Abstract

In this work we investigate the principles of an alternative method for defining sidewall in optical waveguides fabricated using planar technology. The efficiency of this method is demonstrated through simulations and experimental results regarding propagation losses of a solid core ARROW waveguide fabricated on silicon substrate. It is well known that waveguides fabricated using sidewalls etched via Reactive Ion Etching (RIE) can present high sidewall roughness, especially if metallic hard-masks are used. This is largely responsible for the undesirable losses observed in these waveguides. The basic strategy of the proposed method is to do the etching step, in the fabrication of the waveguides, before the deposition of the core, so as to have the lower cladding layer and part of the silicon substrate etched away. Only after this, is the core of the waveguide deposited. This results in a waveguide sustained by a silicon pedestal. With this process, losses as low as 0.45 dB cm−1 for multimode and 0.84 dB cm−1 for single mode waveguides are obtained. The numerical simulations demonstrate that roughness in sidewalls implicates in propagation losses which are at least five times larger that those in the bulk of the material, thus corroborating the idea behind the proposed method.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low-loss pedestal Ta2O5 nonlinear optical waveguides

Julián H. Sierra, Ricardo C. Rangel, Ricardo E. Samad, Nilson Dias Vieira, Marco I. Alayo, and Daniel O. Carvalho
Opt. Express 27(26) 37516-37521 (2019)

Optimization of dry etching parameters for fabrication of polysilicon waveguides with smooth sidewall using a capacitively coupled plasma reactor

Surya Cheemalapati, Mikhail Ladanov, John Winskas, and Anna Pyayt
Appl. Opt. 53(25) 5745-5749 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. Dumais, C. L. Callender, J. P. Noad, and C. Ledderhof, “Integrated optical sensor using a liquid-core waveguide in a Mach-Zehnder Interferometer,” Opt. Express 16, 18164–18172 (2008).
    [Crossref] [PubMed]
  2. Y. Okawachi, A. Gaeta, and M. Lipson, “Breakthroughs in Nonlinear Silicon Photonics 2011,” IEEE Photon. J. 4, 601–606 (2012).
    [Crossref]
  3. A. Griffith, R. Lau, J. Cardenaz, Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, M. Yu, C. Phare, C.B. Poitras, A.L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 1–5 (2014).
  4. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
    [Crossref] [PubMed]
  5. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
    [Crossref] [PubMed]
  6. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17, 4752–4757 (2009).
    [Crossref] [PubMed]
  7. L. W. Luo, G. S. Wiederhecker, J. Cardenas, C. Poitras, and M. Lipson, “High quality factor etchless silicon photonic ring resonators,” Opt. Express 19, 6284–6289 (2011).
    [Crossref] [PubMed]
  8. A. Griffith, J. Cardenas, C.B. Poitras, and M. Lipson, “High quality factor and high confinement silicon resonators using etchless process,” Opt. Express 20, 21341–21345 (2012).
    [Crossref] [PubMed]
  9. D. Yin, H. Schmidt, J.P. Barber, and A.R. Hawkins, “Integrated ARROW waveguides with hollow cores,” Opt. Express 12, 2710–2715 (2004).
    [Crossref] [PubMed]
  10. D. Yin, H. Schmidt, J. P. Barber, E. J. Lunt, and A. R. Hawkins, “Optical characterization of arch-shaped ARROW waveguides with liquid cores,” Opt. Express 13, 10564–10570 (2005).
    [Crossref] [PubMed]
  11. E. J. Lunt, B. Wu, J. M. Keeley, P. Measor, H. Schmidt, and A. R. Hawkins, “Hollow ARROW Waveguides on Self-Aligned Pedestals for Improved Geometry and Transmission,” IEEE Photon. Tech. L. 22, 1147–1149 (2010).
    [Crossref]
  12. M. Duguay, Y. Kokubun, T. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
    [Crossref]
  13. Y. Kokubun and S. Asakawa, “ARROW-type polarizer utilizing form birefringence in multilayer first cladding,” IEEE Photon. Tech. L. 5, 1418–1420 (1993).
    [Crossref]
  14. T.W. Lee, S.C. Hagness, D. Zhou, and L.J. Mawst, “Modal characteristics of ARROW-type vertical-cavity surface-emitting lasers,” IEEE Photon. Tech. L. 13, 770–772 (2001).
    [Crossref]
  15. F. Prieto, L. M. Lechuga, A. Calle, A. Llobera, and C. Domínguez, “Optimised Silicon Antiresonant Reflecting Optical Waveguides for Sensing Applications,” J. Lightwave Technol. 19, 75–83 (2001).
    [Crossref]
  16. D. O. Carvalho and M. I. Alayo, “a-SiC:H anti-resonant layer ARROW waveguides,” J. Opt. A - Pure Appl. Op. 10, 104002 (2008).
    [Crossref]
  17. N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui, and L. Pavesi, “Comparison Among Various Si3N4 Waveguide Geometries Grown Within a CMOS Fabrication Pilot Line,” J. Lightwave Technol. 22, 1734 (2004).
    [Crossref]
  18. S. M. Lindecrantz and O. G. Hellesø, “Estimation of Propagation Losses for Narrow Strip and Rib Waveguides,” IEEE Photon. Tech. L. 26, 1836–1839 (2014).
    [Crossref]
  19. H. P. Uranus, H. J. W. M. Hoekstra, and O. E. van Groesen, “Considerations on material composition for low-loss hollow-core integrated optical waveguides,” Opt. Commun. 260, 577–582 (2006).
    [Crossref]

