Abstract

We report on the experimental characterization, in the telecom C-band, of group-velocity dispersion (D) in 100-nm high rectangular strip waveguides realized by silicon-on-insulator technology. We compare the experimental results with numerical predictions, showing that 100-nm high waveguides exhibit normal dispersion and that the absolute value of the dispersion coefficient D decreases as the waveguide width is increased. D at 1550 nm varies from −8130 to −3900 ps/(nm·km) by increasing the waveguide width from 500 to 800 nm.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Group index and group velocity dispersion in silicon-on-insulator photonic wires

Eric Dulkeith, Fengnian Xia, Laurent Schares, William M. J. Green, and Yurii A. Vlasov
Opt. Express 14(9) 3853-3863 (2006)

Tailored anomalous group-velocity dispersion in silicon channel waveguides

Amy C. Turner, Christina Manolatou, Bradley S. Schmidt, Michal Lipson, Mark A. Foster, Jay E. Sharping, and Alexander L. Gaeta
Opt. Express 14(10) 4357-4362 (2006)

Highly dispersive slot waveguides

Lin Zhang, Yang Yue, Yinying Xiao-Li, Raymond G. Beausoleil, and Alan E. Willner
Opt. Express 17(9) 7095-7101 (2009)

References

  • View by:
  • |
  • |
  • |

  1. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [Crossref]
  2. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
    [Crossref] [PubMed]
  3. C. Lacava, M.A. Ettabib, and P. Petropoulos, “Nonlinear silicon photonic signal processing devices for future optical networks,” MDPI Appl. Sciences 7(1), 103 (2017).
    [Crossref]
  4. R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13(11), 4341–4349 (2005).
    [Crossref] [PubMed]
  5. I-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wire,” Opt. Express 15(3), 1135–1146 (2007).
    [Crossref] [PubMed]
  6. C. Ciret, F. Leo, B. Kuyken, G. Roelkens, and S. P. Gorza, “Observation of an optical event horizon in a silicon-on-insulator photonic wire waveguide,” Opt. Express 24(1), 114–124 (2016).
    [Crossref] [PubMed]
  7. F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguide,” Opt. Quantum. Electron. 26(10), 977–986 (1994).
    [Crossref]
  8. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 μ m wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
    [Crossref]
  9. T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z (2008).
    [Crossref]
  10. T. Barwicz and H. A. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol. 23(9), 2719–2732 (2005).
    [Crossref]
  11. M. A. Popović, T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Tunable, fourth-order silicon microring-resonator add-drop filters,” the European Conference on Optical Communication, Berlin, Germany, Sept. 2007, paper 1.2.3.
  12. M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems,” Opt. Express 19(1), 306–316 (2011).
    [Crossref] [PubMed]
  13. R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, G. Giuliani, V. Muffato, M. Fournier, S. Abrate, R. Gaudino, E. Temporiti, L. Carroll, and P. Minzioni, “Low-loss micro-resonator filters fabricated in silicon by CMOS-compatible lithographic techniques: design and characterization,” MDPI Appl. Sciences 7(2), 174–185 (2017).
    [Crossref]
  14. C. Lacava, R. Marchetti, V. Vitali, I. Cristiani, G. Giuliani, M. Fournier, S. Bernabe, and P. Minzioni, “Reduced nonlinearities in 100-nm high SOI waveguides,” Proc. SPIE 9753, 975313 (2016).
    [Crossref]
  15. E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14(9), 3853–3863 (2006).
    [Crossref] [PubMed]
  16. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006).
    [Crossref] [PubMed]
  17. L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, and A. E. Willner, “Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation,” Opt. Express 20(2), 1685–1690 (2012).
    [Crossref] [PubMed]
  18. L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).
    [Crossref]
  19. P. Minzioni, G. Nava, I. Cristiani, W. Yan, and V. Degiorgio, “Wide-band single-shot measurement of refractive indices and birefringence of transparent materials,” Optics & Laser Technology 50, 71–77, (2013).
    [Crossref]

2017 (2)

C. Lacava, M.A. Ettabib, and P. Petropoulos, “Nonlinear silicon photonic signal processing devices for future optical networks,” MDPI Appl. Sciences 7(1), 103 (2017).
[Crossref]

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, G. Giuliani, V. Muffato, M. Fournier, S. Abrate, R. Gaudino, E. Temporiti, L. Carroll, and P. Minzioni, “Low-loss micro-resonator filters fabricated in silicon by CMOS-compatible lithographic techniques: design and characterization,” MDPI Appl. Sciences 7(2), 174–185 (2017).
[Crossref]

2016 (2)

