Abstract

Photoinduced shrinkage occurring in photopolymer layers during holographic recording was determined by phase shifting electronic speckle pattern interferometry. Phase maps were calculated from the changes in intensity at each pixel due to the phase differences introduced between object and reference beams. Shrinkage was then obtained from the changes in phase as recording proceeded. The technique allows for whole field measurement of the dimensional changes in photopolymers during holographic recording.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Shrinkage during holographic recording in photopolymer films determined by holographic interferometry

Mohesh Moothanchery, Viswanath Bavigadda, Vincent Toal, and Izabela Naydenova
Appl. Opt. 52(35) 8519-8527 (2013)

Phase-shifting algorithms for electronic speckle pattern interferometry

Chih-Cheng Kao, Gym-Bin Yeh, Shu-Sheng Lee, Chih-Kung Lee, Ching-Sang Yang, and Kuang-Chong Wu
Appl. Opt. 41(1) 46-54 (2002)

Study of the shrinkage caused by holographic grating formation in acrylamide based photopolymer film

Mohesh Moothanchery, Izabela Naydenova, and Vincent Toal
Opt. Express 19(14) 13395-13404 (2011)

References

  • View by:
  • |
  • |
  • |

  1. S. Martin, C. A. Feely, and V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl. Opt. 36(23), 5757–5768 (1997).
    [Crossref] [PubMed]
  2. M. Moothanchery, V. Bavigadda, V. Toal, and I. Naydenova, “Shrinkage during holographic recording in photopolymer films determined by holographic interferometry,” Appl. Opt. 52(35), 8519–8527 (2013).
    [Crossref] [PubMed]
  3. M. Moothanchery, I. Naydenova, and V. Toal, “Study of the shrinkage caused by holographic grating formation in acrylamide based photopolymer film,” Opt. Express 19(14), 13395–13404 (2011).
    [Crossref] [PubMed]
  4. M. Moothanchery, I. Naydenova, and V. Toal, “Studies of shrinkage as a result of holographic recording in acrylamide based photopolymer film,” Appl. Phys., A Mater. Sci. Process. 104(3), 899–902 (2011).
    [Crossref]
  5. C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11(16), 1835–1843 (2003).
    [Crossref] [PubMed]
  6. H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A, Pure Appl. Opt. 7(5), 255–260 (2005).
    [Crossref]
  7. M. Huang, H. Yao, Z. Chen, L. Hou, and F. Gan, “The changes of holographic characteristics of photopolymer induced by temperature,” Chin. Opt. Lett. 1, 41–43 (2003).
  8. O. J. Løkberg, “Advances and applications of Electronic Speckle Pattern Interferometery (ESPI),” Proc. Soc. Photo Opt. Instrum. Eng. 215, 92 (1980).
  9. O. J. Lokberg and K. Hogmoen, “Use of modulated reference wave in electronic speckle pattern interferometry,” J. Phys. E Sci. Instrum. 9(10), 847–851 (1976).
    [Crossref]
  10. M. Moothanchery, V. Bavigadda, P. Kumar Upputuri, M. Pramanik, V. Toal, and I. Naydenova, “Quantitative measurement of displacement in photopolymer layers during holographic recording using phase shifting electronic speckle pattern interferometry,” Proc. SPIE 9718, 9718C (2016).
  11. M. Moothanchery, S. Mintova, I. Naydenova, and V. Toal, “Si-MFI zeolite nanoparticle doped photopolymer with reduced shrinkage,” Opt. Express 19, 25786–25791 (2011).
    [Crossref] [PubMed]
  12. J. Schwider, R. Burow, K. E. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, “Digital wave-front measuring interferometry: some systematic error sources,” Appl. Opt. 22(21), 3421–3432 (1983).
    [Crossref] [PubMed]
  13. W. H. Stevenson, “Optical frequency shifting by means of a rotating diffraction grating,” Appl. Opt. 9(3), 649–652 (1970).
    [Crossref] [PubMed]
  14. M. A. Herráez, D. R. Burton, M. J. Lalor, and M. A. Gdeisat, “Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path,” Appl. Opt. 41(35), 7437–7444 (2002).
    [Crossref] [PubMed]
  15. K. Creath, “Phase-shifting speckle interferometry,” Appl. Opt. 24(18), 3053–3058 (1985).
    [Crossref] [PubMed]
  16. E. Hata and Y. Tomita, “Stoichiometric thiol-to-ene ratio dependence of refractive index modulation and shrinkage of volume gratings recorded in photopolymerizable nanoparticle polymer composites based on step-growth polymerization,” Opt. Mater. Express 1(6), 1113–1120 (2011).
    [Crossref]