2014 (2)

A. Griffith, R. Lau, J. Cardenaz, Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, M. Yu, C. Phare, C.B. Poitras, A.L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 1–5 (2014).

S. M. Lindecrantz and O. G. Hellesø, “Estimation of Propagation Losses for Narrow Strip and Rib Waveguides,” IEEE Photon. Tech. L. 26, 1836–1839 (2014).
[Crossref]

2012 (2)

2011 (1)

2010 (1)

E. J. Lunt, B. Wu, J. M. Keeley, P. Measor, H. Schmidt, and A. R. Hawkins, “Hollow ARROW Waveguides on Self-Aligned Pedestals for Improved Geometry and Transmission,” IEEE Photon. Tech. L. 22, 1147–1149 (2010).
[Crossref]

2009 (1)

2008 (2)

2006 (1)

H. P. Uranus, H. J. W. M. Hoekstra, and O. E. van Groesen, “Considerations on material composition for low-loss hollow-core integrated optical waveguides,” Opt. Commun. 260, 577–582 (2006).
[Crossref]

2005 (3)

2004 (2)

2001 (2)

T.W. Lee, S.C. Hagness, D. Zhou, and L.J. Mawst, “Modal characteristics of ARROW-type vertical-cavity surface-emitting lasers,” IEEE Photon. Tech. L. 13, 770–772 (2001).
[Crossref]

F. Prieto, L. M. Lechuga, A. Calle, A. Llobera, and C. Domínguez, “Optimised Silicon Antiresonant Reflecting Optical Waveguides for Sensing Applications,” J. Lightwave Technol. 19, 75–83 (2001).
[Crossref]

1993 (1)

Y. Kokubun and S. Asakawa, “ARROW-type polarizer utilizing form birefringence in multilayer first cladding,” IEEE Photon. Tech. L. 5, 1418–1420 (1993).
[Crossref]

1986 (1)

M. Duguay, Y. Kokubun, T. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

Alayo, M. I.

D. O. Carvalho and M. I. Alayo, “a-SiC:H anti-resonant layer ARROW waveguides,” J. Opt. A - Pure Appl. Op. 10, 104002 (2008).
[Crossref]

Asakawa, S.

Y. Kokubun and S. Asakawa, “ARROW-type polarizer utilizing form birefringence in multilayer first cladding,” IEEE Photon. Tech. L. 5, 1418–1420 (1993).
[Crossref]

Barber, J. P.

Barber, J.P.

Bellutti, P.

Borselli, M.

Calle, A.

Callender, C. L.

Cardenas, J.

Cardenaz, J.

A. Griffith, R. Lau, J. Cardenaz, Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, M. Yu, C. Phare, C.B. Poitras, A.L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 1–5 (2014).

