Abstract

We report for the first time the ability to perform time resolved imaging of terahertz (THz) waves propagating within a Fabry-Perot resonator on a LiNbO3 slab. Electro-optic effect is used to record the full spatiotemporal evolution of THz fields inside the resonator. In addition to revealing the real-space behavior, the data further demonstrate the confinement and the standing wave modes of THz in the cavity in frequency domain. The experimental results are in good agreement with numerical simulations. Using the coherent imaging technique to gain real-time information about a resonator system provides a unique path to study the physics of optical cavity.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
THz band-stop filter using metamaterials surfaced on LiNbO3 sub-wavelength slab waveguide

Bin Zhang, Qiang Wu, Chongpei Pan, Ruobai Feng, Jingjun Xu, Cibo Lou, Xiaodong Wang, and Fuhua Yang
Opt. Express 23(12) 16042-16051 (2015)

Direct visualization of a polariton resonator in the THz regime

Nikolay S. Stoyanov, T. Feurer, David W. Ward, Eric R. Statz, and Keith A. Nelson
Opt. Express 12(11) 2387-2396 (2004)

Evolution of modes of Fabry–Perot cavity based on photonic crystal guided-mode resonance mirrors

Pierre Pottier, Lina Shi, and Yves-Alain Peter
J. Opt. Soc. Am. B 29(10) 2698-2703 (2012)

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  2. H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
    [Crossref] [PubMed]
  3. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
    [Crossref]
  4. B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
    [Crossref] [PubMed]
  5. M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
    [Crossref] [PubMed]
  6. J. T. Lin, Y. X. Xu, J. L. Ni, M. Wang, Z. W. Fang, L. L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator,” Phys. Rev. A 6(1), 014002 (2016).
    [Crossref]
  7. A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
    [Crossref]
  8. G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000).
    [Crossref]
  9. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  10. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref] [PubMed]
  11. T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
    [Crossref]
  12. T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatiotemporal coherent control of lattice vibrational waves,” Science 299(5605), 374–377 (2003).
    [Crossref] [PubMed]
  13. Q. Wu, C. A. Werley, K. H. Lin, A. Dorn, M. G. Bawendi, and K. A. Nelson, “Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide,” Opt. Express 17(11), 9219–9225 (2009).
    [Crossref] [PubMed]
  14. K. H. Lin, C. F. Chang, C. C. Pan, J. I. Chyi, S. Keller, U. Mishra, S. P. DenBaars, and C. K. Sun, “Characterizing the nanoacoustic superlattice in a phonon cavity using a piezoelectric single quantum well,” Appl. Phys. Lett. 89(14), 143103 (2006).
    [Crossref]
  15. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2011).
  16. J. Hebling, K. L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25(7), B6–B19 (2008).
    [Crossref]
  17. K. H. Lin, C. A. Werley, and K. A. Neslon, “Generation of multicycle terahertz phonon-polariton waves in a planar waveguide by tilted optical pulse fronts,” Appl. Phys. Lett. 95(10), 103304 (2009).
    [Crossref]
  18. C. Yang, Q. Wu, J. Xu, K. A. Nelson, and C. A. Werley, “Experimental and theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide,” Opt. Express 18(25), 26351–26364 (2010).
    [Crossref] [PubMed]
  19. D. W. Ward, J. D. Beers, T. Feurer, E. R. Statz, N. S. Stoyanov, and K. A. Nelson, “Coherent control of phonon-polaritons in a terahertz resonator fabricated with femtosecond laser machining,” Opt. Lett. 29(22), 2671–2673 (2004).
    [Crossref] [PubMed]
  20. N. Stoyanov, T. Feurer, D. Ward, E. Statz, and K. Nelson, “Direct visualization of a polariton resonator in the THz regime,” Opt. Express 12(11), 2387–2396 (2004).
    [Crossref] [PubMed]
  21. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
    [Crossref]

2016 (1)

J. T. Lin, Y. X. Xu, J. L. Ni, M. Wang, Z. W. Fang, L. L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator,” Phys. Rev. A 6(1), 014002 (2016).
[Crossref]

2015 (1)

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

2014 (2)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

2010 (1)

2009 (2)