C. Lacava, R. Marchetti, V. Vitali, I. Cristiani, G. Giuliani, M. Fournier, S. Bernabe, and P. Minzioni, “Reduced nonlinearities in 100-nm high SOI waveguides,” Proc. SPIE 9753, 975313 (2016).
[Crossref]

C. Ciret, F. Leo, B. Kuyken, G. Roelkens, and S. P. Gorza, “Observation of an optical event horizon in a silicon-on-insulator photonic wire waveguide,” Opt. Express 24(1), 114–124 (2016).
[Crossref] [PubMed]

2013 (1)

P. Minzioni, G. Nava, I. Cristiani, W. Yan, and V. Degiorgio, “Wide-band single-shot measurement of refractive indices and birefringence of transparent materials,” Optics & Laser Technology 50, 71–77, (2013).
[Crossref]

2012 (1)

2011 (1)

2008 (1)

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z (2008).
[Crossref]

2007 (2)

2006 (3)

2005 (2)

2002 (1)

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 μ m wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

1994 (1)

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguide,” Opt. Quantum. Electron. 26(10), 977–986 (1994).
[Crossref]

Abrate, S.

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, G. Giuliani, V. Muffato, M. Fournier, S. Abrate, R. Gaudino, E. Temporiti, L. Carroll, and P. Minzioni, “Low-loss micro-resonator filters fabricated in silicon by CMOS-compatible lithographic techniques: design and characterization,” MDPI Appl. Sciences 7(2), 174–185 (2017).
[Crossref]

Agrawal, G. P.

Asghari, M.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 μ m wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

Barwicz, T.

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z (2008).
[Crossref]

T. Barwicz and H. A. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol. 23(9), 2719–2732 (2005).
[Crossref]

M. A. Popović, T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Tunable, fourth-order silicon microring-resonator add-drop filters,” the European Conference on Optical Communication, Berlin, Germany, Sept. 2007, paper 1.2.3.

Beausoleil, R. G.

Bernabe, S.

C. Lacava, R. Marchetti, V. Vitali, I. Cristiani, G. Giuliani, M. Fournier, S. Bernabe, and P. Minzioni, “Reduced nonlinearities in 100-nm high SOI waveguides,” Proc. SPIE 9753, 975313 (2016).
[Crossref]

Carroll, L.

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, G. Giuliani, V. Muffato, M. Fournier, S. Abrate, R. Gaudino, E. Temporiti, L. Carroll, and P. Minzioni, “Low-loss micro-resonator filters fabricated in silicon by CMOS-compatible lithographic techniques: design and characterization,” MDPI Appl. Sciences 7(2), 174–185 (2017).
[Crossref]

Chen, X.

Chrostowski, L.

L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).
[Crossref]

Ciret, C.

Cristiani, I.

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, G. Giuliani, V. Muffato, M. Fournier, S. Abrate, R. Gaudino, E. Temporiti, L. Carroll, and P. Minzioni, “Low-loss micro-resonator filters fabricated in silicon by CMOS-compatible lithographic techniques: design and characterization,” MDPI Appl. Sciences 7(2), 174–185 (2017).
[Crossref]

C. Lacava, R. Marchetti, V. Vitali, I. Cristiani, G. Giuliani, M. Fournier, S. Bernabe, and P. Minzioni, “Reduced nonlinearities in 100-nm high SOI waveguides,” Proc. SPIE 9753, 975313 (2016).
[Crossref]

P. Minzioni, G. Nava, I. Cristiani, W. Yan, and V. Degiorgio, “Wide-band single-shot measurement of refractive indices and birefringence of transparent materials,” Optics & Laser Technology 50, 71–77, (2013).
[Crossref]

Dadap, J. I.

Dahlem, M. S.

M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems,” Opt. Express 19(1), 306–316 (2011).
[Crossref] [PubMed]

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z (2008).
[Crossref]

M. A. Popović, T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Tunable, fourth-order silicon microring-resonator add-drop filters,” the European Conference on Optical Communication, Berlin, Germany, Sept. 2007, paper 1.2.3.

Day, I. E.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 μ m wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

Degiorgio, V.

P. Minzioni, G. Nava, I. Cristiani, W. Yan, and V. Degiorgio, “Wide-band single-shot measurement of refractive indices and birefringence of transparent materials,” Optics & Laser Technology 50, 71–77, (2013).
[Crossref]

Drake, J.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 μ m wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

Dulkeith, E.

Espinola, R. L.

Ettabib, M.A.

C. Lacava, M.A. Ettabib, and P. Petropoulos, “Nonlinear silicon photonic signal processing devices for future optical networks,” MDPI Appl. Sciences 7(1), 103 (2017).
[Crossref]

Fathpour, S.

