Abstract

A full resolution auto-stereoscopic display for mobile phones is demonstrated. It is based on the sub-pixel level phase modulation of a switchable liquid crystal (LC) micro-lens array, which can be switched back to a conventional two-dimensional (2D) display. The full scale (4 inch) device aligns with the display panel perfectly at sub-pixel level and switches the entire display area uniformly with no distortion and no colour separation. The steering angle and crosstalk of the auto-stereoscopic display are evaluated by both simulation and experiment. The results show that satisfactory performance can be achieved by further reduction of the separation distance between the colour filter (CF) layer and the LC lens layer and close match it to the effective focal length of the LC lens.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High quality micro liquid crystal phase lenses for full resolution image steering in auto-stereoscopic displays

Kun Li, Brian Robertson, Mike Pivnenko, Yuanbo Deng, Daping Chu, Jiong Zhou, and Jun Yao
Opt. Express 22(18) 21679-21689 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Boev and A. Gotchev, “Comparative study of autostereoscopic displays for mobile devices,” Proc. SPIE 7881, 78810B (2011).
  2. L. Hill and A. Jacobs, “3-D liquid crystal displays and their applications,” Proc. IEEE 94(3), 575–590 (2006).
    [Crossref]
  3. S. C. Liu, C. L. Tsou, and C. W. Chang, “Autostereoscopic 2D/3D display using liquid crystal lens and its applications for tablet PC,” Proc. SPIE 8043, 80430P (2011).
  4. D. Liang, J. Luo, W. Zhao, D. H. Li, and Q. H. Wang, “2D/3D switchable autostereoscopic display based on polymer-stabilized blue-phase liquid crystal lens,” J. Disp. Technol. 8(10), 609–612 (2012).
    [Crossref]
  5. K. Li, B. Robertson, M. Pivnenko, Y. Deng, D. Chu, J. Zhou, and J. Yao, “High quality micro liquid crystal phase lenses for full resolution image steering in auto-stereoscopic displays,” Opt. Express 22(18), 21679–21689 (2014).
    [Crossref] [PubMed]
  6. Y. C. Chang, T. H. Jen, C. H. Ting, and Y. P. Huang, “High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display,” Opt. Express 22(3), 2714–2724 (2014).
    [Crossref] [PubMed]
  7. J. F. Algorri, V. Urruchi del Pozo, J. M. Sanchez-Pena, and J. M. Oton, “An autostereoscopic device for mobile applications based on a liquid crystal microlens array and an OLED display,” J. Disp. Technol. 10(9), 713–720 (2014).
    [Crossref]
  8. Y. P. Huang, C. W. Chen, and Y. C. Huang, “Superzone fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Disp. Technol. 8(11), 650–655 (2012).
    [Crossref]
  9. A. Gotchev, G. B. Akar, T. Capin, D. Strohmeier, and A. Boev, “Three-dimensional media for mobile devices,” Proc. IEEE 99(4), 708–741 (2011).
    [Crossref]
  10. J. Harrold and G. Woodgate, “Autostereoscopic display technology for mobile 3DTV applications,” Proc. SPIE 6490, 64900K (2007).
  11. H. Ren and S. T. Wu, Introduction to Adaptive Lenses (Wiley, 2012).
  12. M. Reznikov, Y. Reznikov, K. Slyusarenko, J. Varshal, and M. Manevich, “Adaptive properties of a liquid crystal cell with a microlens-profiled aligning surface,” J. Appl. Phys. 111(10), 103118 (2012).
    [Crossref]
