Abstract

Based on the nanorod structure, we have fabricated GaN-based surface plasmon light-emitting diodes with Ag nanoparticles deposited laterally proximity to the multiple quantum wells (MQWs) region, which allows us to investigate the quantum well – surface plasmon (QW-SP) coupling effect. Our results show that the QW-SP coupling effect increases significantly when the SP resonant wavelength of Ag nanoparticles is close to the QW emission wavelength, especially by using a shorter wavelength light source, which will further enhance the spontaneous emission rate. Combined with the simulations, we find that the enhancement is due to the decreased excitation light penetration depth into the active region, which can modulate the carrier distribution and increase the proportion of SP-coupled carriers in the MQWs of LEDs. To increase the spontaneous emission rate for the electrical QW-SP coupled LEDs, we can use single QW or MQW structure to confine the carriers in the topmost QW, which will effectively increase the proportion of SP-coupled carriers. Our findings pave a way to design the ultrafast LED light source for the application of visible light communication (VLC).

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement of the modulation bandwidth for GaN-based light-emitting diode by surface plasmons

Shi-Chao Zhu, Zhi-Guo Yu, Li-Xia Zhao, Jun-Xi Wang, and Jin-Min Li
Opt. Express 23(11) 13752-13760 (2015)

Surface plasmon-enhanced nanoporous GaN-based green light-emitting diodes with Al2O3 passivation layer

Zhi-Guo Yu, Li-Xia Zhao, Xue-Cheng Wei, Xue-Jiao Sun, Ping-Bo An, Shi-Chao Zhu, Lei Liu, Li-Xin Tian, Feng Zhang, Hong-Xi Lu, Jun-Xi Wang, Yi-Ping Zeng, and Jin-Min Li
Opt. Express 22(S6) A1596-A1603 (2014)

Localized surface plasmon-enhanced near-ultraviolet emission from InGaN/GaN light-emitting diodes using silver and platinum nanoparticles

Sang-Hyun Hong, Chu-Young Cho, Sang-Jun Lee, Sang-Youp Yim, Wantae Lim, Sung-Tae Kim, and Seong-Ju Park
Opt. Express 21(3) 3138-3144 (2013)

References

  • View by:
  • |
  • |
  • |

  1. H. Haas, L. Yin, Y. Wang, and C. Chen, “What is LiFi?” J. Lightwave Technol. 34(6), 1533–1544 (2016).
    [Crossref]
  2. H. D. Chen, C. H. Wu, H. L. Li, X. B. Chen, Z. Y. Gao, S. G. Cui, and Q. Wang, “Advances and prospects in visible light communications,” J. Semicond. 37(1), 011001 (2016).
    [Crossref]
  3. L. X. Zhao, S. C. Zhu, C. H. Wu, C. Yang, Z. G. Yu, H. Yang, and L. Liu, “GaN-based LEDs for light communication,” Sci. China Phys. Mech. Astron. 59(10), 107301 (2016).
    [Crossref]
  4. M. Hoa Le, D. O’Brien, G. Faulkner, Z. Lubin, L. Kyungwoo, J. Daekwang, O. YunJe, and W. Eun Tae, “100 Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
    [Crossref]
  5. H. Li, X. Chen, J. Guo, Z. Gao, and H. Chen, “An analog modulator for 460 Mb/S visible light data transmission based on OOK-NRS modulation,” IEEE Wirel. Commun. 22(2), 68–73 (2015).
    [Crossref]
  6. J. W. Shi, H. Y. Huang, J. K. Sheu, C. H. Chen, Y. S. Wu, and W. C. Lai, “The improvement in modulation speed of GaN-based Green light-emitting diode (LED) by use of n-type barrier doping for plastic optical fiber (POF) communication,” IEEE Photonics Technol. Lett. 18(15), 1636–1638 (2006).
    [Crossref]
  7. S. X. Zhu, J. X. Wang, J. C. Yan, Y. Zhang, Y. R. Pei, Z. Si, H. Yang, L. X. Zhao, Z. Liu, and J. M. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” ECS Solid State Lett. 3(3), R11–R13 (2014).
    [Crossref]
  8. C. L. Liao, Y. F. Chang, C. L. Ho, and M. C. Wu, “High-speed GaN-based blue light-emitting diodes with gallium-doped ZnO current spreading layer,” IEEE Electron Device Lett. 34(5), 611–613 (2013).
    [Crossref]
  9. J. M. Wun, C. W. Lin, W. Chen, J. K. Sheu, C. L. Lin, Y. L. Li, J. E. Bowers, J. W. Shi, J. Vinogradov, R. Kruglov, and O. Ziemann, “GaN-based miniaturized cyan light-emitting diodes on a patterned sapphire substrate with improved fiber coupling for very high-speed plastic optical fiber communication,” IEEE Photonics J. 4(5), 1520–1529 (2012).
    [Crossref]
  10. J. J. D. McKendry, D. Massoubre, S. Zhang, B. R. Rae, R. P. Green, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “Visible-light communications using a CMOS-controlled micro-light-emitting-diode array,” J. Lightwave Technol. 30(1), 61–67 (2012).
    [Crossref]
  11. H. Shih-Yung, H. Ray-Hua, S. Jin-Wei, K. Hao-Chung, and W. Dong-Sing, “High-performance InGaN-based green resonant-cavity light-emitting diodes for plastic optical fiber applications,” J. Lightwave Technol. 27(18), 4084–4094 (2009).
    [Crossref]
  12. G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat. Commun. 2, 539 (2011).
    [Crossref] [PubMed]
  13. K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
    [Crossref]
  14. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
    [Crossref] [PubMed]
  15. G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
    [Crossref]
  16. W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Numerical study on quantum efficiency enhancement of a light-emitting diode based on surface plasmon coupling with a quantum well,” IEEE Photonics Technol. Lett. 20(16), 1339–1341 (2008).
    [Crossref]
  17. A. Fadil, D. Iida, Y. Chen, J. Ma, Y. Ou, P. M. Petersen, and H. Ou, “Surface plasmon coupling dynamics in InGaN/GaN quantum-well structures and radiative efficiency improvement,” Sci. Rep. 4, 6392 (2014).
    [Crossref] [PubMed]
  18. D. Iida, A. Fadil, Y. T. Chen, Y. Y. Ou, O. Kopylov, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Y. Ou, “Internal quantum efficiency enhancement of GaInN/GaN quantum-well structures using Ag nanoparticles,” AIP Adv. 5(9), 097169 (2015).
    [Crossref]
  19. I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
    [Crossref]
  20. Z. G. Yu, L. X. Zhao, X. C. Wei, X. J. Sun, P. B. An, S. C. Zhu, L. Liu, L. X. Tian, F. Zhang, H. X. Lu, J. X. Wang, Y. P. Zeng, and J. M. Li, “Surface plasmon-enhanced nanoporous GaN-based green light-emitting diodes with Al2O3 passivation layer,” Opt. Express 22(S6Suppl 6), A1596–A1603 (2014).
    [Crossref] [PubMed]
  21. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007).
    [Crossref]
  22. C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology 21(20), 205201 (2010).
    [Crossref] [PubMed]
  23. S. C. Zhu, Z. G. Yu, L. X. Zhao, J. X. Wang, and J. M. Li, “Enhancement of the modulation bandwidth for GaN-based light-emitting diode by surface plasmons,” Opt. Express 23(11), 13752–13760 (2015).
    [Crossref] [PubMed]
  24. C. Y. Yang, A. A. Bettiol, Y. Shi, M. Bosman, H. R. Tan, W. P. Goh, J. H. Teng, and E. J. Teo, “Fast Electrical Modulation in a Plasmonic-Enhanced, V-Pit-Textured, Light-Emitting Diode,” Adv. Opt. Mater. 3(12), 1703–1709 (2015).
    [Crossref]
  25. C. H. Lin, C. Y. Su, E. Zhu, Y. F. Yao, C. Hsieh, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Modulation behaviors of surface plasmon coupled light-emitting diode,” Opt. Express 23(6), 8150–8161 (2015).
    [Crossref] [PubMed]
  26. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
    [Crossref] [PubMed]
  27. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
    [Crossref] [PubMed]
  28. S. Jiang, Z. Hu, Z. Chen, X. Fu, X. Jiang, Q. Jiao, T. Yu, and G. Zhang, “Resonant absorption and scattering suppression of localized surface plasmons in Ag particles on green LED,” Opt. Express 21(10), 12100–12110 (2013).
    [Crossref] [PubMed]
  29. M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
    [Crossref]
  30. C. K. Choi, Y. H. Kwon, B. D. Little, G. H. Gainer, J. J. Song, Y. C. Chang, S. Keller, U. K. Mishra, and S. P. DenBaars, “Time-resolved photoluminescence of InxGa1−xN/GaN multiple quantum well structures: Effect of Si doping in the barriers,” Phys. Rev. B 64(24), 245339 (2001).
    [Crossref]
  31. A. F. Koenderink, “On the use of Purcell factors for plasmon antennas,” Opt. Lett. 35(24), 4208–4210 (2010).
    [Crossref] [PubMed]
  32. G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94(10), 101103 (2009).
    [Crossref]
  33. H. J. Li, J. J. Kang, P. P. Li, J. Ma, H. Wang, M. Liang, Z. C. Li, J. Li, X. Y. Yi, and G. H. Wang, “Enhanced performance of GaN based light-emitting diodes with a low temperature p-GaN hole injection layer,” Appl. Phys. Lett. 102(1), 011105 (2013).
    [Crossref]
  34. Y. Guo, M. Liang, J. J. Fu, Z. Liu, X. Y. Yi, J. X. Wang, G. H. Wang, and J. Li, “Enhancing the performance of blue GaN-based light emitting diodes with double electron blocking layers,” AIP Adv. 5(3), 037131 (2015).
    [Crossref]