Carvalho, D. O.

D. O. Carvalho and M. I. Alayo, “a-SiC:H anti-resonant layer ARROW waveguides,” J. Opt. A - Pure Appl. Op. 10, 104002 (2008).
[Crossref]

Chen, L.

Crivellari, M.

Daldosso, N.

Domínguez, C.

Duguay, M.

M. Duguay, Y. Kokubun, T. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

Dumais, P.

Fain, R.

A. Griffith, R. Lau, J. Cardenaz, Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, M. Yu, C. Phare, C.B. Poitras, A.L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 1–5 (2014).

Gaeta, A.

Y. Okawachi, A. Gaeta, and M. Lipson, “Breakthroughs in Nonlinear Silicon Photonics 2011,” IEEE Photon. J. 4, 601–606 (2012).
[Crossref]

Gaeta, A.L.

A. Griffith, R. Lau, J. Cardenaz, Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, M. Yu, C. Phare, C.B. Poitras, A.L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 1–5 (2014).

Girardini, M.

Griffith, A.

A. Griffith, R. Lau, J. Cardenaz, Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, M. Yu, C. Phare, C.B. Poitras, A.L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 1–5 (2014).

A. Griffith, J. Cardenas, C.B. Poitras, and M. Lipson, “High quality factor and high confinement silicon resonators using etchless process,” Opt. Express 20, 21341–21345 (2012).
[Crossref] [PubMed]

Hagness, S.C.

T.W. Lee, S.C. Hagness, D. Zhou, and L.J. Mawst, “Modal characteristics of ARROW-type vertical-cavity surface-emitting lasers,” IEEE Photon. Tech. L. 13, 770–772 (2001).
[Crossref]

Hawkins, A. R.

E. J. Lunt, B. Wu, J. M. Keeley, P. Measor, H. Schmidt, and A. R. Hawkins, “Hollow ARROW Waveguides on Self-Aligned Pedestals for Improved Geometry and Transmission,” IEEE Photon. Tech. L. 22, 1147–1149 (2010).
[Crossref]

D. Yin, H. Schmidt, J. P. Barber, E. J. Lunt, and A. R. Hawkins, “Optical characterization of arch-shaped ARROW waveguides with liquid cores,” Opt. Express 13, 10564–10570 (2005).
[Crossref] [PubMed]

Hawkins, A.R.

Hellesø, O. G.

S. M. Lindecrantz and O. G. Hellesø, “Estimation of Propagation Losses for Narrow Strip and Rib Waveguides,” IEEE Photon. Tech. L. 26, 1836–1839 (2014).
[Crossref]

Hoekstra, H. J. W. M.

H. P. Uranus, H. J. W. M. Hoekstra, and O. E. van Groesen, “Considerations on material composition for low-loss hollow-core integrated optical waveguides,” Opt. Commun. 260, 577–582 (2006).
[Crossref]

Johnson, T. J.

Keeley, J. M.

E. J. Lunt, B. Wu, J. M. Keeley, P. Measor, H. Schmidt, and A. R. Hawkins, “Hollow ARROW Waveguides on Self-Aligned Pedestals for Improved Geometry and Transmission,” IEEE Photon. Tech. L. 22, 1147–1149 (2010).
[Crossref]

Koch, T.

M. Duguay, Y. Kokubun, T. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

Kokubun, Y.

Y. Kokubun and S. Asakawa, “ARROW-type polarizer utilizing form birefringence in multilayer first cladding,” IEEE Photon. Tech. L. 5, 1418–1420 (1993).
[Crossref]

M. Duguay, Y. Kokubun, T. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

Lau, R.

A. Griffith, R. Lau, J. Cardenaz, Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, M. Yu, C. Phare, C.B. Poitras, A.L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 1–5 (2014).

Lechuga, L. M.

Ledderhof, C.

Lee, T.W.

T.W. Lee, S.C. Hagness, D. Zhou, and L.J. Mawst, “Modal characteristics of ARROW-type vertical-cavity surface-emitting lasers,” IEEE Photon. Tech. L. 13, 770–772 (2001).
[Crossref]

Lee, Y.