  13. V. V. Presnyakov and T. V. Galstian, “Electrically tunable polymer stabilized liquid-crystal lens,” J. Appl. Phys. 97(10), 103101 (2005).
    [Crossref]
  14. H. C. Lin, M. S. Chen, and Y. H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater. 12(6), 234–240 (2011).
    [Crossref]
  15. S. Suyama, M. Date, and H. Takada, “Three-dimensional display system with dual-frequency liquid-crystal varifocal lens,” Jpn. J. Appl. Phys. 39(1), 480–484 (2000).
    [Crossref]
  16. T. H. Jen, Y. C. Chang, C. H. Ting, H. P. Shieh, and Y. P. Huang, “Locally controllable liquid crystal lens array for partially switchable 2D/3D display,” J. Disp. Technol. 1, 1 (2015).
  17. Y. P. Huang, C. W. Chen, T. C. Shen, and J. F. Huang, “Autostereoscopic 3D display with scanning multi-electrode driven liquid crystal (MeD-LC) lens,” 3D Res 1(1), 39–42 (2010).
    [Crossref]
  18. F. L. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25(2–3), 99–108 (2004).
    [Crossref]
  19. Y. Y. Kao, Y. P. Huang, K. X. Yang, P. C. P. Chao, C. C. Tsai, and C. N. Mo, “An auto-stereoscopic 3D display using tunable liquid crystal lens array that mimics effects of GRIN lenticular lens array,” SID Symp. Dig. Tech. Pap. 40, 111–115 (2009).
    [Crossref]
  20. Y. C. Chang, L. C. Tang, and C. Y. Yin, “Efficient simulation of intensity profile of light through subpixel-matched lenticular lens array for two- and four-view auto-stereoscopic liquid-crystal display,” Appl. Opt. 52(1), A356–A359 (2013).
    [Crossref] [PubMed]
  21. D. Chu, B. Robertson, J. Yao, and J. Zhou, “Stereo-imaging device, stereo-imaging method and display,” Huawei Technologies Co., Ltd., and Cambridge Enterprise Limited, US20160131918 A1 (2016), WO2015007171 A1 (2014), EP3006997 A1 (2014), CN104297929 B (2013).
  22. A. Ö. Yöntem and L. Onural, “Integral imaging using phase-only LCoS spatial light modulators as Fresnel lenslet arrays,” J. Opt. Soc. Am. A 28(11), 2359–2375 (2011).
    [Crossref] [PubMed]
  23. L. Onural, “Sampling of the diffraction field,” Appl. Opt. 39(32), 5929–5935 (2000).
    [Crossref] [PubMed]
  24. A. G. Schott, “Ultra-thin glass for electronics applications,” 2015, < http://www.us.schott.com/d/advanced_optics/2030b5a1-78c3-40eb-a094-f81f1e55e6d2/1.0/schott-ultra-thin-glass-electronics-appl-nov-2015-us.pdf >.
  25. S.-U. Kim, J. Kim, J.-H. Suh, J.-H. Na, and S.-D. Lee, “Concept of active parallax barrier on polarizing interlayer for near-viewing autostereoscopic displays,” Opt. Express 24(22), 25010–25018 (2016).
    [Crossref] [PubMed]
  26. R. Zhu, S. Xu, Q. Hong, S. T. Wu, C. Lee, C. M. Yang, C. C. Lo, and A. Lien, “Polymeric-lens-embedded 2D/3D switchable display with dramatically reduced crosstalk,” Appl. Opt. 53(7), 1388–1395 (2014).
    [Crossref] [PubMed]
  27. K. Li, B. Robertson, D. Chu, and J. Zhou, “Display device,” Huawei Technologies Co., Ltd., and Cambridge Enterprise Limited, US20170038597 A1 (2016), WO2015176663A1 (2015), CN105093541A (2014)
  28. Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S. T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
    [Crossref]
  29. S. Xu, Y. Li, Y. Liu, J. Sun, H. Ren, and S. T. Wu, “Fast-response liquid crystal microlens,” Micromachines (Basel) 5(2), 300–324 (2014).
    [Crossref]