2016 (3)

H. Haas, L. Yin, Y. Wang, and C. Chen, “What is LiFi?” J. Lightwave Technol. 34(6), 1533–1544 (2016).
[Crossref]

H. D. Chen, C. H. Wu, H. L. Li, X. B. Chen, Z. Y. Gao, S. G. Cui, and Q. Wang, “Advances and prospects in visible light communications,” J. Semicond. 37(1), 011001 (2016).
[Crossref]

L. X. Zhao, S. C. Zhu, C. H. Wu, C. Yang, Z. G. Yu, H. Yang, and L. Liu, “GaN-based LEDs for light communication,” Sci. China Phys. Mech. Astron. 59(10), 107301 (2016).
[Crossref]

2015 (6)

H. Li, X. Chen, J. Guo, Z. Gao, and H. Chen, “An analog modulator for 460 Mb/S visible light data transmission based on OOK-NRS modulation,” IEEE Wirel. Commun. 22(2), 68–73 (2015).
[Crossref]

D. Iida, A. Fadil, Y. T. Chen, Y. Y. Ou, O. Kopylov, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Y. Ou, “Internal quantum efficiency enhancement of GaInN/GaN quantum-well structures using Ag nanoparticles,” AIP Adv. 5(9), 097169 (2015).
[Crossref]

S. C. Zhu, Z. G. Yu, L. X. Zhao, J. X. Wang, and J. M. Li, “Enhancement of the modulation bandwidth for GaN-based light-emitting diode by surface plasmons,” Opt. Express 23(11), 13752–13760 (2015).
[Crossref] [PubMed]

C. Y. Yang, A. A. Bettiol, Y. Shi, M. Bosman, H. R. Tan, W. P. Goh, J. H. Teng, and E. J. Teo, “Fast Electrical Modulation in a Plasmonic-Enhanced, V-Pit-Textured, Light-Emitting Diode,” Adv. Opt. Mater. 3(12), 1703–1709 (2015).
[Crossref]

C. H. Lin, C. Y. Su, E. Zhu, Y. F. Yao, C. Hsieh, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Modulation behaviors of surface plasmon coupled light-emitting diode,” Opt. Express 23(6), 8150–8161 (2015).
[Crossref] [PubMed]

Y. Guo, M. Liang, J. J. Fu, Z. Liu, X. Y. Yi, J. X. Wang, G. H. Wang, and J. Li, “Enhancing the performance of blue GaN-based light emitting diodes with double electron blocking layers,” AIP Adv. 5(3), 037131 (2015).
[Crossref]

2014 (4)

Z. G. Yu, L. X. Zhao, X. C. Wei, X. J. Sun, P. B. An, S. C. Zhu, L. Liu, L. X. Tian, F. Zhang, H. X. Lu, J. X. Wang, Y. P. Zeng, and J. M. Li, “Surface plasmon-enhanced nanoporous GaN-based green light-emitting diodes with Al2O3 passivation layer,” Opt. Express 22(S6Suppl 6), A1596–A1603 (2014).
[Crossref] [PubMed]

A. Fadil, D. Iida, Y. Chen, J. Ma, Y. Ou, P. M. Petersen, and H. Ou, “Surface plasmon coupling dynamics in InGaN/GaN quantum-well structures and radiative efficiency improvement,” Sci. Rep. 4, 6392 (2014).
[Crossref] [PubMed]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

S. X. Zhu, J. X. Wang, J. C. Yan, Y. Zhang, Y. R. Pei, Z. Si, H. Yang, L. X. Zhao, Z. Liu, and J. M. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” ECS Solid State Lett. 3(3), R11–R13 (2014).
[Crossref]

2013 (3)

C. L. Liao, Y. F. Chang, C. L. Ho, and M. C. Wu, “High-speed GaN-based blue light-emitting diodes with gallium-doped ZnO current spreading layer,” IEEE Electron Device Lett. 34(5), 611–613 (2013).
[Crossref]

H. J. Li, J. J. Kang, P. P. Li, J. Ma, H. Wang, M. Liang, Z. C. Li, J. Li, X. Y. Yi, and G. H. Wang, “Enhanced performance of GaN based light-emitting diodes with a low temperature p-GaN hole injection layer,” Appl. Phys. Lett. 102(1), 011105 (2013).
[Crossref]

S. Jiang, Z. Hu, Z. Chen, X. Fu, X. Jiang, Q. Jiao, T. Yu, and G. Zhang, “Resonant absorption and scattering suppression of localized surface plasmons in Ag particles on green LED,” Opt. Express 21(10), 12100–12110 (2013).
[Crossref] [PubMed]

2012 (2)

J. M. Wun, C. W. Lin, W. Chen, J. K. Sheu, C. L. Lin, Y. L. Li, J. E. Bowers, J. W. Shi, J. Vinogradov, R. Kruglov, and O. Ziemann, “GaN-based miniaturized cyan light-emitting diodes on a patterned sapphire substrate with improved fiber coupling for very high-speed plastic optical fiber communication,” IEEE Photonics J. 4(5), 1520–1529 (2012).
[Crossref]

J. J. D. McKendry, D. Massoubre, S. Zhang, B. R. Rae, R. P. Green, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “Visible-light communications using a CMOS-controlled micro-light-emitting-diode array,” J. Lightwave Technol. 30(1), 61–67 (2012).
[Crossref]

2011 (1)

G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat. Commun. 2, 539 (2011).
[Crossref] [PubMed]

2010 (2)

A. F. Koenderink, “On the use of Purcell factors for plasmon antennas,” Opt. Lett. 35(24), 4208–4210 (2010).
[Crossref] [PubMed]

C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology 21(20), 205201 (2010).
[Crossref] [PubMed]

2009 (3)

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94(10), 101103 (2009).
[Crossref]

H. Shih-Yung, H. Ray-Hua, S. Jin-Wei, K. Hao-Chung, and W. Dong-Sing, “High-performance InGaN-based green resonant-cavity light-emitting diodes for plastic optical fiber applications,” J. Lightwave Technol. 27(18), 4084–4094 (2009).
[Crossref]

M. Hoa Le, D. O’Brien, G. Faulkner, Z. Lubin, L. Kyungwoo, J. Daekwang, O. YunJe, and W. Eun Tae, “100 Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