Foster, M. A.

Fournier, M.

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, G. Giuliani, V. Muffato, M. Fournier, S. Abrate, R. Gaudino, E. Temporiti, L. Carroll, and P. Minzioni, “Low-loss micro-resonator filters fabricated in silicon by CMOS-compatible lithographic techniques: design and characterization,” MDPI Appl. Sciences 7(2), 174–185 (2017).
[Crossref]

C. Lacava, R. Marchetti, V. Vitali, I. Cristiani, G. Giuliani, M. Fournier, S. Bernabe, and P. Minzioni, “Reduced nonlinearities in 100-nm high SOI waveguides,” Proc. SPIE 9753, 975313 (2016).
[Crossref]

Gaeta, A. L.

Gan, F.

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z (2008).
[Crossref]

M. A. Popović, T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Tunable, fourth-order silicon microring-resonator add-drop filters,” the European Conference on Optical Communication, Berlin, Germany, Sept. 2007, paper 1.2.3.

Gaudino, R.

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, G. Giuliani, V. Muffato, M. Fournier, S. Abrate, R. Gaudino, E. Temporiti, L. Carroll, and P. Minzioni, “Low-loss micro-resonator filters fabricated in silicon by CMOS-compatible lithographic techniques: design and characterization,” MDPI Appl. Sciences 7(2), 174–185 (2017).
[Crossref]

Giuliani, G.

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, G. Giuliani, V. Muffato, M. Fournier, S. Abrate, R. Gaudino, E. Temporiti, L. Carroll, and P. Minzioni, “Low-loss micro-resonator filters fabricated in silicon by CMOS-compatible lithographic techniques: design and characterization,” MDPI Appl. Sciences 7(2), 174–185 (2017).
[Crossref]

C. Lacava, R. Marchetti, V. Vitali, I. Cristiani, G. Giuliani, M. Fournier, S. Bernabe, and P. Minzioni, “Reduced nonlinearities in 100-nm high SOI waveguides,” Proc. SPIE 9753, 975313 (2016).
[Crossref]

Gorza, S. P.

Green, W. M. J.

Harpin, A.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 μ m wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

Haus, H. A.

Hochberg, M.

L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).
[Crossref]

Holzwarth, C. W.

M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems,” Opt. Express 19(1), 306–316 (2011).
[Crossref] [PubMed]

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z (2008).
[Crossref]

M. A. Popović, T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Tunable, fourth-order silicon microring-resonator add-drop filters,” the European Conference on Optical Communication, Berlin, Germany, Sept. 2007, paper 1.2.3.

Hsieh, I-W.

Ippen, E. P.

M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems,” Opt. Express 19(1), 306–316 (2011).
[Crossref] [PubMed]

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z (2008).
[Crossref]

M. A. Popović, T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Tunable, fourth-order silicon microring-resonator add-drop filters,” the European Conference on Optical Communication, Berlin, Germany, Sept. 2007, paper 1.2.3.

Jalali, B.

Kärtner, F. X.

M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems,” Opt. Express 19(1), 306–316 (2011).
[Crossref] [PubMed]

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z (2008).
[Crossref]

M. A. Popović, T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Tunable, fourth-order silicon microring-resonator add-drop filters,” the European Conference on Optical Communication, Berlin, Germany, Sept. 2007, paper 1.2.3.

Khilo, A.

Kuyken, B.

Lacava, C.

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, G. Giuliani, V. Muffato, M. Fournier, S. Abrate, R. Gaudino, E. Temporiti, L. Carroll, and P. Minzioni, “Low-loss micro-resonator filters fabricated in silicon by CMOS-compatible lithographic techniques: design and characterization,” MDPI Appl. Sciences 7(2), 174–185 (2017).
[Crossref]

C. Lacava, M.A. Ettabib, and P. Petropoulos, “Nonlinear silicon photonic signal processing devices for future optical networks,” MDPI Appl. Sciences 7(1), 103 (2017).
[Crossref]

C. Lacava, R. Marchetti, V. Vitali, I. Cristiani, G. Giuliani, M. Fournier, S. Bernabe, and P. Minzioni, “Reduced nonlinearities in 100-nm high SOI waveguides,” Proc. SPIE 9753, 975313 (2016).
[Crossref]

Lacey, J. P. R.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguide,” Opt. Quantum. Electron. 26(10), 977–986 (1994).
[Crossref]

Leo, F.

Liang, T. K.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 μ m wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

Lin, Q.

Lipson, M.

Manolatou, C.

Marchetti, R.