2016 (1)

2015 (1)

T. H. Jen, Y. C. Chang, C. H. Ting, H. P. Shieh, and Y. P. Huang, “Locally controllable liquid crystal lens array for partially switchable 2D/3D display,” J. Disp. Technol. 1, 1 (2015).

2014 (5)

2013 (1)

2012 (3)

M. Reznikov, Y. Reznikov, K. Slyusarenko, J. Varshal, and M. Manevich, “Adaptive properties of a liquid crystal cell with a microlens-profiled aligning surface,” J. Appl. Phys. 111(10), 103118 (2012).
[Crossref]

Y. P. Huang, C. W. Chen, and Y. C. Huang, “Superzone fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Disp. Technol. 8(11), 650–655 (2012).
[Crossref]

D. Liang, J. Luo, W. Zhao, D. H. Li, and Q. H. Wang, “2D/3D switchable autostereoscopic display based on polymer-stabilized blue-phase liquid crystal lens,” J. Disp. Technol. 8(10), 609–612 (2012).
[Crossref]

2011 (6)

S. C. Liu, C. L. Tsou, and C. W. Chang, “Autostereoscopic 2D/3D display using liquid crystal lens and its applications for tablet PC,” Proc. SPIE 8043, 80430P (2011).

A. Boev and A. Gotchev, “Comparative study of autostereoscopic displays for mobile devices,” Proc. SPIE 7881, 78810B (2011).

A. Gotchev, G. B. Akar, T. Capin, D. Strohmeier, and A. Boev, “Three-dimensional media for mobile devices,” Proc. IEEE 99(4), 708–741 (2011).
[Crossref]

H. C. Lin, M. S. Chen, and Y. H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater. 12(6), 234–240 (2011).
[Crossref]

A. Ö. Yöntem and L. Onural, “Integral imaging using phase-only LCoS spatial light modulators as Fresnel lenslet arrays,” J. Opt. Soc. Am. A 28(11), 2359–2375 (2011).
[Crossref] [PubMed]

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S. T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[Crossref]

2010 (1)

Y. P. Huang, C. W. Chen, T. C. Shen, and J. F. Huang, “Autostereoscopic 3D display with scanning multi-electrode driven liquid crystal (MeD-LC) lens,” 3D Res 1(1), 39–42 (2010).
[Crossref]

2007 (1)

J. Harrold and G. Woodgate, “Autostereoscopic display technology for mobile 3DTV applications,” Proc. SPIE 6490, 64900K (2007).

2006 (1)

L. Hill and A. Jacobs, “3-D liquid crystal displays and their applications,” Proc. IEEE 94(3), 575–590 (2006).
[Crossref]

2005 (1)

V. V. Presnyakov and T. V. Galstian, “Electrically tunable polymer stabilized liquid-crystal lens,” J. Appl. Phys. 97(10), 103101 (2005).
[Crossref]

2004 (1)

F. L. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25(2–3), 99–108 (2004).
[Crossref]

2000 (2)

L. Onural, “Sampling of the diffraction field,” Appl. Opt. 39(32), 5929–5935 (2000).
[Crossref] [PubMed]

S. Suyama, M. Date, and H. Takada, “Three-dimensional display system with dual-frequency liquid-crystal varifocal lens,” Jpn. J. Appl. Phys. 39(1), 480–484 (2000).
[Crossref]

Akar, G. B.

A. Gotchev, G. B. Akar, T. Capin, D. Strohmeier, and A. Boev, “Three-dimensional media for mobile devices,” Proc. IEEE 99(4), 708–741 (2011).
[Crossref]

Algorri, J. F.

J. F. Algorri, V. Urruchi del Pozo, J. M. Sanchez-Pena, and J. M. Oton, “An autostereoscopic device for mobile applications based on a liquid crystal microlens array and an OLED display,” J. Disp. Technol. 10(9), 713–720 (2014).
[Crossref]

Boev, A.

A. Gotchev, G. B. Akar, T. Capin, D. Strohmeier, and A. Boev, “Three-dimensional media for mobile devices,” Proc. IEEE 99(4), 708–741 (2011).
[Crossref]

A. Boev and A. Gotchev, “Comparative study of autostereoscopic displays for mobile devices,” Proc. SPIE 7881, 78810B (2011).

Capin, T.

A. Gotchev, G. B. Akar, T. Capin, D. Strohmeier, and A. Boev, “Three-dimensional media for mobile devices,” Proc. IEEE 99(4), 708–741 (2011).
[Crossref]

Chang, C. W.

S. C. Liu, C. L. Tsou, and C. W. Chang, “Autostereoscopic 2D/3D display using liquid crystal lens and its applications for tablet PC,” Proc. SPIE 8043, 80430P (2011).

Chang, Y. C.

Chen, C. W.

Y. P. Huang, C. W. Chen, and Y. C. Huang, “Superzone fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Disp. Technol. 8(11), 650–655 (2012).
[Crossref]

Y. P. Huang, C. W. Chen, T. C. Shen, and J. F. Huang, “Autostereoscopic 3D display with scanning multi-electrode driven liquid crystal (MeD-LC) lens,” 3D Res 1(1), 39–42 (2010).
[Crossref]

Chen, M. S.

H. C. Lin, M. S. Chen, and Y. H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater. 12(6), 234–240 (2011).
[Crossref]

Chen, Y.

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S. T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[Crossref]

Chu, D.

Date, M.

S. Suyama, M. Date, and H. Takada, “Three-dimensional display system with dual-frequency liquid-crystal varifocal lens,” Jpn. J. Appl. Phys. 39(1), 480–484 (2000).
[Crossref]

Deng, Y.

Galstian, T. V.

V. V. Presnyakov and T. V. Galstian, “Electrically tunable polymer stabilized liquid-crystal lens,” J. Appl. Phys. 97(10), 103101 (2005).
[Crossref]

Gotchev, A.