2008 (3)

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Numerical study on quantum efficiency enhancement of a light-emitting diode based on surface plasmon coupling with a quantum well,” IEEE Photonics Technol. Lett. 20(16), 1339–1341 (2008).
[Crossref]

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[Crossref] [PubMed]

2007 (1)

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007).
[Crossref]

2006 (2)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

J. W. Shi, H. Y. Huang, J. K. Sheu, C. H. Chen, Y. S. Wu, and W. C. Lai, “The improvement in modulation speed of GaN-based Green light-emitting diode (LED) by use of n-type barrier doping for plastic optical fiber (POF) communication,” IEEE Photonics Technol. Lett. 18(15), 1636–1638 (2006).
[Crossref]

2005 (1)

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[Crossref]

2004 (1)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

2001 (1)

C. K. Choi, Y. H. Kwon, B. D. Little, G. H. Gainer, J. J. Song, Y. C. Chang, S. Keller, U. K. Mishra, and S. P. DenBaars, “Time-resolved photoluminescence of InxGa1−xN/GaN multiple quantum well structures: Effect of Si doping in the barriers,” Phys. Rev. B 64(24), 245339 (2001).
[Crossref]

1999 (1)

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[Crossref]

Akasaki, I.

D. Iida, A. Fadil, Y. T. Chen, Y. Y. Ou, O. Kopylov, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Y. Ou, “Internal quantum efficiency enhancement of GaInN/GaN quantum-well structures using Ag nanoparticles,” AIP Adv. 5(9), 097169 (2015).
[Crossref]

Akselrod, G. M.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

An, P. B.

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Argyropoulos, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Bettiol, A. A.

C. Y. Yang, A. A. Bettiol, Y. Shi, M. Bosman, H. R. Tan, W. P. Goh, J. H. Teng, and E. J. Teo, “Fast Electrical Modulation in a Plasmonic-Enhanced, V-Pit-Textured, Light-Emitting Diode,” Adv. Opt. Mater. 3(12), 1703–1709 (2015).
[Crossref]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Boroditsky, M.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[Crossref]

Bosman, M.

C. Y. Yang, A. A. Bettiol, Y. Shi, M. Bosman, H. R. Tan, W. P. Goh, J. H. Teng, and E. J. Teo, “Fast Electrical Modulation in a Plasmonic-Enhanced, V-Pit-Textured, Light-Emitting Diode,” Adv. Opt. Mater. 3(12), 1703–1709 (2015).
[Crossref]

Bowers, J. E.

J. M. Wun, C. W. Lin, W. Chen, J. K. Sheu, C. L. Lin, Y. L. Li, J. E. Bowers, J. W. Shi, J. Vinogradov, R. Kruglov, and O. Ziemann, “GaN-based miniaturized cyan light-emitting diodes on a patterned sapphire substrate with improved fiber coupling for very high-speed plastic optical fiber communication,” IEEE Photonics J. 4(5), 1520–1529 (2012).
[Crossref]

Byeon, C. C.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Chang, Y. C.

C. K. Choi, Y. H. Kwon, B. D. Little, G. H. Gainer, J. J. Song, Y. C. Chang, S. Keller, U. K. Mishra, and S. P. DenBaars, “Time-resolved photoluminescence of InxGa1−xN/GaN multiple quantum well structures: Effect of Si doping in the barriers,” Phys. Rev. B 64(24), 245339 (2001).
[Crossref]

Chang, Y. F.

C. L. Liao, Y. F. Chang, C. L. Ho, and M. C. Wu, “High-speed GaN-based blue light-emitting diodes with gallium-doped ZnO current spreading layer,” IEEE Electron Device Lett. 34(5), 611–613 (2013).
[Crossref]

Chen, C.

Chen, C. H.

J. W. Shi, H. Y. Huang, J. K. Sheu, C. H. Chen, Y. S. Wu, and W. C. Lai, “The improvement in modulation speed of GaN-based Green light-emitting diode (LED) by use of n-type barrier doping for plastic optical fiber (POF) communication,” IEEE Photonics Technol. Lett. 18(15), 1636–1638 (2006).
[Crossref]

Chen, C. Y.

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[Crossref] [PubMed]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007).
[Crossref]

Chen, H.

H. Li, X. Chen, J. Guo, Z. Gao, and H. Chen, “An analog modulator for 460 Mb/S visible light data transmission based on OOK-NRS modulation,” IEEE Wirel. Commun. 22(2), 68–73 (2015).
[Crossref]

Chen, H. D.

H. D. Chen, C. H. Wu, H. L. Li, X. B. Chen, Z. Y. Gao, S. G. Cui, and Q. Wang, “Advances and prospects in visible light communications,” J. Semicond. 37(1), 011001 (2016).
[Crossref]

Chen, H. T.

Chen, W.

J. M. Wun, C. W. Lin, W. Chen, J. K. Sheu, C. L. Lin, Y. L. Li, J. E. Bowers, J. W. Shi, J. Vinogradov, R. Kruglov, and O. Ziemann, “GaN-based miniaturized cyan light-emitting diodes on a patterned sapphire substrate with improved fiber coupling for very high-speed plastic optical fiber communication,” IEEE Photonics J. 4(5), 1520–1529 (2012).
[Crossref]

Chen, X.

H. Li, X. Chen, J. Guo, Z. Gao, and H. Chen, “An analog modulator for 460 Mb/S visible light data transmission based on OOK-NRS modulation,” IEEE Wirel. Commun. 22(2), 68–73 (2015).
[Crossref]

Chen, X. B.

H. D. Chen, C. H. Wu, H. L. Li, X. B. Chen, Z. Y. Gao, S. G. Cui, and Q. Wang, “Advances and prospects in visible light communications,” J. Semicond. 37(1), 011001 (2016).
[Crossref]

Chen, Y.

A. Fadil, D. Iida, Y. Chen, J. Ma, Y. Ou, P. M. Petersen, and H. Ou, “Surface plasmon coupling dynamics in InGaN/GaN quantum-well structures and radiative efficiency improvement,” Sci. Rep. 4, 6392 (2014).
[Crossref] [PubMed]

Chen, Y. T.

D. Iida, A. Fadil, Y. T. Chen, Y. Y. Ou, O. Kopylov, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Y. Ou, “Internal quantum efficiency enhancement of GaInN/GaN quantum-well structures using Ag nanoparticles,” AIP Adv. 5(9), 097169 (2015).
[Crossref]

Chen, Z.

Cho, C. Y.

C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology 21(20), 205201 (2010).
[Crossref] [PubMed]

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Choi, C. K.

C. K. Choi, Y. H. Kwon, B. D. Little, G. H. Gainer, J. J. Song, Y. C. Chang, S. Keller, U. K. Mishra, and S. P. DenBaars, “Time-resolved photoluminescence of InxGa1−xN/GaN multiple quantum well structures: Effect of Si doping in the barriers,” Phys. Rev. B 64(24), 245339 (2001).
[Crossref]

Chuang, W. H.

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Numerical study on quantum efficiency enhancement of a light-emitting diode based on surface plasmon coupling with a quantum well,” IEEE Photonics Technol. Lett. 20(16), 1339–1341 (2008).
[Crossref]

Ciracì, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Cui, S. G.

H. D. Chen, C. H. Wu, H. L. Li, X. B. Chen, Z. Y. Gao, S. G. Cui, and Q. Wang, “Advances and prospects in visible light communications,” J. Semicond. 37(1), 011001 (2016).
[Crossref]

Daekwang, J.

M. Hoa Le, D. O’Brien, G. Faulkner, Z. Lubin, L. Kyungwoo, J. Daekwang, O. YunJe, and W. Eun Tae, “100 Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Dawson, M. D.

DenBaars, S. P.

C. K. Choi, Y. H. Kwon, B. D. Little, G. H. Gainer, J. J. Song, Y. C. Chang, S. Keller, U. K. Mishra, and S. P. DenBaars, “Time-resolved photoluminescence of InxGa1−xN/GaN multiple quantum well structures: Effect of Si doping in the barriers,” Phys. Rev. B 64(24), 245339 (2001).
[Crossref]

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[Crossref]

Dong-Sing, W.

