Y. G. Liu, Z. H. Peng, L. S. Yao, and L. Xuan, “Open loop adaptive optics testbed on 2.16 meter telescope with liquid crystal corrector,” Opt. Commun. 285(6), 896–899 (2012).
[Crossref]

Y. J. Liu, Z. L. Cao, D. Y. Li, Q. Q. Mu, L. F. Hu, X. H. Lu, and L. Xuan, “Correction for large aberration with phase-only liquid-crystal wavefront corrector,” Opt. Eng. 45(12), 128001 (2006).
[Crossref]

Hubert, Z.

F. Vidal, E. Gendron, G. Rousset, T. Morris, A. Basden, R. Myers, M. Brangier, F. Chemla, N. Dipper, D. Gratadour, D. Henry, Z. Hubert, A. Longmore, O. Martin, G. Talbot, and E. Younger, “Analysis of on-sky MOAO performance of CANARY using natural guide stars,” Astron. Astrophys. 569(3), 1123–1133 (2014).

Jiang, B.

Jordan, J. A.

Kervin, P.

Kong, N.

N. Kong, C. Li, M. Xia, D. Li, Y. Qi, and L. Xuan, “Optimization of the open-loop liquid crystal adaptive optics retinal imaging system,” J. Biomed. Opt. 17(2), 026001 (2012).
[Crossref] [PubMed]

Kudryashov, A. V.

A. V. Kudryashov, J. Gonglewski, S. Browne, and R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characterization,” Opt. Commun. 141(5–6), 247–253 (1997).
[Crossref]

Lesem, L. B.

Li, C.

N. Kong, C. Li, M. Xia, D. Li, Y. Qi, and L. Xuan, “Optimization of the open-loop liquid crystal adaptive optics retinal imaging system,” J. Biomed. Opt. 17(2), 026001 (2012).
[Crossref] [PubMed]

C. Li, M. Xia, Q. Mu, B. Jiang, L. Xuan, and Z. Cao, “High-precision open-loop adaptive optics system based on LC-SLM,” Opt. Express 17(13), 10774–10781 (2009).
[Crossref] [PubMed]

Li, D.

X. Zhang, L. Hu, Z. Cao, Q. Mu, D. Li, and L. Xuan, “Improve the accuracy of interaction matrix measurement for liquid-crystal adaptive optics systems,” Opt. Express 22(12), 14221–14228 (2014).
[Crossref] [PubMed]

N. Kong, C. Li, M. Xia, D. Li, Y. Qi, and L. Xuan, “Optimization of the open-loop liquid crystal adaptive optics retinal imaging system,” J. Biomed. Opt. 17(2), 026001 (2012).
[Crossref] [PubMed]

Li, D. Y.

Y. J. Liu, Z. L. Cao, D. Y. Li, Q. Q. Mu, L. F. Hu, X. H. Lu, and L. Xuan, “Correction for large aberration with phase-only liquid-crystal wavefront corrector,” Opt. Eng. 45(12), 128001 (2006).
[Crossref]

Liu, C.

Liu, Y.

Liu, Y. G.

Z. H. Peng, Q. D. Wang, Y. G. Liu, Q. Q. Mu, Z. L. Cao, H. Y. Xu, P. G. Zhang, C. L. Yang, L. S. Yao, L. Xuan, and Z. Y. Zhang, “Electrooptical properties of new type fluorinated phenyl-tolane isothiocyanate liquid crystal compounds,” Liq. Cryst. 43(2), 276–284 (2016).
[Crossref]

Q. Q. Mu, Z. L. Cao, L. F. Hu, Y. G. Liu, Z. H. Peng, L. S. Yao, and L. Xuan, “Open loop adaptive optics testbed on 2.16 meter telescope with liquid crystal corrector,” Opt. Commun. 285(6), 896–899 (2012).
[Crossref]

Liu, Y. J.

Y. J. Liu, Z. L. Cao, D. Y. Li, Q. Q. Mu, L. F. Hu, X. H. Lu, and L. Xuan, “Correction for large aberration with phase-only liquid-crystal wavefront corrector,” Opt. Eng. 45(12), 128001 (2006).
[Crossref]

Longmore, A.