A. Boev and A. Gotchev, “Comparative study of autostereoscopic displays for mobile devices,” Proc. SPIE 7881, 78810B (2011).

A. Gotchev, G. B. Akar, T. Capin, D. Strohmeier, and A. Boev, “Three-dimensional media for mobile devices,” Proc. IEEE 99(4), 708–741 (2011).
[Crossref]

Harrold, J.

J. Harrold and G. Woodgate, “Autostereoscopic display technology for mobile 3DTV applications,” Proc. SPIE 6490, 64900K (2007).

Hill, L.

L. Hill and A. Jacobs, “3-D liquid crystal displays and their applications,” Proc. IEEE 94(3), 575–590 (2006).
[Crossref]

Hong, Q.

Huang, J. F.

Y. P. Huang, C. W. Chen, T. C. Shen, and J. F. Huang, “Autostereoscopic 3D display with scanning multi-electrode driven liquid crystal (MeD-LC) lens,” 3D Res 1(1), 39–42 (2010).
[Crossref]

Huang, Y. C.

Y. P. Huang, C. W. Chen, and Y. C. Huang, “Superzone fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Disp. Technol. 8(11), 650–655 (2012).
[Crossref]

Huang, Y. P.

T. H. Jen, Y. C. Chang, C. H. Ting, H. P. Shieh, and Y. P. Huang, “Locally controllable liquid crystal lens array for partially switchable 2D/3D display,” J. Disp. Technol. 1, 1 (2015).

Y. C. Chang, T. H. Jen, C. H. Ting, and Y. P. Huang, “High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display,” Opt. Express 22(3), 2714–2724 (2014).
[Crossref] [PubMed]

Y. P. Huang, C. W. Chen, and Y. C. Huang, “Superzone fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Disp. Technol. 8(11), 650–655 (2012).
[Crossref]

Y. P. Huang, C. W. Chen, T. C. Shen, and J. F. Huang, “Autostereoscopic 3D display with scanning multi-electrode driven liquid crystal (MeD-LC) lens,” 3D Res 1(1), 39–42 (2010).
[Crossref]

Ishinabe, T.

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S. T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[Crossref]

Jacobs, A.

L. Hill and A. Jacobs, “3-D liquid crystal displays and their applications,” Proc. IEEE 94(3), 575–590 (2006).
[Crossref]

Jen, T. H.

T. H. Jen, Y. C. Chang, C. H. Ting, H. P. Shieh, and Y. P. Huang, “Locally controllable liquid crystal lens array for partially switchable 2D/3D display,” J. Disp. Technol. 1, 1 (2015).

Y. C. Chang, T. H. Jen, C. H. Ting, and Y. P. Huang, “High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display,” Opt. Express 22(3), 2714–2724 (2014).
[Crossref] [PubMed]

Kim, J.

Kim, S.-U.

Kooi, F. L.

F. L. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25(2–3), 99–108 (2004).
[Crossref]

Lee, C.

Lee, S.-D.

Li, D. H.

D. Liang, J. Luo, W. Zhao, D. H. Li, and Q. H. Wang, “2D/3D switchable autostereoscopic display based on polymer-stabilized blue-phase liquid crystal lens,” J. Disp. Technol. 8(10), 609–612 (2012).
[Crossref]

Li, K.

Li, Y.

S. Xu, Y. Li, Y. Liu, J. Sun, H. Ren, and S. T. Wu, “Fast-response liquid crystal microlens,” Micromachines (Basel) 5(2), 300–324 (2014).
[Crossref]

Liang, D.

D. Liang, J. Luo, W. Zhao, D. H. Li, and Q. H. Wang, “2D/3D switchable autostereoscopic display based on polymer-stabilized blue-phase liquid crystal lens,” J. Disp. Technol. 8(10), 609–612 (2012).
[Crossref]

Lien, A.

Lin, H. C.

H. C. Lin, M. S. Chen, and Y. H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater. 12(6), 234–240 (2011).
[Crossref]

Lin, Y. H.

H. C. Lin, M. S. Chen, and Y. H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater. 12(6), 234–240 (2011).
[Crossref]

Liu, S. C.

S. C. Liu, C. L. Tsou, and C. W. Chang, “Autostereoscopic 2D/3D display using liquid crystal lens and its applications for tablet PC,” Proc. SPIE 8043, 80430P (2011).

Liu, Y.