2016 (1)

M. Moothanchery, V. Bavigadda, P. Kumar Upputuri, M. Pramanik, V. Toal, and I. Naydenova, “Quantitative measurement of displacement in photopolymer layers during holographic recording using phase shifting electronic speckle pattern interferometry,” Proc. SPIE 9718, 9718C (2016).

2013 (1)

2011 (4)

2005 (1)

H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A, Pure Appl. Opt. 7(5), 255–260 (2005).
[Crossref]

2003 (2)

2002 (1)

1997 (1)

1985 (1)

1983 (1)

1980 (1)

O. J. Løkberg, “Advances and applications of Electronic Speckle Pattern Interferometery (ESPI),” Proc. Soc. Photo Opt. Instrum. Eng. 215, 92 (1980).

1976 (1)

O. J. Lokberg and K. Hogmoen, “Use of modulated reference wave in electronic speckle pattern interferometry,” J. Phys. E Sci. Instrum. 9(10), 847–851 (1976).
[Crossref]

1970 (1)

Bavigadda, V.

M. Moothanchery, V. Bavigadda, P. Kumar Upputuri, M. Pramanik, V. Toal, and I. Naydenova, “Quantitative measurement of displacement in photopolymer layers during holographic recording using phase shifting electronic speckle pattern interferometry,” Proc. SPIE 9718, 9718C (2016).

M. Moothanchery, V. Bavigadda, V. Toal, and I. Naydenova, “Shrinkage during holographic recording in photopolymer films determined by holographic interferometry,” Appl. Opt. 52(35), 8519–8527 (2013).
[Crossref] [PubMed]

Beléndez, A.

Burow, R.

Burton, D. R.

Chen, Z.

Creath, K.

Elssner, K. E.

Feely, C. A.

Gallego, S.

Gan, F.

Gdeisat, M. A.

Grzanna, J.

Hata, E.

Herráez, M. A.

Hogmoen, K.

O. J. Lokberg and K. Hogmoen, “Use of modulated reference wave in electronic speckle pattern interferometry,” J. Phys. E Sci. Instrum. 9(10), 847–851 (1976).
[Crossref]

Hou, L.

Huang, M.

Kumar Upputuri, P.

M. Moothanchery, V. Bavigadda, P. Kumar Upputuri, M. Pramanik, V. Toal, and I. Naydenova, “Quantitative measurement of displacement in photopolymer layers during holographic recording using phase shifting electronic speckle pattern interferometry,” Proc. SPIE 9718, 9718C (2016).

Lalor, M. J.

Lokberg, O. J.

O. J. Lokberg and K. Hogmoen, “Use of modulated reference wave in electronic speckle pattern interferometry,” J. Phys. E Sci. Instrum. 9(10), 847–851 (1976).
[Crossref]

Løkberg, O. J.

O. J. Løkberg, “Advances and applications of Electronic Speckle Pattern Interferometery (ESPI),” Proc. Soc. Photo Opt. Instrum. Eng. 215, 92 (1980).

Martin, S.

H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A, Pure Appl. Opt. 7(5), 255–260 (2005).
[Crossref]

S. Martin, C. A. Feely, and V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl. Opt. 36(23), 5757–5768 (1997).
[Crossref] [PubMed]

McGinn, C.