Ellis, B.

G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat. Commun. 2, 539 (2011).
[Crossref] [PubMed]

Eun Tae, W.

M. Hoa Le, D. O’Brien, G. Faulkner, Z. Lubin, L. Kyungwoo, J. Daekwang, O. YunJe, and W. Eun Tae, “100 Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Fadil, A.

D. Iida, A. Fadil, Y. T. Chen, Y. Y. Ou, O. Kopylov, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Y. Ou, “Internal quantum efficiency enhancement of GaInN/GaN quantum-well structures using Ag nanoparticles,” AIP Adv. 5(9), 097169 (2015).
[Crossref]

A. Fadil, D. Iida, Y. Chen, J. Ma, Y. Ou, P. M. Petersen, and H. Ou, “Surface plasmon coupling dynamics in InGaN/GaN quantum-well structures and radiative efficiency improvement,” Sci. Rep. 4, 6392 (2014).
[Crossref] [PubMed]

Fang, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Faulkner, G.

M. Hoa Le, D. O’Brien, G. Faulkner, Z. Lubin, L. Kyungwoo, J. Daekwang, O. YunJe, and W. Eun Tae, “100 Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Fu, J. J.

Y. Guo, M. Liang, J. J. Fu, Z. Liu, X. Y. Yi, J. X. Wang, G. H. Wang, and J. Li, “Enhancing the performance of blue GaN-based light emitting diodes with double electron blocking layers,” AIP Adv. 5(3), 037131 (2015).
[Crossref]

Fu, X.

Gainer, G. H.

C. K. Choi, Y. H. Kwon, B. D. Little, G. H. Gainer, J. J. Song, Y. C. Chang, S. Keller, U. K. Mishra, and S. P. DenBaars, “Time-resolved photoluminescence of InxGa1−xN/GaN multiple quantum well structures: Effect of Si doping in the barriers,” Phys. Rev. B 64(24), 245339 (2001).
[Crossref]

Gao, Z.

H. Li, X. Chen, J. Guo, Z. Gao, and H. Chen, “An analog modulator for 460 Mb/S visible light data transmission based on OOK-NRS modulation,” IEEE Wirel. Commun. 22(2), 68–73 (2015).
[Crossref]

Gao, Z. Y.

H. D. Chen, C. H. Wu, H. L. Li, X. B. Chen, Z. Y. Gao, S. G. Cui, and Q. Wang, “Advances and prospects in visible light communications,” J. Semicond. 37(1), 011001 (2016).
[Crossref]

Goh, W. P.

C. Y. Yang, A. A. Bettiol, Y. Shi, M. Bosman, H. R. Tan, W. P. Goh, J. H. Teng, and E. J. Teo, “Fast Electrical Modulation in a Plasmonic-Enhanced, V-Pit-Textured, Light-Emitting Diode,” Adv. Opt. Mater. 3(12), 1703–1709 (2015).
[Crossref]

Gontijo, I.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[Crossref]

Green, R. P.

Gu, E.

Guo, J.

H. Li, X. Chen, J. Guo, Z. Gao, and H. Chen, “An analog modulator for 460 Mb/S visible light data transmission based on OOK-NRS modulation,” IEEE Wirel. Commun. 22(2), 68–73 (2015).
[Crossref]

Guo, Y.

Y. Guo, M. Liang, J. J. Fu, Z. Liu, X. Y. Yi, J. X. Wang, G. H. Wang, and J. Li, “Enhancing the performance of blue GaN-based light emitting diodes with double electron blocking layers,” AIP Adv. 5(3), 037131 (2015).
[Crossref]

Haas, H.

Haller, E. E.

G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat. Commun. 2, 539 (2011).
[Crossref] [PubMed]

Han, S. H.

C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology 21(20), 205201 (2010).
[Crossref] [PubMed]

Hao-Chung, K.

Harris, J.

G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat. Commun. 2, 539 (2011).
[Crossref] [PubMed]

Henderson, R. K.

Ho, C. L.

C. L. Liao, Y. F. Chang, C. L. Ho, and M. C. Wu, “High-speed GaN-based blue light-emitting diodes with gallium-doped ZnO current spreading layer,” IEEE Electron Device Lett. 34(5), 611–613 (2013).
[Crossref]

Hoa Le, M.

M. Hoa Le, D. O’Brien, G. Faulkner, Z. Lubin, L. Kyungwoo, J. Daekwang, O. YunJe, and W. Eun Tae, “100 Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Hoang, T. B.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Hsieh, C.

Hu, Z.

Huang, C. F.

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[Crossref] [PubMed]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007).
[Crossref]

Huang, H. Y.

J. W. Shi, H. Y. Huang, J. K. Sheu, C. H. Chen, Y. S. Wu, and W. C. Lai, “The improvement in modulation speed of GaN-based Green light-emitting diode (LED) by use of n-type barrier doping for plastic optical fiber (POF) communication,” IEEE Photonics Technol. Lett. 18(15), 1636–1638 (2006).
[Crossref]

Huang, J.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Iida, D.

D. Iida, A. Fadil, Y. T. Chen, Y. Y. Ou, O. Kopylov, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Y. Ou, “Internal quantum efficiency enhancement of GaInN/GaN quantum-well structures using Ag nanoparticles,” AIP Adv. 5(9), 097169 (2015).
[Crossref]

A. Fadil, D. Iida, Y. Chen, J. Ma, Y. Ou, P. M. Petersen, and H. Ou, “Surface plasmon coupling dynamics in InGaN/GaN quantum-well structures and radiative efficiency improvement,” Sci. Rep. 4, 6392 (2014).
[Crossref] [PubMed]

Iwaya, M.

D. Iida, A. Fadil, Y. T. Chen, Y. Y. Ou, O. Kopylov, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Y. Ou, “Internal quantum efficiency enhancement of GaInN/GaN quantum-well structures using Ag nanoparticles,” AIP Adv. 5(9), 097169 (2015).
[Crossref]

Jiang, S.

Jiang, X.

Jiao, Q.

Jin-Wei, S.

Kamiyama, S.

D. Iida, A. Fadil, Y. T. Chen, Y. Y. Ou, O. Kopylov, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Y. Ou, “Internal quantum efficiency enhancement of GaInN/GaN quantum-well structures using Ag nanoparticles,” AIP Adv. 5(9), 097169 (2015).
[Crossref]

Kang, J. J.

H. J. Li, J. J. Kang, P. P. Li, J. Ma, H. Wang, M. Liang, Z. C. Li, J. Li, X. Y. Yi, and G. H. Wang, “Enhanced performance of GaN based light-emitting diodes with a low temperature p-GaN hole injection layer,” Appl. Phys. Lett. 102(1), 011105 (2013).
[Crossref]

Kang, J. W.

C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology 21(20), 205201 (2010).
[Crossref] [PubMed]

Kang, S. E.

C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology 21(20), 205201 (2010).
[Crossref] [PubMed]

Kawakami, Y.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[Crossref]

Keller, S.

C. K. Choi, Y. H. Kwon, B. D. Little, G. H. Gainer, J. J. Song, Y. C. Chang, S. Keller, U. K. Mishra, and S. P. DenBaars, “Time-resolved photoluminescence of InxGa1−xN/GaN multiple quantum well structures: Effect of Si doping in the barriers,” Phys. Rev. B 64(24), 245339 (2001).
[Crossref]

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[Crossref]

Kelly, A. E.

Khurgin, J. B.

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94(10), 101103 (2009).
[Crossref]

Kiang, Y. W.

C. H. Lin, C. Y. Su, E. Zhu, Y. F. Yao, C. Hsieh, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Modulation behaviors of surface plasmon coupled light-emitting diode,” Opt. Express 23(6), 8150–8161 (2015).
[Crossref] [PubMed]

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Numerical study on quantum efficiency enhancement of a light-emitting diode based on surface plasmon coupling with a quantum well,” IEEE Photonics Technol. Lett. 20(16), 1339–1341 (2008).
[Crossref]

Kim, B. H.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Kim, J. Y.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Koenderink, A. F.