S. Xu, Y. Li, Y. Liu, J. Sun, H. Ren, and S. T. Wu, “Fast-response liquid crystal microlens,” Micromachines (Basel) 5(2), 300–324 (2014).
[Crossref]

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S. T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[Crossref]

Lo, C. C.

Luo, J.

D. Liang, J. Luo, W. Zhao, D. H. Li, and Q. H. Wang, “2D/3D switchable autostereoscopic display based on polymer-stabilized blue-phase liquid crystal lens,” J. Disp. Technol. 8(10), 609–612 (2012).
[Crossref]

Manevich, M.

M. Reznikov, Y. Reznikov, K. Slyusarenko, J. Varshal, and M. Manevich, “Adaptive properties of a liquid crystal cell with a microlens-profiled aligning surface,” J. Appl. Phys. 111(10), 103118 (2012).
[Crossref]

Na, J.-H.

Onural, L.

Oton, J. M.

J. F. Algorri, V. Urruchi del Pozo, J. M. Sanchez-Pena, and J. M. Oton, “An autostereoscopic device for mobile applications based on a liquid crystal microlens array and an OLED display,” J. Disp. Technol. 10(9), 713–720 (2014).
[Crossref]

Pivnenko, M.

Presnyakov, V. V.

V. V. Presnyakov and T. V. Galstian, “Electrically tunable polymer stabilized liquid-crystal lens,” J. Appl. Phys. 97(10), 103101 (2005).
[Crossref]

Rao, L.

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S. T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[Crossref]

Ren, H.

S. Xu, Y. Li, Y. Liu, J. Sun, H. Ren, and S. T. Wu, “Fast-response liquid crystal microlens,” Micromachines (Basel) 5(2), 300–324 (2014).
[Crossref]

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S. T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[Crossref]

Reznikov, M.

M. Reznikov, Y. Reznikov, K. Slyusarenko, J. Varshal, and M. Manevich, “Adaptive properties of a liquid crystal cell with a microlens-profiled aligning surface,” J. Appl. Phys. 111(10), 103118 (2012).
[Crossref]

Reznikov, Y.

M. Reznikov, Y. Reznikov, K. Slyusarenko, J. Varshal, and M. Manevich, “Adaptive properties of a liquid crystal cell with a microlens-profiled aligning surface,” J. Appl. Phys. 111(10), 103118 (2012).
[Crossref]

Robertson, B.

Sanchez-Pena, J. M.

J. F. Algorri, V. Urruchi del Pozo, J. M. Sanchez-Pena, and J. M. Oton, “An autostereoscopic device for mobile applications based on a liquid crystal microlens array and an OLED display,” J. Disp. Technol. 10(9), 713–720 (2014).
[Crossref]

Shen, T. C.

Y. P. Huang, C. W. Chen, T. C. Shen, and J. F. Huang, “Autostereoscopic 3D display with scanning multi-electrode driven liquid crystal (MeD-LC) lens,” 3D Res 1(1), 39–42 (2010).
[Crossref]

Shieh, H. P.

T. H. Jen, Y. C. Chang, C. H. Ting, H. P. Shieh, and Y. P. Huang, “Locally controllable liquid crystal lens array for partially switchable 2D/3D display,” J. Disp. Technol. 1, 1 (2015).

Slyusarenko, K.

M. Reznikov, Y. Reznikov, K. Slyusarenko, J. Varshal, and M. Manevich, “Adaptive properties of a liquid crystal cell with a microlens-profiled aligning surface,” J. Appl. Phys. 111(10), 103118 (2012).
[Crossref]

Strohmeier, D.

A. Gotchev, G. B. Akar, T. Capin, D. Strohmeier, and A. Boev, “Three-dimensional media for mobile devices,” Proc. IEEE 99(4), 708–741 (2011).
[Crossref]

Suh, J.-H.

Sun, J.

S. Xu, Y. Li, Y. Liu, J. Sun, H. Ren, and S. T. Wu, “Fast-response liquid crystal microlens,” Micromachines (Basel) 5(2), 300–324 (2014).
[Crossref]

Suyama, S.

S. Suyama, M. Date, and H. Takada, “Three-dimensional display system with dual-frequency liquid-crystal varifocal lens,” Jpn. J. Appl. Phys. 39(1), 480–484 (2000).
[Crossref]

Takada, H.

S. Suyama, M. Date, and H. Takada, “Three-dimensional display system with dual-frequency liquid-crystal varifocal lens,” Jpn. J. Appl. Phys. 39(1), 480–484 (2000).
[Crossref]

Tang, L. C.