A. Griffith, R. Lau, J. Cardenaz, Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, M. Yu, C. Phare, C.B. Poitras, A.L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 1–5 (2014).

Lindecrantz, S. M.

S. M. Lindecrantz and O. G. Hellesø, “Estimation of Propagation Losses for Narrow Strip and Rib Waveguides,” IEEE Photon. Tech. L. 26, 1836–1839 (2014).
[Crossref]

Lipson, M.

A. Griffith, R. Lau, J. Cardenaz, Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, M. Yu, C. Phare, C.B. Poitras, A.L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 1–5 (2014).

Y. Okawachi, A. Gaeta, and M. Lipson, “Breakthroughs in Nonlinear Silicon Photonics 2011,” IEEE Photon. J. 4, 601–606 (2012).
[Crossref]

A. Griffith, J. Cardenas, C.B. Poitras, and M. Lipson, “High quality factor and high confinement silicon resonators using etchless process,” Opt. Express 20, 21341–21345 (2012).
[Crossref] [PubMed]

L. W. Luo, G. S. Wiederhecker, J. Cardenas, C. Poitras, and M. Lipson, “High quality factor etchless silicon photonic ring resonators,” Opt. Express 19, 6284–6289 (2011).
[Crossref] [PubMed]

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17, 4752–4757 (2009).
[Crossref] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

Llobera, A.

Lui, A.

Lunt, E. J.

E. J. Lunt, B. Wu, J. M. Keeley, P. Measor, H. Schmidt, and A. R. Hawkins, “Hollow ARROW Waveguides on Self-Aligned Pedestals for Improved Geometry and Transmission,” IEEE Photon. Tech. L. 22, 1147–1149 (2010).
[Crossref]

D. Yin, H. Schmidt, J. P. Barber, E. J. Lunt, and A. R. Hawkins, “Optical characterization of arch-shaped ARROW waveguides with liquid cores,” Opt. Express 13, 10564–10570 (2005).
[Crossref] [PubMed]

Luo, L. W.

Mawst, L.J.

T.W. Lee, S.C. Hagness, D. Zhou, and L.J. Mawst, “Modal characteristics of ARROW-type vertical-cavity surface-emitting lasers,” IEEE Photon. Tech. L. 13, 770–772 (2001).
[Crossref]

Measor, P.

E. J. Lunt, B. Wu, J. M. Keeley, P. Measor, H. Schmidt, and A. R. Hawkins, “Hollow ARROW Waveguides on Self-Aligned Pedestals for Improved Geometry and Transmission,” IEEE Photon. Tech. L. 22, 1147–1149 (2010).
[Crossref]

Melchiorri, M.

Mohanty, A.

A. Griffith, R. Lau, J. Cardenaz, Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, M. Yu, C. Phare, C.B. Poitras, A.L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 1–5 (2014).

Noad, J. P.

Okawachi, Y.

A. Griffith, R. Lau, J. Cardenaz, Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, M. Yu, C. Phare, C.B. Poitras, A.L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 1–5 (2014).

Y. Okawachi, A. Gaeta, and M. Lipson, “Breakthroughs in Nonlinear Silicon Photonics 2011,” IEEE Photon. J. 4, 601–606 (2012).
[Crossref]

Painter, O.

Pavesi, L.

Pfeiffer, L.

M. Duguay, Y. Kokubun, T. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

Phare, C.

A. Griffith, R. Lau, J. Cardenaz, Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, M. Yu, C. Phare, C.B. Poitras, A.L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 1–5 (2014).

Poitras, C.

Poitras, C. B.

Poitras, C.B.

A. Griffith, R. Lau, J. Cardenaz, Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, M. Yu, C. Phare, C.B. Poitras, A.L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 1–5 (2014).

A. Griffith, J. Cardenas, C.B. Poitras, and M. Lipson, “High quality factor and high confinement silicon resonators using etchless process,” Opt. Express 20, 21341–21345 (2012).
[Crossref] [PubMed]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

Preston, K.

Prieto, F.

Pucker, G.

Riboli, F.

Robinson, J. T.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

Schmidt, H.

Uranus, H. P.