Q. Wu, C. A. Werley, K. H. Lin, A. Dorn, M. G. Bawendi, and K. A. Nelson, “Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide,” Opt. Express 17(11), 9219–9225 (2009).
[Crossref] [PubMed]

K. H. Lin, C. A. Werley, and K. A. Neslon, “Generation of multicycle terahertz phonon-polariton waves in a planar waveguide by tilted optical pulse fronts,” Appl. Phys. Lett. 95(10), 103304 (2009).
[Crossref]

2008 (2)

2007 (2)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[Crossref]

2006 (1)

K. H. Lin, C. F. Chang, C. C. Pan, J. I. Chyi, S. Keller, U. Mishra, S. P. DenBaars, and C. K. Sun, “Characterizing the nanoacoustic superlattice in a phonon cavity using a piezoelectric single quantum well,” Appl. Phys. Lett. 89(14), 143103 (2006).
[Crossref]

2005 (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

2004 (2)

2003 (2)

T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatiotemporal coherent control of lattice vibrational waves,” Science 299(5605), 374–377 (2003).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

2002 (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

2000 (1)

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000).
[Crossref]

1988 (1)

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
[Crossref]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Bartal, B.

Bawendi, M. G.

Beers, J. D.

Berden, G.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000).
[Crossref]

Chang, C. F.

K. H. Lin, C. F. Chang, C. C. Pan, J. I. Chyi, S. Keller, U. Mishra, S. P. DenBaars, and C. K. Sun, “Characterizing the nanoacoustic superlattice in a phonon cavity using a piezoelectric single quantum well,” Appl. Phys. Lett. 89(14), 143103 (2006).
[Crossref]

Cheng, Y.

J. T. Lin, Y. X. Xu, J. L. Ni, M. Wang, Z. W. Fang, L. L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator,” Phys. Rev. A 6(1), 014002 (2016).
[Crossref]

Chyi, J. I.

K. H. Lin, C. F. Chang, C. C. Pan, J. I. Chyi, S. Keller, U. Mishra, S. P. DenBaars, and C. K. Sun, “Characterizing the nanoacoustic superlattice in a phonon cavity using a piezoelectric single quantum well,” Appl. Phys. Lett. 89(14), 143103 (2006).
[Crossref]

Clements, W. R.

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

Deacon, D. A. G.

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
[Crossref]

DenBaars, S. P.

K. H. Lin, C. F. Chang, C. C. Pan, J. I. Chyi, S. Keller, U. Mishra, S. P. DenBaars, and C. K. Sun, “Characterizing the nanoacoustic superlattice in a phonon cavity using a piezoelectric single quantum well,” Appl. Phys. Lett. 89(14), 143103 (2006).
[Crossref]

Dorn, A.

Fang, W.

J. T. Lin, Y. X. Xu, J. L. Ni, M. Wang, Z. W. Fang, L. L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator,” Phys. Rev. A 6(1), 014002 (2016).
[Crossref]

Fang, Z. W.

J. T. Lin, Y. X. Xu, J. L. Ni, M. Wang, Z. W. Fang, L. L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator,” Phys. Rev. A 6(1), 014002 (2016).
[Crossref]

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Feurer, T.

Foreman, M. R.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Gong, Q.

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

Hebling, J.

Hoffmann, M. C.

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Keller, S.

K. H. Lin, C. F. Chang, C. C. Pan, J. I. Chyi, S. Keller, U. Mishra, S. P. DenBaars, and C. K. Sun, “Characterizing the nanoacoustic superlattice in a phonon cavity using a piezoelectric single quantum well,” Appl. Phys. Lett. 89(14), 143103 (2006).
[Crossref]

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

Kippenberg, T. J.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Li, B. B.

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

Lin, J. T.

J. T. Lin, Y. X. Xu, J. L. Ni, M. Wang, Z. W. Fang, L. L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator,” Phys. Rev. A 6(1), 014002 (2016).
[Crossref]

Lin, K. H.