Kopylov, O.

D. Iida, A. Fadil, Y. T. Chen, Y. Y. Ou, O. Kopylov, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Y. Ou, “Internal quantum efficiency enhancement of GaInN/GaN quantum-well structures using Ag nanoparticles,” AIP Adv. 5(9), 097169 (2015).
[Crossref]

Kruglov, R.

J. M. Wun, C. W. Lin, W. Chen, J. K. Sheu, C. L. Lin, Y. L. Li, J. E. Bowers, J. W. Shi, J. Vinogradov, R. Kruglov, and O. Ziemann, “GaN-based miniaturized cyan light-emitting diodes on a patterned sapphire substrate with improved fiber coupling for very high-speed plastic optical fiber communication,” IEEE Photonics J. 4(5), 1520–1529 (2012).
[Crossref]

Kwon, M. K.

C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology 21(20), 205201 (2010).
[Crossref] [PubMed]

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Kwon, Y. H.

C. K. Choi, Y. H. Kwon, B. D. Little, G. H. Gainer, J. J. Song, Y. C. Chang, S. Keller, U. K. Mishra, and S. P. DenBaars, “Time-resolved photoluminescence of InxGa1−xN/GaN multiple quantum well structures: Effect of Si doping in the barriers,” Phys. Rev. B 64(24), 245339 (2001).
[Crossref]

Kyungwoo, L.

M. Hoa Le, D. O’Brien, G. Faulkner, Z. Lubin, L. Kyungwoo, J. Daekwang, O. YunJe, and W. Eun Tae, “100 Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Lai, W. C.

J. W. Shi, H. Y. Huang, J. K. Sheu, C. H. Chen, Y. S. Wu, and W. C. Lai, “The improvement in modulation speed of GaN-based Green light-emitting diode (LED) by use of n-type barrier doping for plastic optical fiber (POF) communication,” IEEE Photonics Technol. Lett. 18(15), 1636–1638 (2006).
[Crossref]

Lee, D. Y.

C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology 21(20), 205201 (2010).
[Crossref] [PubMed]

Lee, S. J.

C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology 21(20), 205201 (2010).
[Crossref] [PubMed]

Li, H.

H. Li, X. Chen, J. Guo, Z. Gao, and H. Chen, “An analog modulator for 460 Mb/S visible light data transmission based on OOK-NRS modulation,” IEEE Wirel. Commun. 22(2), 68–73 (2015).
[Crossref]

Li, H. J.

H. J. Li, J. J. Kang, P. P. Li, J. Ma, H. Wang, M. Liang, Z. C. Li, J. Li, X. Y. Yi, and G. H. Wang, “Enhanced performance of GaN based light-emitting diodes with a low temperature p-GaN hole injection layer,” Appl. Phys. Lett. 102(1), 011105 (2013).
[Crossref]

Li, H. L.

H. D. Chen, C. H. Wu, H. L. Li, X. B. Chen, Z. Y. Gao, S. G. Cui, and Q. Wang, “Advances and prospects in visible light communications,” J. Semicond. 37(1), 011001 (2016).
[Crossref]

Li, J.

Y. Guo, M. Liang, J. J. Fu, Z. Liu, X. Y. Yi, J. X. Wang, G. H. Wang, and J. Li, “Enhancing the performance of blue GaN-based light emitting diodes with double electron blocking layers,” AIP Adv. 5(3), 037131 (2015).
[Crossref]

H. J. Li, J. J. Kang, P. P. Li, J. Ma, H. Wang, M. Liang, Z. C. Li, J. Li, X. Y. Yi, and G. H. Wang, “Enhanced performance of GaN based light-emitting diodes with a low temperature p-GaN hole injection layer,” Appl. Phys. Lett. 102(1), 011105 (2013).
[Crossref]

Li, J. M.

Li, P. P.

H. J. Li, J. J. Kang, P. P. Li, J. Ma, H. Wang, M. Liang, Z. C. Li, J. Li, X. Y. Yi, and G. H. Wang, “Enhanced performance of GaN based light-emitting diodes with a low temperature p-GaN hole injection layer,” Appl. Phys. Lett. 102(1), 011105 (2013).
[Crossref]

Li, Y. L.

J. M. Wun, C. W. Lin, W. Chen, J. K. Sheu, C. L. Lin, Y. L. Li, J. E. Bowers, J. W. Shi, J. Vinogradov, R. Kruglov, and O. Ziemann, “GaN-based miniaturized cyan light-emitting diodes on a patterned sapphire substrate with improved fiber coupling for very high-speed plastic optical fiber communication,” IEEE Photonics J. 4(5), 1520–1529 (2012).
[Crossref]

Li, Z. C.

H. J. Li, J. J. Kang, P. P. Li, J. Ma, H. Wang, M. Liang, Z. C. Li, J. Li, X. Y. Yi, and G. H. Wang, “Enhanced performance of GaN based light-emitting diodes with a low temperature p-GaN hole injection layer,” Appl. Phys. Lett. 102(1), 011105 (2013).
[Crossref]

Liang, M.

Y. Guo, M. Liang, J. J. Fu, Z. Liu, X. Y. Yi, J. X. Wang, G. H. Wang, and J. Li, “Enhancing the performance of blue GaN-based light emitting diodes with double electron blocking layers,” AIP Adv. 5(3), 037131 (2015).
[Crossref]

H. J. Li, J. J. Kang, P. P. Li, J. Ma, H. Wang, M. Liang, Z. C. Li, J. Li, X. Y. Yi, and G. H. Wang, “Enhanced performance of GaN based light-emitting diodes with a low temperature p-GaN hole injection layer,” Appl. Phys. Lett. 102(1), 011105 (2013).
[Crossref]

Liao, C. L.

C. L. Liao, Y. F. Chang, C. L. Ho, and M. C. Wu, “High-speed GaN-based blue light-emitting diodes with gallium-doped ZnO current spreading layer,” IEEE Electron Device Lett. 34(5), 611–613 (2013).
[Crossref]

Lin, C. H.

Lin, C. L.

J. M. Wun, C. W. Lin, W. Chen, J. K. Sheu, C. L. Lin, Y. L. Li, J. E. Bowers, J. W. Shi, J. Vinogradov, R. Kruglov, and O. Ziemann, “GaN-based miniaturized cyan light-emitting diodes on a patterned sapphire substrate with improved fiber coupling for very high-speed plastic optical fiber communication,” IEEE Photonics J. 4(5), 1520–1529 (2012).
[Crossref]

Lin, C. W.

J. M. Wun, C. W. Lin, W. Chen, J. K. Sheu, C. L. Lin, Y. L. Li, J. E. Bowers, J. W. Shi, J. Vinogradov, R. Kruglov, and O. Ziemann, “GaN-based miniaturized cyan light-emitting diodes on a patterned sapphire substrate with improved fiber coupling for very high-speed plastic optical fiber communication,” IEEE Photonics J. 4(5), 1520–1529 (2012).
[Crossref]

Little, B. D.

C. K. Choi, Y. H. Kwon, B. D. Little, G. H. Gainer, J. J. Song, Y. C. Chang, S. Keller, U. K. Mishra, and S. P. DenBaars, “Time-resolved photoluminescence of InxGa1−xN/GaN multiple quantum well structures: Effect of Si doping in the barriers,” Phys. Rev. B 64(24), 245339 (2001).
[Crossref]

Liu, L.

Liu, Z.

Y. Guo, M. Liang, J. J. Fu, Z. Liu, X. Y. Yi, J. X. Wang, G. H. Wang, and J. Li, “Enhancing the performance of blue GaN-based light emitting diodes with double electron blocking layers,” AIP Adv. 5(3), 037131 (2015).
[Crossref]

S. X. Zhu, J. X. Wang, J. C. Yan, Y. Zhang, Y. R. Pei, Z. Si, H. Yang, L. X. Zhao, Z. Liu, and J. M. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” ECS Solid State Lett. 3(3), R11–R13 (2014).
[Crossref]

Lu, H. X.