Ting, C. H.

T. H. Jen, Y. C. Chang, C. H. Ting, H. P. Shieh, and Y. P. Huang, “Locally controllable liquid crystal lens array for partially switchable 2D/3D display,” J. Disp. Technol. 1, 1 (2015).

Y. C. Chang, T. H. Jen, C. H. Ting, and Y. P. Huang, “High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display,” Opt. Express 22(3), 2714–2724 (2014).
[Crossref] [PubMed]

Toet, A.

F. L. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25(2–3), 99–108 (2004).
[Crossref]

Tsou, C. L.

S. C. Liu, C. L. Tsou, and C. W. Chang, “Autostereoscopic 2D/3D display using liquid crystal lens and its applications for tablet PC,” Proc. SPIE 8043, 80430P (2011).

Urruchi del Pozo, V.

J. F. Algorri, V. Urruchi del Pozo, J. M. Sanchez-Pena, and J. M. Oton, “An autostereoscopic device for mobile applications based on a liquid crystal microlens array and an OLED display,” J. Disp. Technol. 10(9), 713–720 (2014).
[Crossref]

Varshal, J.

M. Reznikov, Y. Reznikov, K. Slyusarenko, J. Varshal, and M. Manevich, “Adaptive properties of a liquid crystal cell with a microlens-profiled aligning surface,” J. Appl. Phys. 111(10), 103118 (2012).
[Crossref]

Wang, Q. H.

D. Liang, J. Luo, W. Zhao, D. H. Li, and Q. H. Wang, “2D/3D switchable autostereoscopic display based on polymer-stabilized blue-phase liquid crystal lens,” J. Disp. Technol. 8(10), 609–612 (2012).
[Crossref]

Woodgate, G.

J. Harrold and G. Woodgate, “Autostereoscopic display technology for mobile 3DTV applications,” Proc. SPIE 6490, 64900K (2007).

Wu, S. T.

S. Xu, Y. Li, Y. Liu, J. Sun, H. Ren, and S. T. Wu, “Fast-response liquid crystal microlens,” Micromachines (Basel) 5(2), 300–324 (2014).
[Crossref]

R. Zhu, S. Xu, Q. Hong, S. T. Wu, C. Lee, C. M. Yang, C. C. Lo, and A. Lien, “Polymeric-lens-embedded 2D/3D switchable display with dramatically reduced crosstalk,” Appl. Opt. 53(7), 1388–1395 (2014).
[Crossref] [PubMed]

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S. T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[Crossref]

Xu, S.

S. Xu, Y. Li, Y. Liu, J. Sun, H. Ren, and S. T. Wu, “Fast-response liquid crystal microlens,” Micromachines (Basel) 5(2), 300–324 (2014).
[Crossref]

R. Zhu, S. Xu, Q. Hong, S. T. Wu, C. Lee, C. M. Yang, C. C. Lo, and A. Lien, “Polymeric-lens-embedded 2D/3D switchable display with dramatically reduced crosstalk,” Appl. Opt. 53(7), 1388–1395 (2014).
[Crossref] [PubMed]

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S. T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[Crossref]

Yang, C. M.

Yao, J.

Yin, C. Y.

Yöntem, A. Ö.

Zhao, W.

D. Liang, J. Luo, W. Zhao, D. H. Li, and Q. H. Wang, “2D/3D switchable autostereoscopic display based on polymer-stabilized blue-phase liquid crystal lens,” J. Disp. Technol. 8(10), 609–612 (2012).
[Crossref]

Zhou, J.

Zhu, R.

3D Res (1)

Y. P. Huang, C. W. Chen, T. C. Shen, and J. F. Huang, “Autostereoscopic 3D display with scanning multi-electrode driven liquid crystal (MeD-LC) lens,” 3D Res 1(1), 39–42 (2010).
[Crossref]

Appl. Opt. (3)

Displays (1)

F. L. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25(2–3), 99–108 (2004).
[Crossref]

J. Appl. Phys. (2)

M. Reznikov, Y. Reznikov, K. Slyusarenko, J. Varshal, and M. Manevich, “Adaptive properties of a liquid crystal cell with a microlens-profiled aligning surface,” J. Appl. Phys. 111(10), 103118 (2012).
[Crossref]

V. V. Presnyakov and T. V. Galstian, “Electrically tunable polymer stabilized liquid-crystal lens,” J. Appl. Phys. 97(10), 103101 (2005).
[Crossref]

J. Disp. Technol. (5)

T. H. Jen, Y. C. Chang, C. H. Ting, H. P. Shieh, and Y. P. Huang, “Locally controllable liquid crystal lens array for partially switchable 2D/3D display,” J. Disp. Technol. 1, 1 (2015).