K. H. Lin, C. A. Werley, and K. A. Neslon, “Generation of multicycle terahertz phonon-polariton waves in a planar waveguide by tilted optical pulse fronts,” Appl. Phys. Lett. 95(10), 103304 (2009).
[Crossref]

Q. Wu, C. A. Werley, K. H. Lin, A. Dorn, M. G. Bawendi, and K. A. Nelson, “Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide,” Opt. Express 17(11), 9219–9225 (2009).
[Crossref] [PubMed]

K. H. Lin, C. F. Chang, C. C. Pan, J. I. Chyi, S. Keller, U. Mishra, S. P. DenBaars, and C. K. Sun, “Characterizing the nanoacoustic superlattice in a phonon cavity using a piezoelectric single quantum well,” Appl. Phys. Lett. 89(14), 143103 (2006).
[Crossref]

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Meijer, G.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000).
[Crossref]

Mishra, U.

K. H. Lin, C. F. Chang, C. C. Pan, J. I. Chyi, S. Keller, U. Mishra, S. P. DenBaars, and C. K. Sun, “Characterizing the nanoacoustic superlattice in a phonon cavity using a piezoelectric single quantum well,” Appl. Phys. Lett. 89(14), 143103 (2006).
[Crossref]

Nelson, K.

Nelson, K. A.

Neslon, K. A.

K. H. Lin, C. A. Werley, and K. A. Neslon, “Generation of multicycle terahertz phonon-polariton waves in a planar waveguide by tilted optical pulse fronts,” Appl. Phys. Lett. 95(10), 103304 (2009).
[Crossref]

Ni, J. L.

J. T. Lin, Y. X. Xu, J. L. Ni, M. Wang, Z. W. Fang, L. L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator,” Phys. Rev. A 6(1), 014002 (2016).
[Crossref]

O’Keefe, A.

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
[Crossref]

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Pan, C. C.

K. H. Lin, C. F. Chang, C. C. Pan, J. I. Chyi, S. Keller, U. Mishra, S. P. DenBaars, and C. K. Sun, “Characterizing the nanoacoustic superlattice in a phonon cavity using a piezoelectric single quantum well,” Appl. Phys. Lett. 89(14), 143103 (2006).
[Crossref]

Peeters, R.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000).
[Crossref]

Qiao, L. L.

J. T. Lin, Y. X. Xu, J. L. Ni, M. Wang, Z. W. Fang, L. L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator,” Phys. Rev. A 6(1), 014002 (2016).
[Crossref]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Shi, K.

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

Statz, E.

Statz, E. R.

Stoyanov, N.

Stoyanov, N. S.

Sun, C. K.

K. H. Lin, C. F. Chang, C. C. Pan, J. I. Chyi, S. Keller, U. Mishra, S. P. DenBaars, and C. K. Sun, “Characterizing the nanoacoustic superlattice in a phonon cavity using a piezoelectric single quantum well,” Appl. Phys. Lett. 89(14), 143103 (2006).
[Crossref]

Swaim, J. D.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Vaughan, J. C.

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[Crossref]

T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatiotemporal coherent control of lattice vibrational waves,” Science 299(5605), 374–377 (2003).
[Crossref] [PubMed]

Vollmer, F.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

Wang, M.

J. T. Lin, Y. X. Xu, J. L. Ni, M. Wang, Z. W. Fang, L. L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator,” Phys. Rev. A 6(1), 014002 (2016).
[Crossref]

Ward, D.

Ward, D. W.

Werley, C. A.

Wu, Q.

Xiao, Y. F.

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

Xu, J.

Xu, Y. X.

J. T. Lin, Y. X. Xu, J. L. Ni, M. Wang, Z. W. Fang, L. L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator,” Phys. Rev. A 6(1), 014002 (2016).
[Crossref]

Yang, C.

Yeh, K. L.

Yu, X. C.

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

Zhang, X. C.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Adv. Opt. Photonics (1)

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

Annu. Rev. Mater. Res. (1)

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[Crossref]

Appl. Phys. Lett. (2)

K. H. Lin, C. F. Chang, C. C. Pan, J. I. Chyi, S. Keller, U. Mishra, S. P. DenBaars, and C. K. Sun, “Characterizing the nanoacoustic superlattice in a phonon cavity using a piezoelectric single quantum well,” Appl. Phys. Lett. 89(14), 143103 (2006).
[Crossref]

K. H. Lin, C. A. Werley, and K. A. Neslon, “Generation of multicycle terahertz phonon-polariton waves in a planar waveguide by tilted optical pulse fronts,” Appl. Phys. Lett. 95(10), 103304 (2009).
[Crossref]

Int. Rev. Phys. Chem. (1)

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Mater. (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Nature (2)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. A (1)

J. T. Lin, Y. X. Xu, J. L. Ni, M. Wang, Z. W. Fang, L. L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator,” Phys. Rev. A 6(1), 014002 (2016).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Rev. Sci. Instrum. (1)

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
[Crossref]

Science (1)

T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatiotemporal coherent control of lattice vibrational waves,” Science 299(5605), 374–377 (2003).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Other (1)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2011).