F. Vidal, E. Gendron, G. Rousset, T. Morris, A. Basden, R. Myers, M. Brangier, F. Chemla, N. Dipper, D. Gratadour, D. Henry, Z. Hubert, A. Longmore, O. Martin, G. Talbot, and E. Younger, “Analysis of on-sky MOAO performance of CANARY using natural guide stars,” Astron. Astrophys. 569(3), 1123–1133 (2014).

Looze, D. P.

D. P. Looze, “Discrete-time model for an adaptive optics system with input delay,” Int. J. Control 83(6), 1217–1231 (2010).
[Crossref]

Lu, X. H.

Y. J. Liu, Z. L. Cao, D. Y. Li, Q. Q. Mu, L. F. Hu, X. H. Lu, and L. Xuan, “Correction for large aberration with phase-only liquid-crystal wavefront corrector,” Opt. Eng. 45(12), 128001 (2006).
[Crossref]

Lu, Y.

Manzanera, S.

Marchetti, E.

A. Chiuso, R. Muradore, and E. Marchetti, “Dynamic Calibration of Adaptive Optics Systems: A System Identification Approach,” IEEE T. Contr. Syst. T. 18(3), 705–713 (2010).
[Crossref]

A. Chiuso, R. Muradore, and E. Marchetti, “Dynamic Calibration of Adaptive Optics Systems: A System Identification Approach,” in Proceedings of IEEE Conference on Decision and Control (IEEE, 2008), pp. 750–755.
[Crossref]

Martin, J.

Martin, O.

F. Vidal, E. Gendron, G. Rousset, T. Morris, A. Basden, R. Myers, M. Brangier, F. Chemla, N. Dipper, D. Gratadour, D. Henry, Z. Hubert, A. Longmore, O. Martin, G. Talbot, and E. Younger, “Analysis of on-sky MOAO performance of CANARY using natural guide stars,” Astron. Astrophys. 569(3), 1123–1133 (2014).

Meng, H.

Morris, T.

F. Vidal, E. Gendron, G. Rousset, T. Morris, A. Basden, R. Myers, M. Brangier, F. Chemla, N. Dipper, D. Gratadour, D. Henry, Z. Hubert, A. Longmore, O. Martin, G. Talbot, and E. Younger, “Analysis of on-sky MOAO performance of CANARY using natural guide stars,” Astron. Astrophys. 569(3), 1123–1133 (2014).

Mu, Q.

Mu, Q. Q.

Z. H. Peng, Q. D. Wang, Y. G. Liu, Q. Q. Mu, Z. L. Cao, H. Y. Xu, P. G. Zhang, C. L. Yang, L. S. Yao, L. Xuan, and Z. Y. Zhang, “Electrooptical properties of new type fluorinated phenyl-tolane isothiocyanate liquid crystal compounds,” Liq. Cryst. 43(2), 276–284 (2016).
[Crossref]

Q. Q. Mu, Z. L. Cao, L. F. Hu, Y. G. Liu, Z. H. Peng, L. S. Yao, and L. Xuan, “Open loop adaptive optics testbed on 2.16 meter telescope with liquid crystal corrector,” Opt. Commun. 285(6), 896–899 (2012).
[Crossref]

Y. J. Liu, Z. L. Cao, D. Y. Li, Q. Q. Mu, L. F. Hu, X. H. Lu, and L. Xuan, “Correction for large aberration with phase-only liquid-crystal wavefront corrector,” Opt. Eng. 45(12), 128001 (2006).
[Crossref]

Muradore, R.

A. Chiuso, R. Muradore, and E. Marchetti, “Dynamic Calibration of Adaptive Optics Systems: A System Identification Approach,” IEEE T. Contr. Syst. T. 18(3), 705–713 (2010).
[Crossref]

R. Muradore, E. Fedrigo, and C. Correia, “LQ control design for adaptive optics systems based on MIMO identified model,” Proc. SPIE 6272, 62725H (2006).
[Crossref]

A. Chiuso, R. Muradore, and E. Marchetti, “Dynamic Calibration of Adaptive Optics Systems: A System Identification Approach,” in Proceedings of IEEE Conference on Decision and Control (IEEE, 2008), pp. 750–755.
[Crossref]

Myers, R.