J. F. Algorri, V. Urruchi del Pozo, J. M. Sanchez-Pena, and J. M. Oton, “An autostereoscopic device for mobile applications based on a liquid crystal microlens array and an OLED display,” J. Disp. Technol. 10(9), 713–720 (2014).
[Crossref]

Y. P. Huang, C. W. Chen, and Y. C. Huang, “Superzone fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Disp. Technol. 8(11), 650–655 (2012).
[Crossref]

D. Liang, J. Luo, W. Zhao, D. H. Li, and Q. H. Wang, “2D/3D switchable autostereoscopic display based on polymer-stabilized blue-phase liquid crystal lens,” J. Disp. Technol. 8(10), 609–612 (2012).
[Crossref]

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S. T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

S. Suyama, M. Date, and H. Takada, “Three-dimensional display system with dual-frequency liquid-crystal varifocal lens,” Jpn. J. Appl. Phys. 39(1), 480–484 (2000).
[Crossref]

Micromachines (Basel) (1)

S. Xu, Y. Li, Y. Liu, J. Sun, H. Ren, and S. T. Wu, “Fast-response liquid crystal microlens,” Micromachines (Basel) 5(2), 300–324 (2014).
[Crossref]

Opt. Express (3)

Proc. IEEE (2)

A. Gotchev, G. B. Akar, T. Capin, D. Strohmeier, and A. Boev, “Three-dimensional media for mobile devices,” Proc. IEEE 99(4), 708–741 (2011).
[Crossref]

L. Hill and A. Jacobs, “3-D liquid crystal displays and their applications,” Proc. IEEE 94(3), 575–590 (2006).
[Crossref]

Proc. SPIE (3)

S. C. Liu, C. L. Tsou, and C. W. Chang, “Autostereoscopic 2D/3D display using liquid crystal lens and its applications for tablet PC,” Proc. SPIE 8043, 80430P (2011).

J. Harrold and G. Woodgate, “Autostereoscopic display technology for mobile 3DTV applications,” Proc. SPIE 6490, 64900K (2007).

A. Boev and A. Gotchev, “Comparative study of autostereoscopic displays for mobile devices,” Proc. SPIE 7881, 78810B (2011).

Trans. Electr. Electron. Mater. (1)

H. C. Lin, M. S. Chen, and Y. H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater. 12(6), 234–240 (2011).
[Crossref]

Other (5)

H. Ren and S. T. Wu, Introduction to Adaptive Lenses (Wiley, 2012).

Y. Y. Kao, Y. P. Huang, K. X. Yang, P. C. P. Chao, C. C. Tsai, and C. N. Mo, “An auto-stereoscopic 3D display using tunable liquid crystal lens array that mimics effects of GRIN lenticular lens array,” SID Symp. Dig. Tech. Pap. 40, 111–115 (2009).
[Crossref]

D. Chu, B. Robertson, J. Yao, and J. Zhou, “Stereo-imaging device, stereo-imaging method and display,” Huawei Technologies Co., Ltd., and Cambridge Enterprise Limited, US20160131918 A1 (2016), WO2015007171 A1 (2014), EP3006997 A1 (2014), CN104297929 B (2013).

A. G. Schott, “Ultra-thin glass for electronics applications,” 2015, < http://www.us.schott.com/d/advanced_optics/2030b5a1-78c3-40eb-a094-f81f1e55e6d2/1.0/schott-ultra-thin-glass-electronics-appl-nov-2015-us.pdf >.