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (2786 KB)      The experimental result of the full spatiotemporal evolution of THz wave in the FB cavity

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Experimental scheme: The Fabry-Perot resonator is composed of a LN cavity at center and two Bragg grating structures as its reflective mirrors. Femtosecond pump laser was line-focused to the center of the structure to generate THz wave in the crystal slab. Coordinate system and C-axis of the crystal are also indicated. (b) Optical microscope image of the resonator after fabrication process and HF treatment. The LN crystal is transparent under normal illumination by blue light. The outlines of the carved structures are clear. Note that each Bragg grating section has ten units, of which only five are captured in the image. Scale bar: 500 μm. (c) Schematic illustration of the experimental setup.
Fig. 2
Fig. 2 (Visualization 1) Images of the THz electric field distribution at different time delays. For readability, the central sections are enlarged and red graphs indicating THz pulse electric field amplitude are attached. Note that yellow arrows are plotted to denote the propagation directions of THz waves. (a) The THz pulse is just launched at the center of the cavity after the initial time point (0.2 ps). (b) The generated THz waves breaks into two branches and propagates laterally along X-axis at 1.4 ps. (c)-(e) The two THz waves in opposite directions interact with each other, revealing the process of interference in time domain. (f) Remaining waves confined in the cavity are still discernible at 35.8 ps. In vivid contrast, THz wave in unstructured LN slab has propagated far away.
Fig. 3
Fig. 3 (a) Space-time plot generated by averaging over the vertical dimension of frames in Fig. 2. The center of LN cavity is set as the origin. (b) Fourier transform result along the t axis of the portion of (a) enclosed by the dashed white lines (in time range from 40 ps to 90 ps). Three resonance modes are clearly shown.
Fig. 4
Fig. 4 (a) Blue curves: calculated dispersion curves of the THz wave propagating in the LN slab waveguide. The wave is TE-polarized in our experimental condition. Green/purple lines: light lines in air/bulk LN crystal, respectively. (b) The frequency-dependent phase ERI for the fundamental TE mode. In this figure, positions for three cavity resonance modes are marked. (c) The simulated electric field strength vs. time at the cavity boundary (x = 150 μm) with and without the Bragg mirror. Signal in cavity without Bragg gratings (blue curve) decays faster than in cavity containing Bragg grating structures (red curve). (d) The simulated dispersion curve of the transmitted THz wave. It's obvious that some frequency components cannot propagate through the PC structure. The white dashed box is drawn to guide the eyes. (e) The calculated band diagram of the Bragg grating. Two bands are shown and the band gaps are drawn to guide the eyes.
Fig. 5
Fig. 5 Experimental results of individual cavity without Bragg gratings as its boundary. (a) Optical microscope image of the altered cavity. Scale bar: 0.2 mm. (b) The space-time plot in the structure shown in (a). Region enclosed by the white lines indicates the LN cavity. The THz signal attenuates faster than that shown in Fig. 3(a). (c) The result of a Fourier transform along the time axis of (b) in the time range from 40 ps to 90 ps. Compared with Fig. 3(b), no cavity mode is observed.
Fig. 6
Fig. 6 Spatial distribution along X-axis of THz electric fields for cavity modes resonant at (a) 0.36 THz (b) 0.44 THz and (c) 0.54 THz, which is obtained from Fourier transform of the experimental results. The three standing wave are 3rd-order, 4th-order and 5th-order, respectively. The order can be identified from its waveform in the resonator. For example, in (a) the THz wave has three antinodes and two nodes, therefore it is 3rd-order.

Tables (1)

Tables Icon

Table 1 Experimental information for the three cavity modes

Metrics