F. Vidal, E. Gendron, G. Rousset, T. Morris, A. Basden, R. Myers, M. Brangier, F. Chemla, N. Dipper, D. Gratadour, D. Henry, Z. Hubert, A. Longmore, O. Martin, G. Talbot, and E. Younger, “Analysis of on-sky MOAO performance of CANARY using natural guide stars,” Astron. Astrophys. 569(3), 1123–1133 (2014).

Osten, W.

T. Ruppel, S. H. Dong, F. Rooms, W. Osten, and O. Sawodny, “Feedforward Control of Deformable Membrane Mirrors for Adaptive Optics,” IEEE T. Contr. Syst. T. 21(3), 579–589 (2013).
[Crossref]

Peng, Z.

Peng, Z. H.

Z. H. Peng, Q. D. Wang, Y. G. Liu, Q. Q. Mu, Z. L. Cao, H. Y. Xu, P. G. Zhang, C. L. Yang, L. S. Yao, L. Xuan, and Z. Y. Zhang, “Electrooptical properties of new type fluorinated phenyl-tolane isothiocyanate liquid crystal compounds,” Liq. Cryst. 43(2), 276–284 (2016).
[Crossref]

Q. Q. Mu, Z. L. Cao, L. F. Hu, Y. G. Liu, Z. H. Peng, L. S. Yao, and L. Xuan, “Open loop adaptive optics testbed on 2.16 meter telescope with liquid crystal corrector,” Opt. Commun. 285(6), 896–899 (2012).
[Crossref]

Phillips, J.

Pohle, R.

Polo, A.

Prieto, P.

Qi, Y.

N. Kong, C. Li, M. Xia, D. Li, Y. Qi, and L. Xuan, “Optimization of the open-loop liquid crystal adaptive optics retinal imaging system,” J. Biomed. Opt. 17(2), 026001 (2012).
[Crossref] [PubMed]

Ravensbergen, S.

Restaino, S.

Rooms, F.

T. Ruppel, S. H. Dong, F. Rooms, W. Osten, and O. Sawodny, “Feedforward Control of Deformable Membrane Mirrors for Adaptive Optics,” IEEE T. Contr. Syst. T. 21(3), 579–589 (2013).
[Crossref]

Rousset, G.

F. Vidal, E. Gendron, G. Rousset, T. Morris, A. Basden, R. Myers, M. Brangier, F. Chemla, N. Dipper, D. Gratadour, D. Henry, Z. Hubert, A. Longmore, O. Martin, G. Talbot, and E. Younger, “Analysis of on-sky MOAO performance of CANARY using natural guide stars,” Astron. Astrophys. 569(3), 1123–1133 (2014).

Ruppel, T.

T. Ruppel, S. H. Dong, F. Rooms, W. Osten, and O. Sawodny, “Feedforward Control of Deformable Membrane Mirrors for Adaptive Optics,” IEEE T. Contr. Syst. T. 21(3), 579–589 (2013).
[Crossref]

Sawodny, O.

T. Ruppel, S. H. Dong, F. Rooms, W. Osten, and O. Sawodny, “Feedforward Control of Deformable Membrane Mirrors for Adaptive Optics,” IEEE T. Contr. Syst. T. 21(3), 579–589 (2013).
[Crossref]

Schitter, G.

H. Song, R. Fraanje, G. Schitter, G. Vdovin, and M. Verhaegen, “Controller Design for a High-Sampling-Rate Closed-Loop Adaptive Optics System with Piezo-Driven Deformable Mirror,” Eur. J. Control 17(3), 290–301 (2011).
[Crossref]

Shilko, M.

Shirai, T.

K. Takeno and T. Shirai, “Chromatic aberration free liquid crystal adaptive optics for flood illuminated retinal camera,” Opt. Commun. 285(12), 2967–2971 (2012).
[Crossref]

Smith, C.

Snodgrass, J.

Song, H.

H. Song, R. Fraanje, G. Schitter, G. Vdovin, and M. Verhaegen, “Controller Design for a High-Sampling-Rate Closed-Loop Adaptive Optics System with Piezo-Driven Deformable Mirror,” Eur. J. Control 17(3), 290–301 (2011).
[Crossref]

Takeno, K.