H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A, Pure Appl. Opt. 7(5), 255–260 (2005).
[Crossref]

Merkel, K.

Mintova, S.

Moothanchery, M.

M. Moothanchery, V. Bavigadda, P. Kumar Upputuri, M. Pramanik, V. Toal, and I. Naydenova, “Quantitative measurement of displacement in photopolymer layers during holographic recording using phase shifting electronic speckle pattern interferometry,” Proc. SPIE 9718, 9718C (2016).

M. Moothanchery, V. Bavigadda, V. Toal, and I. Naydenova, “Shrinkage during holographic recording in photopolymer films determined by holographic interferometry,” Appl. Opt. 52(35), 8519–8527 (2013).
[Crossref] [PubMed]

M. Moothanchery, I. Naydenova, and V. Toal, “Study of the shrinkage caused by holographic grating formation in acrylamide based photopolymer film,” Opt. Express 19(14), 13395–13404 (2011).
[Crossref] [PubMed]

M. Moothanchery, I. Naydenova, and V. Toal, “Studies of shrinkage as a result of holographic recording in acrylamide based photopolymer film,” Appl. Phys., A Mater. Sci. Process. 104(3), 899–902 (2011).
[Crossref]

M. Moothanchery, S. Mintova, I. Naydenova, and V. Toal, “Si-MFI zeolite nanoparticle doped photopolymer with reduced shrinkage,” Opt. Express 19, 25786–25791 (2011).
[Crossref] [PubMed]

Naydenova, I.

M. Moothanchery, V. Bavigadda, P. Kumar Upputuri, M. Pramanik, V. Toal, and I. Naydenova, “Quantitative measurement of displacement in photopolymer layers during holographic recording using phase shifting electronic speckle pattern interferometry,” Proc. SPIE 9718, 9718C (2016).

M. Moothanchery, V. Bavigadda, V. Toal, and I. Naydenova, “Shrinkage during holographic recording in photopolymer films determined by holographic interferometry,” Appl. Opt. 52(35), 8519–8527 (2013).
[Crossref] [PubMed]

M. Moothanchery, I. Naydenova, and V. Toal, “Studies of shrinkage as a result of holographic recording in acrylamide based photopolymer film,” Appl. Phys., A Mater. Sci. Process. 104(3), 899–902 (2011).
[Crossref]

M. Moothanchery, I. Naydenova, and V. Toal, “Study of the shrinkage caused by holographic grating formation in acrylamide based photopolymer film,” Opt. Express 19(14), 13395–13404 (2011).
[Crossref] [PubMed]

M. Moothanchery, S. Mintova, I. Naydenova, and V. Toal, “Si-MFI zeolite nanoparticle doped photopolymer with reduced shrinkage,” Opt. Express 19, 25786–25791 (2011).
[Crossref] [PubMed]

H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A, Pure Appl. Opt. 7(5), 255–260 (2005).
[Crossref]

Neipp, C.

Ortuño, M.

Pascual, I.

Pramanik, M.

M. Moothanchery, V. Bavigadda, P. Kumar Upputuri, M. Pramanik, V. Toal, and I. Naydenova, “Quantitative measurement of displacement in photopolymer layers during holographic recording using phase shifting electronic speckle pattern interferometry,” Proc. SPIE 9718, 9718C (2016).

Schwider, J.

Sheridan, J.

Sherif, H.

H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A, Pure Appl. Opt. 7(5), 255–260 (2005).
[Crossref]

Spolaczyk, R.

Stevenson, W. H.

Toal, V.

M. Moothanchery, V. Bavigadda, P. Kumar Upputuri, M. Pramanik, V. Toal, and I. Naydenova, “Quantitative measurement of displacement in photopolymer layers during holographic recording using phase shifting electronic speckle pattern interferometry,” Proc. SPIE 9718, 9718C (2016).