Lu, Y. C.

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[Crossref] [PubMed]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007).
[Crossref]

Lubin, Z.

M. Hoa Le, D. O’Brien, G. Faulkner, Z. Lubin, L. Kyungwoo, J. Daekwang, O. YunJe, and W. Eun Tae, “100 Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Ma, J.

A. Fadil, D. Iida, Y. Chen, J. Ma, Y. Ou, P. M. Petersen, and H. Ou, “Surface plasmon coupling dynamics in InGaN/GaN quantum-well structures and radiative efficiency improvement,” Sci. Rep. 4, 6392 (2014).
[Crossref] [PubMed]

H. J. Li, J. J. Kang, P. P. Li, J. Ma, H. Wang, M. Liang, Z. C. Li, J. Li, X. Y. Yi, and G. H. Wang, “Enhanced performance of GaN based light-emitting diodes with a low temperature p-GaN hole injection layer,” Appl. Phys. Lett. 102(1), 011105 (2013).
[Crossref]

Majumdar, A.

G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat. Commun. 2, 539 (2011).
[Crossref] [PubMed]

Massoubre, D.

Mayer, M. A.

G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat. Commun. 2, 539 (2011).
[Crossref] [PubMed]

McKendry, J. J. D.

Mikkelsen, M. H.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Mishra, U. K.

C. K. Choi, Y. H. Kwon, B. D. Little, G. H. Gainer, J. J. Song, Y. C. Chang, S. Keller, U. K. Mishra, and S. P. DenBaars, “Time-resolved photoluminescence of InxGa1−xN/GaN multiple quantum well structures: Effect of Si doping in the barriers,” Phys. Rev. B 64(24), 245339 (2001).
[Crossref]

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[Crossref]

Mukai, T.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[Crossref]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Narukawa, Y.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[Crossref]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Niki, I.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[Crossref]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

O’Brien, D.

M. Hoa Le, D. O’Brien, G. Faulkner, Z. Lubin, L. Kyungwoo, J. Daekwang, O. YunJe, and W. Eun Tae, “100 Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Okamoto, K.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[Crossref]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Ou, H.

A. Fadil, D. Iida, Y. Chen, J. Ma, Y. Ou, P. M. Petersen, and H. Ou, “Surface plasmon coupling dynamics in InGaN/GaN quantum-well structures and radiative efficiency improvement,” Sci. Rep. 4, 6392 (2014).
[Crossref] [PubMed]

Ou, H. Y.

D. Iida, A. Fadil, Y. T. Chen, Y. Y. Ou, O. Kopylov, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Y. Ou, “Internal quantum efficiency enhancement of GaInN/GaN quantum-well structures using Ag nanoparticles,” AIP Adv. 5(9), 097169 (2015).
[Crossref]

Ou, Y.

A. Fadil, D. Iida, Y. Chen, J. Ma, Y. Ou, P. M. Petersen, and H. Ou, “Surface plasmon coupling dynamics in InGaN/GaN quantum-well structures and radiative efficiency improvement,” Sci. Rep. 4, 6392 (2014).
[Crossref] [PubMed]

Ou, Y. Y.

D. Iida, A. Fadil, Y. T. Chen, Y. Y. Ou, O. Kopylov, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Y. Ou, “Internal quantum efficiency enhancement of GaInN/GaN quantum-well structures using Ag nanoparticles,” AIP Adv. 5(9), 097169 (2015).
[Crossref]

Park, I. K.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Park, S. J.

C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology 21(20), 205201 (2010).
[Crossref] [PubMed]

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Pei, Y. R.

S. X. Zhu, J. X. Wang, J. C. Yan, Y. Zhang, Y. R. Pei, Z. Si, H. Yang, L. X. Zhao, Z. Liu, and J. M. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” ECS Solid State Lett. 3(3), R11–R13 (2014).
[Crossref]

Petersen, P. M.

A. Fadil, D. Iida, Y. Chen, J. Ma, Y. Ou, P. M. Petersen, and H. Ou, “Surface plasmon coupling dynamics in InGaN/GaN quantum-well structures and radiative efficiency improvement,” Sci. Rep. 4, 6392 (2014).
[Crossref] [PubMed]

Petykiewicz, J.

G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat. Commun. 2, 539 (2011).
[Crossref] [PubMed]

Rae, B. R.

Ray-Hua, H.

Sarmiento, T.

G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat. Commun. 2, 539 (2011).
[Crossref] [PubMed]

Scherer, A.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[Crossref]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Shambat, G.

G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat. Commun. 2, 539 (2011).
[Crossref] [PubMed]

Sheu, J. K.

J. M. Wun, C. W. Lin, W. Chen, J. K. Sheu, C. L. Lin, Y. L. Li, J. E. Bowers, J. W. Shi, J. Vinogradov, R. Kruglov, and O. Ziemann, “GaN-based miniaturized cyan light-emitting diodes on a patterned sapphire substrate with improved fiber coupling for very high-speed plastic optical fiber communication,” IEEE Photonics J. 4(5), 1520–1529 (2012).
[Crossref]

J. W. Shi, H. Y. Huang, J. K. Sheu, C. H. Chen, Y. S. Wu, and W. C. Lai, “The improvement in modulation speed of GaN-based Green light-emitting diode (LED) by use of n-type barrier doping for plastic optical fiber (POF) communication,” IEEE Photonics Technol. Lett. 18(15), 1636–1638 (2006).
[Crossref]

Shi, J. W.

J. M. Wun, C. W. Lin, W. Chen, J. K. Sheu, C. L. Lin, Y. L. Li, J. E. Bowers, J. W. Shi, J. Vinogradov, R. Kruglov, and O. Ziemann, “GaN-based miniaturized cyan light-emitting diodes on a patterned sapphire substrate with improved fiber coupling for very high-speed plastic optical fiber communication,” IEEE Photonics J. 4(5), 1520–1529 (2012).
[Crossref]

J. W. Shi, H. Y. Huang, J. K. Sheu, C. H. Chen, Y. S. Wu, and W. C. Lai, “The improvement in modulation speed of GaN-based Green light-emitting diode (LED) by use of n-type barrier doping for plastic optical fiber (POF) communication,” IEEE Photonics Technol. Lett. 18(15), 1636–1638 (2006).
[Crossref]

Shi, Y.

C. Y. Yang, A. A. Bettiol, Y. Shi, M. Bosman, H. R. Tan, W. P. Goh, J. H. Teng, and E. J. Teo, “Fast Electrical Modulation in a Plasmonic-Enhanced, V-Pit-Textured, Light-Emitting Diode,” Adv. Opt. Mater. 3(12), 1703–1709 (2015).
[Crossref]

Shih-Yung, H.

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Si, Z.

S. X. Zhu, J. X. Wang, J. C. Yan, Y. Zhang, Y. R. Pei, Z. Si, H. Yang, L. X. Zhao, Z. Liu, and J. M. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” ECS Solid State Lett. 3(3), R11–R13 (2014).
[Crossref]

Smith, D. R.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Song, J. J.

C. K. Choi, Y. H. Kwon, B. D. Little, G. H. Gainer, J. J. Song, Y. C. Chang, S. Keller, U. K. Mishra, and S. P. DenBaars, “Time-resolved photoluminescence of InxGa1−xN/GaN multiple quantum well structures: Effect of Si doping in the barriers,” Phys. Rev. B 64(24), 245339 (2001).
[Crossref]

Soref, R. A.

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94(10), 101103 (2009).
[Crossref]

Su, C. Y.

Sun, G.

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94(10), 101103 (2009).
[Crossref]

Sun, X. J.

Takeuchi, T.

D. Iida, A. Fadil, Y. T. Chen, Y. Y. Ou, O. Kopylov, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Y. Ou, “Internal quantum efficiency enhancement of GaInN/GaN quantum-well structures using Ag nanoparticles,” AIP Adv. 5(9), 097169 (2015).
[Crossref]

Tan, H. R.