K. Takeno and T. Shirai, “Chromatic aberration free liquid crystal adaptive optics for flood illuminated retinal camera,” Opt. Commun. 285(12), 2967–2971 (2012).
[Crossref]

Talbot, G.

F. Vidal, E. Gendron, G. Rousset, T. Morris, A. Basden, R. Myers, M. Brangier, F. Chemla, N. Dipper, D. Gratadour, D. Henry, Z. Hubert, A. Longmore, O. Martin, G. Talbot, and E. Younger, “Analysis of on-sky MOAO performance of CANARY using natural guide stars,” Astron. Astrophys. 569(3), 1123–1133 (2014).

Thiel, D.

Tyler, G.

Urbach, H. P.

Van Rooy, D. L.

Vdovin, G.

H. Song, R. Fraanje, G. Schitter, G. Vdovin, and M. Verhaegen, “Controller Design for a High-Sampling-Rate Closed-Loop Adaptive Optics System with Piezo-Driven Deformable Mirror,” Eur. J. Control 17(3), 290–301 (2011).
[Crossref]

Verhaegen, M.

A. Haber, A. Polo, S. Ravensbergen, H. P. Urbach, and M. Verhaegen, “Identification of a dynamical model of a thermally actuated deformable mirror,” Opt. Lett. 38(16), 3061–3064 (2013).
[Crossref] [PubMed]

H. Song, R. Fraanje, G. Schitter, G. Vdovin, and M. Verhaegen, “Controller Design for a High-Sampling-Rate Closed-Loop Adaptive Optics System with Piezo-Driven Deformable Mirror,” Eur. J. Control 17(3), 290–301 (2011).
[Crossref]

Vidal, F.

F. Vidal, E. Gendron, G. Rousset, T. Morris, A. Basden, R. Myers, M. Brangier, F. Chemla, N. Dipper, D. Gratadour, D. Henry, Z. Hubert, A. Longmore, O. Martin, G. Talbot, and E. Younger, “Analysis of on-sky MOAO performance of CANARY using natural guide stars,” Astron. Astrophys. 569(3), 1123–1133 (2014).

Vogel, C.

Vogel, C. R.

C. R. Vogel, “Hysteresis Modeling and Go-To Control of Deformable Mirrors in Adaptive Optics,” in IEEE Aerospace Conference (2012).
[Crossref]

Wang, Q. D.

Z. H. Peng, Q. D. Wang, Y. G. Liu, Q. Q. Mu, Z. L. Cao, H. Y. Xu, P. G. Zhang, C. L. Yang, L. S. Yao, L. Xuan, and Z. Y. Zhang, “Electrooptical properties of new type fluorinated phenyl-tolane isothiocyanate liquid crystal compounds,” Liq. Cryst. 43(2), 276–284 (2016).
[Crossref]

White, I. H.

Wilkinson, T. D.

Wu, C.-S.

S.-T. Wu and C.-S. Wu, “Experimental confirmation of the Osipov-Terentjev theory on the viscosity of nematic liquid crystals,” Phys. Rev. A 42(4), 2219–2227 (1990).
[Crossref] [PubMed]

Wu, S.-T.

S.-T. Wu and C.-S. Wu, “Experimental confirmation of the Osipov-Terentjev theory on the viscosity of nematic liquid crystals,” Phys. Rev. A 42(4), 2219–2227 (1990).
[Crossref] [PubMed]

Xia, M.

N. Kong, C. Li, M. Xia, D. Li, Y. Qi, and L. Xuan, “Optimization of the open-loop liquid crystal adaptive optics retinal imaging system,” J. Biomed. Opt. 17(2), 026001 (2012).
[Crossref] [PubMed]

C. Li, M. Xia, Q. Mu, B. Jiang, L. Xuan, and Z. Cao, “High-precision open-loop adaptive optics system based on LC-SLM,” Opt. Express 17(13), 10774–10781 (2009).
[Crossref] [PubMed]

Xu, H. Y.