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, G. Giuliani, V. Muffato, M. Fournier, S. Abrate, R. Gaudino, E. Temporiti, L. Carroll, and P. Minzioni, “Low-loss micro-resonator filters fabricated in silicon by CMOS-compatible lithographic techniques: design and characterization,” MDPI Appl. Sciences 7(2), 174–185 (2017).
[Crossref]

C. Lacava, R. Marchetti, V. Vitali, I. Cristiani, G. Giuliani, M. Fournier, S. Bernabe, and P. Minzioni, “Reduced nonlinearities in 100-nm high SOI waveguides,” Proc. SPIE 9753, 975313 (2016).
[Crossref]

McNab, S. J.

Minzioni, P.

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, G. Giuliani, V. Muffato, M. Fournier, S. Abrate, R. Gaudino, E. Temporiti, L. Carroll, and P. Minzioni, “Low-loss micro-resonator filters fabricated in silicon by CMOS-compatible lithographic techniques: design and characterization,” MDPI Appl. Sciences 7(2), 174–185 (2017).
[Crossref]

C. Lacava, R. Marchetti, V. Vitali, I. Cristiani, G. Giuliani, M. Fournier, S. Bernabe, and P. Minzioni, “Reduced nonlinearities in 100-nm high SOI waveguides,” Proc. SPIE 9753, 975313 (2016).
[Crossref]

P. Minzioni, G. Nava, I. Cristiani, W. Yan, and V. Degiorgio, “Wide-band single-shot measurement of refractive indices and birefringence of transparent materials,” Optics & Laser Technology 50, 71–77, (2013).
[Crossref]

Muffato, V.

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, G. Giuliani, V. Muffato, M. Fournier, S. Abrate, R. Gaudino, E. Temporiti, L. Carroll, and P. Minzioni, “Low-loss micro-resonator filters fabricated in silicon by CMOS-compatible lithographic techniques: design and characterization,” MDPI Appl. Sciences 7(2), 174–185 (2017).
[Crossref]

Nava, G.

P. Minzioni, G. Nava, I. Cristiani, W. Yan, and V. Degiorgio, “Wide-band single-shot measurement of refractive indices and birefringence of transparent materials,” Optics & Laser Technology 50, 71–77, (2013).
[Crossref]

Osgood, R. M.

Painter, O. J.

Panoiu, N. C.

Payne, F. P.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguide,” Opt. Quantum. Electron. 26(10), 977–986 (1994).
[Crossref]

Petropoulos, P.

C. Lacava, M.A. Ettabib, and P. Petropoulos, “Nonlinear silicon photonic signal processing devices for future optical networks,” MDPI Appl. Sciences 7(1), 103 (2017).
[Crossref]

Popovic, M. A.

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z (2008).
[Crossref]

M. A. Popović, T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Tunable, fourth-order silicon microring-resonator add-drop filters,” the European Conference on Optical Communication, Berlin, Germany, Sept. 2007, paper 1.2.3.

Rakich, P. T.

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z (2008).
[Crossref]

M. A. Popović, T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Tunable, fourth-order silicon microring-resonator add-drop filters,” the European Conference on Optical Communication, Berlin, Germany, Sept. 2007, paper 1.2.3.

Roberts, S. W.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 μ m wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

Roelkens, G.

Schares, L.

Schmidt, B. S.

Sharping, J. E.

Smith, H. I.

M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems,” Opt. Express 19(1), 306–316 (2011).
[Crossref] [PubMed]

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z (2008).
[Crossref]

M. A. Popović, T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Tunable, fourth-order silicon microring-resonator add-drop filters,” the European Conference on Optical Communication, Berlin, Germany, Sept. 2007, paper 1.2.3.

Temporiti, E.

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, G. Giuliani, V. Muffato, M. Fournier, S. Abrate, R. Gaudino, E. Temporiti, L. Carroll, and P. Minzioni, “Low-loss micro-resonator filters fabricated in silicon by CMOS-compatible lithographic techniques: design and characterization,” MDPI Appl. Sciences 7(2), 174–185 (2017).
[Crossref]

Tsang, H. K.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 μ m wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

Turner, A. C.

Vitali, V.

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, G. Giuliani, V. Muffato, M. Fournier, S. Abrate, R. Gaudino, E. Temporiti, L. Carroll, and P. Minzioni, “Low-loss micro-resonator filters fabricated in silicon by CMOS-compatible lithographic techniques: design and characterization,” MDPI Appl. Sciences 7(2), 174–185 (2017).
[Crossref]

C. Lacava, R. Marchetti, V. Vitali, I. Cristiani, G. Giuliani, M. Fournier, S. Bernabe, and P. Minzioni, “Reduced nonlinearities in 100-nm high SOI waveguides,” Proc. SPIE 9753, 975313 (2016).
[Crossref]

Vlasov, Y. A.