C. Y. Yang, A. A. Bettiol, Y. Shi, M. Bosman, H. R. Tan, W. P. Goh, J. H. Teng, and E. J. Teo, “Fast Electrical Modulation in a Plasmonic-Enhanced, V-Pit-Textured, Light-Emitting Diode,” Adv. Opt. Mater. 3(12), 1703–1709 (2015).
[Crossref]

Teng, J. H.

C. Y. Yang, A. A. Bettiol, Y. Shi, M. Bosman, H. R. Tan, W. P. Goh, J. H. Teng, and E. J. Teo, “Fast Electrical Modulation in a Plasmonic-Enhanced, V-Pit-Textured, Light-Emitting Diode,” Adv. Opt. Mater. 3(12), 1703–1709 (2015).
[Crossref]

Teo, E. J.

C. Y. Yang, A. A. Bettiol, Y. Shi, M. Bosman, H. R. Tan, W. P. Goh, J. H. Teng, and E. J. Teo, “Fast Electrical Modulation in a Plasmonic-Enhanced, V-Pit-Textured, Light-Emitting Diode,” Adv. Opt. Mater. 3(12), 1703–1709 (2015).
[Crossref]

Tian, L. X.

Tu, C. G.

Vinogradov, J.

J. M. Wun, C. W. Lin, W. Chen, J. K. Sheu, C. L. Lin, Y. L. Li, J. E. Bowers, J. W. Shi, J. Vinogradov, R. Kruglov, and O. Ziemann, “GaN-based miniaturized cyan light-emitting diodes on a patterned sapphire substrate with improved fiber coupling for very high-speed plastic optical fiber communication,” IEEE Photonics J. 4(5), 1520–1529 (2012).
[Crossref]

Vuckovic, J.

G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat. Commun. 2, 539 (2011).
[Crossref] [PubMed]

Wang, G. H.

Y. Guo, M. Liang, J. J. Fu, Z. Liu, X. Y. Yi, J. X. Wang, G. H. Wang, and J. Li, “Enhancing the performance of blue GaN-based light emitting diodes with double electron blocking layers,” AIP Adv. 5(3), 037131 (2015).
[Crossref]

H. J. Li, J. J. Kang, P. P. Li, J. Ma, H. Wang, M. Liang, Z. C. Li, J. Li, X. Y. Yi, and G. H. Wang, “Enhanced performance of GaN based light-emitting diodes with a low temperature p-GaN hole injection layer,” Appl. Phys. Lett. 102(1), 011105 (2013).
[Crossref]

Wang, H.

H. J. Li, J. J. Kang, P. P. Li, J. Ma, H. Wang, M. Liang, Z. C. Li, J. Li, X. Y. Yi, and G. H. Wang, “Enhanced performance of GaN based light-emitting diodes with a low temperature p-GaN hole injection layer,” Appl. Phys. Lett. 102(1), 011105 (2013).
[Crossref]

Wang, J. X.

Y. Guo, M. Liang, J. J. Fu, Z. Liu, X. Y. Yi, J. X. Wang, G. H. Wang, and J. Li, “Enhancing the performance of blue GaN-based light emitting diodes with double electron blocking layers,” AIP Adv. 5(3), 037131 (2015).
[Crossref]

S. C. Zhu, Z. G. Yu, L. X. Zhao, J. X. Wang, and J. M. Li, “Enhancement of the modulation bandwidth for GaN-based light-emitting diode by surface plasmons,” Opt. Express 23(11), 13752–13760 (2015).
[Crossref] [PubMed]

Z. G. Yu, L. X. Zhao, X. C. Wei, X. J. Sun, P. B. An, S. C. Zhu, L. Liu, L. X. Tian, F. Zhang, H. X. Lu, J. X. Wang, Y. P. Zeng, and J. M. Li, “Surface plasmon-enhanced nanoporous GaN-based green light-emitting diodes with Al2O3 passivation layer,” Opt. Express 22(S6Suppl 6), A1596–A1603 (2014).
[Crossref] [PubMed]

S. X. Zhu, J. X. Wang, J. C. Yan, Y. Zhang, Y. R. Pei, Z. Si, H. Yang, L. X. Zhao, Z. Liu, and J. M. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” ECS Solid State Lett. 3(3), R11–R13 (2014).
[Crossref]

Wang, J. Y.

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Numerical study on quantum efficiency enhancement of a light-emitting diode based on surface plasmon coupling with a quantum well,” IEEE Photonics Technol. Lett. 20(16), 1339–1341 (2008).
[Crossref]

Wang, Q.

H. D. Chen, C. H. Wu, H. L. Li, X. B. Chen, Z. Y. Gao, S. G. Cui, and Q. Wang, “Advances and prospects in visible light communications,” J. Semicond. 37(1), 011001 (2016).
[Crossref]

Wang, Y.

Wei, X. C.

Wu, C. H.

H. D. Chen, C. H. Wu, H. L. Li, X. B. Chen, Z. Y. Gao, S. G. Cui, and Q. Wang, “Advances and prospects in visible light communications,” J. Semicond. 37(1), 011001 (2016).
[Crossref]

L. X. Zhao, S. C. Zhu, C. H. Wu, C. Yang, Z. G. Yu, H. Yang, and L. Liu, “GaN-based LEDs for light communication,” Sci. China Phys. Mech. Astron. 59(10), 107301 (2016).
[Crossref]

Wu, M. C.

C. L. Liao, Y. F. Chang, C. L. Ho, and M. C. Wu, “High-speed GaN-based blue light-emitting diodes with gallium-doped ZnO current spreading layer,” IEEE Electron Device Lett. 34(5), 611–613 (2013).
[Crossref]

Wu, Y. S.

J. W. Shi, H. Y. Huang, J. K. Sheu, C. H. Chen, Y. S. Wu, and W. C. Lai, “The improvement in modulation speed of GaN-based Green light-emitting diode (LED) by use of n-type barrier doping for plastic optical fiber (POF) communication,” IEEE Photonics Technol. Lett. 18(15), 1636–1638 (2006).
[Crossref]

Wun, J. M.

J. M. Wun, C. W. Lin, W. Chen, J. K. Sheu, C. L. Lin, Y. L. Li, J. E. Bowers, J. W. Shi, J. Vinogradov, R. Kruglov, and O. Ziemann, “GaN-based miniaturized cyan light-emitting diodes on a patterned sapphire substrate with improved fiber coupling for very high-speed plastic optical fiber communication,” IEEE Photonics J. 4(5), 1520–1529 (2012).
[Crossref]

Yablonovitch, E.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[Crossref]

Yan, J. C.

S. X. Zhu, J. X. Wang, J. C. Yan, Y. Zhang, Y. R. Pei, Z. Si, H. Yang, L. X. Zhao, Z. Liu, and J. M. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” ECS Solid State Lett. 3(3), R11–R13 (2014).
[Crossref]

Yang, C.

L. X. Zhao, S. C. Zhu, C. H. Wu, C. Yang, Z. G. Yu, H. Yang, and L. Liu, “GaN-based LEDs for light communication,” Sci. China Phys. Mech. Astron. 59(10), 107301 (2016).
[Crossref]

Yang, C. C.

C. H. Lin, C. Y. Su, E. Zhu, Y. F. Yao, C. Hsieh, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Modulation behaviors of surface plasmon coupled light-emitting diode,” Opt. Express 23(6), 8150–8161 (2015).
[Crossref] [PubMed]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[Crossref] [PubMed]

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Numerical study on quantum efficiency enhancement of a light-emitting diode based on surface plasmon coupling with a quantum well,” IEEE Photonics Technol. Lett. 20(16), 1339–1341 (2008).
[Crossref]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007).
[Crossref]

Yang, C. Y.

C. Y. Yang, A. A. Bettiol, Y. Shi, M. Bosman, H. R. Tan, W. P. Goh, J. H. Teng, and E. J. Teo, “Fast Electrical Modulation in a Plasmonic-Enhanced, V-Pit-Textured, Light-Emitting Diode,” Adv. Opt. Mater. 3(12), 1703–1709 (2015).
[Crossref]

Yang, H.