H. P. Uranus, H. J. W. M. Hoekstra, and O. E. van Groesen, “Considerations on material composition for low-loss hollow-core integrated optical waveguides,” Opt. Commun. 260, 577–582 (2006).
[Crossref]

van Groesen, O. E.

H. P. Uranus, H. J. W. M. Hoekstra, and O. E. van Groesen, “Considerations on material composition for low-loss hollow-core integrated optical waveguides,” Opt. Commun. 260, 577–582 (2006).
[Crossref]

Wiederhecker, G. S.

Wu, B.

E. J. Lunt, B. Wu, J. M. Keeley, P. Measor, H. Schmidt, and A. R. Hawkins, “Hollow ARROW Waveguides on Self-Aligned Pedestals for Improved Geometry and Transmission,” IEEE Photon. Tech. L. 22, 1147–1149 (2010).
[Crossref]

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

Yin, D.

Yu, M.

A. Griffith, R. Lau, J. Cardenaz, Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, M. Yu, C. Phare, C.B. Poitras, A.L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 1–5 (2014).

Zhou, D.

T.W. Lee, S.C. Hagness, D. Zhou, and L.J. Mawst, “Modal characteristics of ARROW-type vertical-cavity surface-emitting lasers,” IEEE Photon. Tech. L. 13, 770–772 (2001).
[Crossref]

Appl. Phys. Lett. (1)

M. Duguay, Y. Kokubun, T. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

IEEE Photon. J. (1)

Y. Okawachi, A. Gaeta, and M. Lipson, “Breakthroughs in Nonlinear Silicon Photonics 2011,” IEEE Photon. J. 4, 601–606 (2012).
[Crossref]

IEEE Photon. Tech. L. (4)

S. M. Lindecrantz and O. G. Hellesø, “Estimation of Propagation Losses for Narrow Strip and Rib Waveguides,” IEEE Photon. Tech. L. 26, 1836–1839 (2014).
[Crossref]

Y. Kokubun and S. Asakawa, “ARROW-type polarizer utilizing form birefringence in multilayer first cladding,” IEEE Photon. Tech. L. 5, 1418–1420 (1993).
[Crossref]

T.W. Lee, S.C. Hagness, D. Zhou, and L.J. Mawst, “Modal characteristics of ARROW-type vertical-cavity surface-emitting lasers,” IEEE Photon. Tech. L. 13, 770–772 (2001).
[Crossref]

E. J. Lunt, B. Wu, J. M. Keeley, P. Measor, H. Schmidt, and A. R. Hawkins, “Hollow ARROW Waveguides on Self-Aligned Pedestals for Improved Geometry and Transmission,” IEEE Photon. Tech. L. 22, 1147–1149 (2010).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. A - Pure Appl. Op. (1)

D. O. Carvalho and M. I. Alayo, “a-SiC:H anti-resonant layer ARROW waveguides,” J. Opt. A - Pure Appl. Op. 10, 104002 (2008).
[Crossref]

Nat. Commun. (1)

A. Griffith, R. Lau, J. Cardenaz, Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, M. Yu, C. Phare, C.B. Poitras, A.L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 1–5 (2014).

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

Opt. Commun. (1)

H. P. Uranus, H. J. W. M. Hoekstra, and O. E. van Groesen, “Considerations on material composition for low-loss hollow-core integrated optical waveguides,” Opt. Commun. 260, 577–582 (2006).
[Crossref]

Opt. Express (7)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Illustration of the fabrication process: pedestal definition through RIE with chromium hardmask (a) and deposition of the first ARROW layer and the core (b).
Fig. 2
Fig. 2 Waveguide cross section model used in the FDM simulations (a) and mode profiles for the two lowest order modes ((b) and (c)).
Fig. 3
Fig. 3 SEM micrographs of pedestal ARROWs with h = 3 μm (a) and h = 4 μm (b) and mode profiles for pedestal waveguides with widths of 6 μm (c) and 10 μm (d).
Fig. 4
Fig. 4 Simulated and experimentaly measured propagation losses for waveguides with pedestal height of 3, 4 and 5 μm and widths ranging from 2 to 20 μm.

Metrics