M. Moothanchery, V. Bavigadda, V. Toal, and I. Naydenova, “Shrinkage during holographic recording in photopolymer films determined by holographic interferometry,” Appl. Opt. 52(35), 8519–8527 (2013).
[Crossref] [PubMed]

M. Moothanchery, I. Naydenova, and V. Toal, “Study of the shrinkage caused by holographic grating formation in acrylamide based photopolymer film,” Opt. Express 19(14), 13395–13404 (2011).
[Crossref] [PubMed]

M. Moothanchery, I. Naydenova, and V. Toal, “Studies of shrinkage as a result of holographic recording in acrylamide based photopolymer film,” Appl. Phys., A Mater. Sci. Process. 104(3), 899–902 (2011).
[Crossref]

M. Moothanchery, S. Mintova, I. Naydenova, and V. Toal, “Si-MFI zeolite nanoparticle doped photopolymer with reduced shrinkage,” Opt. Express 19, 25786–25791 (2011).
[Crossref] [PubMed]

H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A, Pure Appl. Opt. 7(5), 255–260 (2005).
[Crossref]

S. Martin, C. A. Feely, and V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl. Opt. 36(23), 5757–5768 (1997).
[Crossref] [PubMed]

Tomita, Y.

Yao, H.

Appl. Opt. (6)

Appl. Phys., A Mater. Sci. Process. (1)

M. Moothanchery, I. Naydenova, and V. Toal, “Studies of shrinkage as a result of holographic recording in acrylamide based photopolymer film,” Appl. Phys., A Mater. Sci. Process. 104(3), 899–902 (2011).
[Crossref]

Chin. Opt. Lett. (1)

J. Opt. A, Pure Appl. Opt. (1)

H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A, Pure Appl. Opt. 7(5), 255–260 (2005).
[Crossref]

J. Phys. E Sci. Instrum. (1)

O. J. Lokberg and K. Hogmoen, “Use of modulated reference wave in electronic speckle pattern interferometry,” J. Phys. E Sci. Instrum. 9(10), 847–851 (1976).
[Crossref]

Opt. Express (3)

Opt. Mater. Express (1)

Proc. Soc. Photo Opt. Instrum. Eng. (1)

O. J. Løkberg, “Advances and applications of Electronic Speckle Pattern Interferometery (ESPI),” Proc. Soc. Photo Opt. Instrum. Eng. 215, 92 (1980).

Proc. SPIE (1)

M. Moothanchery, V. Bavigadda, P. Kumar Upputuri, M. Pramanik, V. Toal, and I. Naydenova, “Quantitative measurement of displacement in photopolymer layers during holographic recording using phase shifting electronic speckle pattern interferometry,” Proc. SPIE 9718, 9718C (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) ESPI system Light paths in green represent beams used to record a holographic diffraction grating in the photopolymer layer. Light paths in red are those of the speckle interferometer. (b) Intensity profile of recording beam.
Fig. 2
Fig. 2 Unwrapped phase maps (a) before exposure (b) after 84 sec exposure (c) result of subtracting a from b.
Fig. 3
Fig. 3 Two dimensional profile of absolute shrinkage of 100 ± 3 μm sample at (a) 21sec (b) 42sec (c) 84sec (d) 168sec of exposure, Three dimensional profile of the white dotted area in the 2D profile is shown from (e)-(h), recording intensity 5 mW/cm2
Fig. 4
Fig. 4 (a) Absolute shrinkage of 100 μm sample at recording intensity 5 mW/cm2 (b) Plot of shrinkage versus exposure times at different pixel number.
Fig. 5
Fig. 5 Absolute shrinkage of 160 μm sample at exposure energy 210 mJ/cm2.
Fig. 6
Fig. 6 Effect of diffusion on shrinkage on a 160µm sample (a) 21sec of exposure (b) 42sec of exposure, (c) 84sec of exposure, recording intensity 10mW/cm2.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϕ=ta n 1 [   2( I 4 I 2 ) I 1 2 I 3 + I 5   ]
d=(   λ 4π   )ϕ

Metrics