Z. H. Peng, Q. D. Wang, Y. G. Liu, Q. Q. Mu, Z. L. Cao, H. Y. Xu, P. G. Zhang, C. L. Yang, L. S. Yao, L. Xuan, and Z. Y. Zhang, “Electrooptical properties of new type fluorinated phenyl-tolane isothiocyanate liquid crystal compounds,” Liq. Cryst. 43(2), 276–284 (2016).
[Crossref]

Xuan, L.

Z. H. Peng, Q. D. Wang, Y. G. Liu, Q. Q. Mu, Z. L. Cao, H. Y. Xu, P. G. Zhang, C. L. Yang, L. S. Yao, L. Xuan, and Z. Y. Zhang, “Electrooptical properties of new type fluorinated phenyl-tolane isothiocyanate liquid crystal compounds,” Liq. Cryst. 43(2), 276–284 (2016).
[Crossref]

X. Zhang, L. Hu, Z. Cao, Q. Mu, D. Li, and L. Xuan, “Improve the accuracy of interaction matrix measurement for liquid-crystal adaptive optics systems,” Opt. Express 22(12), 14221–14228 (2014).
[Crossref] [PubMed]

H. Hu, L. Hu, Z. Peng, Q. Mu, X. Zhang, C. Liu, and L. Xuan, “Advanced single-frame overdriving for liquid-crystal spatial light modulators,” Opt. Lett. 37(16), 3324–3326 (2012).
[Crossref] [PubMed]

Z. Cao, Q. Mu, L. Hu, Y. Liu, Z. Peng, Q. Yang, H. Meng, L. Yao, and L. Xuan, “Optimal energy-splitting method for an open-loop liquid crystal adaptive optics system,” Opt. Express 20(17), 19331–19342 (2012).
[Crossref] [PubMed]

N. Kong, C. Li, M. Xia, D. Li, Y. Qi, and L. Xuan, “Optimization of the open-loop liquid crystal adaptive optics retinal imaging system,” J. Biomed. Opt. 17(2), 026001 (2012).
[Crossref] [PubMed]

Q. Q. Mu, Z. L. Cao, L. F. Hu, Y. G. Liu, Z. H. Peng, L. S. Yao, and L. Xuan, “Open loop adaptive optics testbed on 2.16 meter telescope with liquid crystal corrector,” Opt. Commun. 285(6), 896–899 (2012).
[Crossref]

C. Li, M. Xia, Q. Mu, B. Jiang, L. Xuan, and Z. Cao, “High-precision open-loop adaptive optics system based on LC-SLM,” Opt. Express 17(13), 10774–10781 (2009).
[Crossref] [PubMed]

Y. J. Liu, Z. L. Cao, D. Y. Li, Q. Q. Mu, L. F. Hu, X. H. Lu, and L. Xuan, “Correction for large aberration with phase-only liquid-crystal wavefront corrector,” Opt. Eng. 45(12), 128001 (2006).
[Crossref]

Yang, C. L.

Z. H. Peng, Q. D. Wang, Y. G. Liu, Q. Q. Mu, Z. L. Cao, H. Y. Xu, P. G. Zhang, C. L. Yang, L. S. Yao, L. Xuan, and Z. Y. Zhang, “Electrooptical properties of new type fluorinated phenyl-tolane isothiocyanate liquid crystal compounds,” Liq. Cryst. 43(2), 276–284 (2016).
[Crossref]

Yang, Q.

Yao, L.

Yao, L. S.

Z. H. Peng, Q. D. Wang, Y. G. Liu, Q. Q. Mu, Z. L. Cao, H. Y. Xu, P. G. Zhang, C. L. Yang, L. S. Yao, L. Xuan, and Z. Y. Zhang, “Electrooptical properties of new type fluorinated phenyl-tolane isothiocyanate liquid crystal compounds,” Liq. Cryst. 43(2), 276–284 (2016).
[Crossref]

Q. Q. Mu, Z. L. Cao, L. F. Hu, Y. G. Liu, Z. H. Peng, L. S. Yao, and L. Xuan, “Open loop adaptive optics testbed on 2.16 meter telescope with liquid crystal corrector,” Opt. Commun. 285(6), 896–899 (2012).
[Crossref]

Younger, E.