K. Li, B. Robertson, D. Chu, and J. Zhou, “Display device,” Huawei Technologies Co., Ltd., and Cambridge Enterprise Limited, US20170038597 A1 (2016), WO2015176663A1 (2015), CN105093541A (2014)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1 The proposed multiplexing scheme using interlaced spatial and temporal beam steering to obtain the maximum resolution for an auto-stereoscopic display. The multiplexing operation can be described in two steps: (a) Frame 1 – odd sub-pixels deflected to the right eye and even sub-pixels deflected to the left eye. (b) Frame 2 – odd sub-pixels deflected to the left eye and even sub-pixels deflected to the right eye. The phase pattern is shifted by one sub-pixel resulting in the swap of steering directions.
Fig. 2
Fig. 2 The LC micro-lens array design (top-down view) intended to steer images at sub-pixel level on a commercial mobile display for (a) vertically handheld orientation and (b) horizontally handheld orientation. The size of electrode tracks and spacing are not in scale.
Fig. 3
Fig. 3 (a) Auto-stereoscopic display configuration with the LC lens layer, indicated as an intensity image of phase lenticular structure driven by electrode V2, over the mobile display, indicated as pixel CF layer. (b) Calculated LC lens phase profiles at 510 nm and 635 nm from the measured intensity data.
Fig. 4
Fig. 4 (a) Rendered auto-stereoscopic image when the mobile display is held vertically and the LC lens is off. Steered images (cropped) to the left eye (b) and right eye (c) from the rendered image in (a) when the LC lens is switched on. (d) Rendered auto-stereoscopic image when the mobile display is held horizontally and the LC lens is off. Steered images (cropped) to the left eye (e) and right eye (f) from the rendered image in (d) when the LC lens is switched on.
Fig. 5
Fig. 5 (a) Demo configuration and a test image when the LC lens is off. (b) Demo configuration and a steered image to the left eye when the LC lens is on with voltages applied to V2. (c) Demo configuration and a steered image to the same eye when the LC lens is on with voltages applied to V1.
Fig. 6
Fig. 6 Schematics of the steering angle and crosstalk measurement setup.
Fig. 7
Fig. 7 Crosstalk measurement configurations (a) when every other columns of red sub-pixels are illuminating light and (b) when every other columns of green sub-pixels are illuminating light.
Fig. 8
Fig. 8 Intensities of the (a) red and (b) green colour images when camera was moving along the optical rail in the viewing plane. Inset images indicate the calculated area of the highest and lowest intensities for both red and green when the LC lens is on.
Fig. 9
Fig. 9 (a) Microscope images of red sub-pixels at and away from the pixel CF layer. (b) The spatial light intensity distribution of the red sub-pixel of the corresponding images in (a). (c) The peak intensities and the profile width (FWHM) as a function of the distance away from the pixel CF layer.
Fig. 10
Fig. 10 Simulation setup and the system model for wave propagation.
Fig. 11
Fig. 11 Shifted Gaussian basis functions with different amplitudes at the lens array plane represents the spread of light intensity over a certain width.
Fig. 12
Fig. 12 Simulated light intensity distribution of display sub-pixel at the LC lens layer with different separation distances. The intensity curves for each colour are normalised to the maximum value at which the simulation was done when d= 100 µm. The simulated sub-pixel light intensity distribution according to the red colour channel is used for simulation at all colour channels.
Fig. 13
Fig. 13 Unwrapped phase levels for (a) generated ideal lens profiles and (b) measured LC lens profiles for red and green colours.
Fig. 14
Fig. 14 Cross-sections of simulated intensity distributions of steered red and green sub-pixels with ideal lenses at the viewing plane, at various distances (d) and (z).
Fig. 15
Fig. 15 Cross-section of simulation results at the viewing plane of red and green sub-pixels and measured LC phase lenses at the separation distance d= 0.4 mm with different viewing distances (a) z= 300 mm and (b) z= 600 mm.
Fig. 16
Fig. 16 Spatial light intensity distribution of the simulated light source with (a) no lens, (b) ideal lenses steering and (c) LC lenses steering in front of the pixel CF layer at 0-600 mm propagation distance. Magenta circles indicate viewers’ eye locations.
Fig. 17
Fig. 17 The steering angle and the viewing distance variation with respect to the separation distance (d) with inset steered images at the distances d = 0.4 and d = 0.8 mm, respetively.
Fig. 18
Fig. 18 The optimum auto-stereoscopic mobile display configurations. (a) Type 1: two glass substrates between the pixel CF layer and LC layer. (b) Type 2: a single glass substrate between the pixel CF layer and LC layer.

Tables (1)

Tables Icon

Table 1 Simulated steering angle and crosstalk values at d = 0.4, 0.8 and 1.4 mm and z= 300 and 600 mm with ideal lenses.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Crosstalk= I ghost_image I black_image I correct_image I black_image ×100% 
{ s( x )× h α ( x ) }=S( v x ) H α ( v x ) =W( v x )G( v x ) H α ( v x )
I R ( x )=  m=1 M I red,   m (x)     and      I G ( x )=  m=1 M I green,   m (x) 

Metrics