Willner, A. E.

Wong, C. S.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 μ m wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

Xia, F.

Yan, W.

P. Minzioni, G. Nava, I. Cristiani, W. Yan, and V. Degiorgio, “Wide-band single-shot measurement of refractive indices and birefringence of transparent materials,” Optics & Laser Technology 50, 71–77, (2013).
[Crossref]

Yan, Y.

Yue, Y.

Zhang, L.

Appl. Phys. Lett. (1)

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 μ m wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

J. Lightwave Technol. (2)

MDPI Appl. Sciences (2)

C. Lacava, M.A. Ettabib, and P. Petropoulos, “Nonlinear silicon photonic signal processing devices for future optical networks,” MDPI Appl. Sciences 7(1), 103 (2017).
[Crossref]

R. Marchetti, V. Vitali, C. Lacava, I. Cristiani, G. Giuliani, V. Muffato, M. Fournier, S. Abrate, R. Gaudino, E. Temporiti, L. Carroll, and P. Minzioni, “Low-loss micro-resonator filters fabricated in silicon by CMOS-compatible lithographic techniques: design and characterization,” MDPI Appl. Sciences 7(2), 174–185 (2017).
[Crossref]

Opt. Express (8)

R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13(11), 4341–4349 (2005).
[Crossref] [PubMed]

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
[Crossref] [PubMed]

M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems,” Opt. Express 19(1), 306–316 (2011).
[Crossref] [PubMed]

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, and A. E. Willner, “Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation,” Opt. Express 20(2), 1685–1690 (2012).
[Crossref] [PubMed]

C. Ciret, F. Leo, B. Kuyken, G. Roelkens, and S. P. Gorza, “Observation of an optical event horizon in a silicon-on-insulator photonic wire waveguide,” Opt. Express 24(1), 114–124 (2016).
[Crossref] [PubMed]

E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14(9), 3853–3863 (2006).
[Crossref] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006).
[Crossref] [PubMed]

I-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wire,” Opt. Express 15(3), 1135–1146 (2007).
[Crossref] [PubMed]

Opt. Quantum. Electron. (1)

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguide,” Opt. Quantum. Electron. 26(10), 977–986 (1994).
[Crossref]

Optics & Laser Technology (1)

P. Minzioni, G. Nava, I. Cristiani, W. Yan, and V. Degiorgio, “Wide-band single-shot measurement of refractive indices and birefringence of transparent materials,” Optics & Laser Technology 50, 71–77, (2013).
[Crossref]

Proc. SPIE (2)

C. Lacava, R. Marchetti, V. Vitali, I. Cristiani, G. Giuliani, M. Fournier, S. Bernabe, and P. Minzioni, “Reduced nonlinearities in 100-nm high SOI waveguides,” Proc. SPIE 9753, 975313 (2016).
[Crossref]

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z (2008).
[Crossref]

Other (2)

M. A. Popović, T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Tunable, fourth-order silicon microring-resonator add-drop filters,” the European Conference on Optical Communication, Berlin, Germany, Sept. 2007, paper 1.2.3.

L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (left) Simulation of the effective index of the first 3 modes of a 100 nm high waveguide at λ = 1550 nm, as a function of the waveguide width. (right) Optical power distribution in the transverse section of lowered-height and standard waveguides. The black line represents the physical cross-section of the waveguide, while the beam propagates perpendicularly to the sheet surface.
Fig. 2
Fig. 2 Experimental setup and schematic of the MZI structure used to measure waveguides dispersion.
Fig. 3
Fig. 3 Example of the experimental data acquisition. The blue dots represent the 50 pm resolution data while the red dots represents the 1 pm resolution data. The green arrows represent the wavelength windows considered (4 FSR) for the group index and dispersion calculation.
Fig. 4
Fig. 4 (left) Experimentally derived (blue squares) group index values for standard 500×220 nm waveguides, and values predicted from simulations (green line). (right) Experimentally derived (dots) group index values for 100 nm high waveguides, and values predicted from simulations (dashed lines). Note the y-axis scale is 10 times smaller in (left) with respect to (right).
Fig. 5
Fig. 5 (left) Dispersion curves of the analyzed waveguides in the C-band. Solid lines represent the experimentally derived curves, while dashed lines represent those derived by numerical simulations. (right) Dispersion at 1550 nm as a function of waveguide width, for 100-nm high waveguides.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F S R = c n g Δ L
n g = λ 1 λ 2 Δ L ( λ 2 λ 1 )
D = 1 c ( d n g d λ )

Metrics