F. Vidal, E. Gendron, G. Rousset, T. Morris, A. Basden, R. Myers, M. Brangier, F. Chemla, N. Dipper, D. Gratadour, D. Henry, Z. Hubert, A. Longmore, O. Martin, G. Talbot, and E. Younger, “Analysis of on-sky MOAO performance of CANARY using natural guide stars,” Astron. Astrophys. 569(3), 1123–1133 (2014).

Zhang, P. G.

Z. H. Peng, Q. D. Wang, Y. G. Liu, Q. Q. Mu, Z. L. Cao, H. Y. Xu, P. G. Zhang, C. L. Yang, L. S. Yao, L. Xuan, and Z. Y. Zhang, “Electrooptical properties of new type fluorinated phenyl-tolane isothiocyanate liquid crystal compounds,” Liq. Cryst. 43(2), 276–284 (2016).
[Crossref]

Zhang, X.

Zhang, Z. Y.

Z. H. Peng, Q. D. Wang, Y. G. Liu, Q. Q. Mu, Z. L. Cao, H. Y. Xu, P. G. Zhang, C. L. Yang, L. S. Yao, L. Xuan, and Z. Y. Zhang, “Electrooptical properties of new type fluorinated phenyl-tolane isothiocyanate liquid crystal compounds,” Liq. Cryst. 43(2), 276–284 (2016).
[Crossref]

Appl. Opt. (1)

Astron. Astrophys. (1)

F. Vidal, E. Gendron, G. Rousset, T. Morris, A. Basden, R. Myers, M. Brangier, F. Chemla, N. Dipper, D. Gratadour, D. Henry, Z. Hubert, A. Longmore, O. Martin, G. Talbot, and E. Younger, “Analysis of on-sky MOAO performance of CANARY using natural guide stars,” Astron. Astrophys. 569(3), 1123–1133 (2014).

Eur. J. Control (1)

H. Song, R. Fraanje, G. Schitter, G. Vdovin, and M. Verhaegen, “Controller Design for a High-Sampling-Rate Closed-Loop Adaptive Optics System with Piezo-Driven Deformable Mirror,” Eur. J. Control 17(3), 290–301 (2011).
[Crossref]

IEEE T. Contr. Syst. T. (2)

T. Ruppel, S. H. Dong, F. Rooms, W. Osten, and O. Sawodny, “Feedforward Control of Deformable Membrane Mirrors for Adaptive Optics,” IEEE T. Contr. Syst. T. 21(3), 579–589 (2013).
[Crossref]

A. Chiuso, R. Muradore, and E. Marchetti, “Dynamic Calibration of Adaptive Optics Systems: A System Identification Approach,” IEEE T. Contr. Syst. T. 18(3), 705–713 (2010).
[Crossref]

Int. J. Control (1)

D. P. Looze, “Discrete-time model for an adaptive optics system with input delay,” Int. J. Control 83(6), 1217–1231 (2010).
[Crossref]

J. Biomed. Opt. (1)

N. Kong, C. Li, M. Xia, D. Li, Y. Qi, and L. Xuan, “Optimization of the open-loop liquid crystal adaptive optics retinal imaging system,” J. Biomed. Opt. 17(2), 026001 (2012).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Light Sci. Appl. (1)

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3(4), e165 (2014).
[Crossref]

Liq. Cryst. (1)

Z. H. Peng, Q. D. Wang, Y. G. Liu, Q. Q. Mu, Z. L. Cao, H. Y. Xu, P. G. Zhang, C. L. Yang, L. S. Yao, L. Xuan, and Z. Y. Zhang, “Electrooptical properties of new type fluorinated phenyl-tolane isothiocyanate liquid crystal compounds,” Liq. Cryst. 43(2), 276–284 (2016).
[Crossref]

Opt. Commun. (3)

K. Takeno and T. Shirai, “Chromatic aberration free liquid crystal adaptive optics for flood illuminated retinal camera,” Opt. Commun. 285(12), 2967–2971 (2012).
[Crossref]

Q. Q. Mu, Z. L. Cao, L. F. Hu, Y. G. Liu, Z. H. Peng, L. S. Yao, and L. Xuan, “Open loop adaptive optics testbed on 2.16 meter telescope with liquid crystal corrector,” Opt. Commun. 285(6), 896–899 (2012).
[Crossref]

A. V. Kudryashov, J. Gonglewski, S. Browne, and R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characterization,” Opt. Commun. 141(5–6), 247–253 (1997).
[Crossref]

Opt. Eng. (1)

Y. J. Liu, Z. L. Cao, D. Y. Li, Q. Q. Mu, L. F. Hu, X. H. Lu, and L. Xuan, “Correction for large aberration with phase-only liquid-crystal wavefront corrector,” Opt. Eng. 45(12), 128001 (2006).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. A (1)

S.-T. Wu and C.-S. Wu, “Experimental confirmation of the Osipov-Terentjev theory on the viscosity of nematic liquid crystals,” Phys. Rev. A 42(4), 2219–2227 (1990).
[Crossref] [PubMed]

Proc. SPIE (2)

D. T. Gavel, “Adaptive optics control strategies for extremely large telescopes,” Proc. SPIE 4494, 215–220 (2002).
[Crossref]

R. Muradore, E. Fedrigo, and C. Correia, “LQ control design for adaptive optics systems based on MIMO identified model,” Proc. SPIE 6272, 62725H (2006).
[Crossref]

Publ. Astron. Soc. Pac. (1)

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65(386), 229–236 (1953).
[Crossref]

Other (3)

C. R. Vogel, “Hysteresis Modeling and Go-To Control of Deformable Mirrors in Adaptive Optics,” in IEEE Aerospace Conference (2012).
[Crossref]

A. Chiuso, R. Muradore, and E. Marchetti, “Dynamic Calibration of Adaptive Optics Systems: A System Identification Approach,” in Proceedings of IEEE Conference on Decision and Control (IEEE, 2008), pp. 750–755.
[Crossref]

M. Verhaegen and V. Verdult, Filtering and System Identification: A Least Squares Approach (Cambridge University, 2007), Chap. 10.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Control diagram of LCAOS.
Fig. 2
Fig. 2 Driving voltages based control diagram of LCAOS.
Fig. 3
Fig. 3 System modeling of LCAOS based on driving voltages.
Fig. 4
Fig. 4 LCWC modulates light intensity.
Fig. 5
Fig. 5 Optical layout for measuring relationship f(v) between driving voltage of LCWC and the light intensity responded in WFS.
Fig. 6
Fig. 6 System modeling of LCAOS based on driving voltages.
Fig. 7
Fig. 7 Input and output data sequence (part of 100000 sets of data). (Voltage is scaled with gray level: 0~40, corresponding to 0~5V)
Fig. 8
Fig. 8 (a) Hankel singular values; (b) VAF values for different system order n.
Fig. 9
Fig. 9 (a) Step response of the identified system model; (b) Bode plot of the identified system model.
Fig. 10
Fig. 10 Precision of the identified model (part of 10000 sets of data). (Voltage is scaled with gray level: 0~40, corresponding to 0~5V)
Fig. 11
Fig. 11 Four different areas to be identified.
Fig. 12
Fig. 12 Difference between outputs of area 2 and area 3 under same input (part of 10000 sets of data). (Voltage is scaled with gray level: 0~40, corresponding to 0~5V)
Fig. 13
Fig. 13 Time-variance of LCAOS (part of 10000 sets of data). (Voltage is scaled with gray level: 0~40, corresponding to 0~5V)
Fig. 14
Fig. 14 Performance of model based controller design.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

G o =RQ*IM*WFS*LCWC
I= I max cos 2 ( Φ 2 )
Φ= Φ m { 1 4 [ ( n || n ) 2 + n || n ][ v 2 U th 2 ]× [ 2 3 v 2 +( K 33 K 11 ) U th 2 K 11 ] 1 }
I=f(v)
{ x(k+1)=Ax(k)+Bu(k)+Kε(k) y(k)=Cx(k)+ε(k)
G o (z)=C (zIA) 1 B
VAF=max{ 0,( 1 var( v o v o ' ) var( v o ) )×100% }
G o (z)= 0.123 z 1 +0.6924 z 2 10.1899 z 1 +0.01246 z 2

Metrics