L. X. Zhao, S. C. Zhu, C. H. Wu, C. Yang, Z. G. Yu, H. Yang, and L. Liu, “GaN-based LEDs for light communication,” Sci. China Phys. Mech. Astron. 59(10), 107301 (2016).
[Crossref]

S. X. Zhu, J. X. Wang, J. C. Yan, Y. Zhang, Y. R. Pei, Z. Si, H. Yang, L. X. Zhao, Z. Liu, and J. M. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” ECS Solid State Lett. 3(3), R11–R13 (2014).
[Crossref]

Yao, Y. F.

Yeh, D. M.

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[Crossref] [PubMed]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007).
[Crossref]

Yi, X. Y.

Y. Guo, M. Liang, J. J. Fu, Z. Liu, X. Y. Yi, J. X. Wang, G. H. Wang, and J. Li, “Enhancing the performance of blue GaN-based light emitting diodes with double electron blocking layers,” AIP Adv. 5(3), 037131 (2015).
[Crossref]

H. J. Li, J. J. Kang, P. P. Li, J. Ma, H. Wang, M. Liang, Z. C. Li, J. Li, X. Y. Yi, and G. H. Wang, “Enhanced performance of GaN based light-emitting diodes with a low temperature p-GaN hole injection layer,” Appl. Phys. Lett. 102(1), 011105 (2013).
[Crossref]

Yin, L.

Yu, T.

Yu, Z. G.

YunJe, O.

M. Hoa Le, D. O’Brien, G. Faulkner, Z. Lubin, L. Kyungwoo, J. Daekwang, O. YunJe, and W. Eun Tae, “100 Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Zeng, Y. P.

Zhang, F.

Zhang, G.

Zhang, S.

Zhang, Y.

S. X. Zhu, J. X. Wang, J. C. Yan, Y. Zhang, Y. R. Pei, Z. Si, H. Yang, L. X. Zhao, Z. Liu, and J. M. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” ECS Solid State Lett. 3(3), R11–R13 (2014).
[Crossref]

Zhao, L. X.

L. X. Zhao, S. C. Zhu, C. H. Wu, C. Yang, Z. G. Yu, H. Yang, and L. Liu, “GaN-based LEDs for light communication,” Sci. China Phys. Mech. Astron. 59(10), 107301 (2016).
[Crossref]

S. C. Zhu, Z. G. Yu, L. X. Zhao, J. X. Wang, and J. M. Li, “Enhancement of the modulation bandwidth for GaN-based light-emitting diode by surface plasmons,” Opt. Express 23(11), 13752–13760 (2015).
[Crossref] [PubMed]

Z. G. Yu, L. X. Zhao, X. C. Wei, X. J. Sun, P. B. An, S. C. Zhu, L. Liu, L. X. Tian, F. Zhang, H. X. Lu, J. X. Wang, Y. P. Zeng, and J. M. Li, “Surface plasmon-enhanced nanoporous GaN-based green light-emitting diodes with Al2O3 passivation layer,” Opt. Express 22(S6Suppl 6), A1596–A1603 (2014).
[Crossref] [PubMed]

S. X. Zhu, J. X. Wang, J. C. Yan, Y. Zhang, Y. R. Pei, Z. Si, H. Yang, L. X. Zhao, Z. Liu, and J. M. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” ECS Solid State Lett. 3(3), R11–R13 (2014).
[Crossref]

Zhu, E.

Zhu, S. C.

Zhu, S. X.

S. X. Zhu, J. X. Wang, J. C. Yan, Y. Zhang, Y. R. Pei, Z. Si, H. Yang, L. X. Zhao, Z. Liu, and J. M. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” ECS Solid State Lett. 3(3), R11–R13 (2014).
[Crossref]

Ziemann, O.

J. M. Wun, C. W. Lin, W. Chen, J. K. Sheu, C. L. Lin, Y. L. Li, J. E. Bowers, J. W. Shi, J. Vinogradov, R. Kruglov, and O. Ziemann, “GaN-based miniaturized cyan light-emitting diodes on a patterned sapphire substrate with improved fiber coupling for very high-speed plastic optical fiber communication,” IEEE Photonics J. 4(5), 1520–1529 (2012).
[Crossref]

Adv. Mater. (1)

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Adv. Opt. Mater. (1)

C. Y. Yang, A. A. Bettiol, Y. Shi, M. Bosman, H. R. Tan, W. P. Goh, J. H. Teng, and E. J. Teo, “Fast Electrical Modulation in a Plasmonic-Enhanced, V-Pit-Textured, Light-Emitting Diode,” Adv. Opt. Mater. 3(12), 1703–1709 (2015).
[Crossref]

AIP Adv. (2)

D. Iida, A. Fadil, Y. T. Chen, Y. Y. Ou, O. Kopylov, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Y. Ou, “Internal quantum efficiency enhancement of GaInN/GaN quantum-well structures using Ag nanoparticles,” AIP Adv. 5(9), 097169 (2015).
[Crossref]

Y. Guo, M. Liang, J. J. Fu, Z. Liu, X. Y. Yi, J. X. Wang, G. H. Wang, and J. Li, “Enhancing the performance of blue GaN-based light emitting diodes with double electron blocking layers,” AIP Adv. 5(3), 037131 (2015).
[Crossref]

Appl. Phys. Lett. (4)

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007).
[Crossref]

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[Crossref]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94(10), 101103 (2009).
[Crossref]

H. J. Li, J. J. Kang, P. P. Li, J. Ma, H. Wang, M. Liang, Z. C. Li, J. Li, X. Y. Yi, and G. H. Wang, “Enhanced performance of GaN based light-emitting diodes with a low temperature p-GaN hole injection layer,” Appl. Phys. Lett. 102(1), 011105 (2013).
[Crossref]

ECS Solid State Lett. (1)

S. X. Zhu, J. X. Wang, J. C. Yan, Y. Zhang, Y. R. Pei, Z. Si, H. Yang, L. X. Zhao, Z. Liu, and J. M. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” ECS Solid State Lett. 3(3), R11–R13 (2014).
[Crossref]

IEEE Electron Device Lett. (1)

C. L. Liao, Y. F. Chang, C. L. Ho, and M. C. Wu, “High-speed GaN-based blue light-emitting diodes with gallium-doped ZnO current spreading layer,” IEEE Electron Device Lett. 34(5), 611–613 (2013).
[Crossref]

IEEE Photonics J. (1)

J. M. Wun, C. W. Lin, W. Chen, J. K. Sheu, C. L. Lin, Y. L. Li, J. E. Bowers, J. W. Shi, J. Vinogradov, R. Kruglov, and O. Ziemann, “GaN-based miniaturized cyan light-emitting diodes on a patterned sapphire substrate with improved fiber coupling for very high-speed plastic optical fiber communication,” IEEE Photonics J. 4(5), 1520–1529 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (3)

M. Hoa Le, D. O’Brien, G. Faulkner, Z. Lubin, L. Kyungwoo, J. Daekwang, O. YunJe, and W. Eun Tae, “100 Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

J. W. Shi, H. Y. Huang, J. K. Sheu, C. H. Chen, Y. S. Wu, and W. C. Lai, “The improvement in modulation speed of GaN-based Green light-emitting diode (LED) by use of n-type barrier doping for plastic optical fiber (POF) communication,” IEEE Photonics Technol. Lett. 18(15), 1636–1638 (2006).
[Crossref]

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Numerical study on quantum efficiency enhancement of a light-emitting diode based on surface plasmon coupling with a quantum well,” IEEE Photonics Technol. Lett. 20(16), 1339–1341 (2008).
[Crossref]

IEEE Wirel. Commun. (1)

H. Li, X. Chen, J. Guo, Z. Gao, and H. Chen, “An analog modulator for 460 Mb/S visible light data transmission based on OOK-NRS modulation,” IEEE Wirel. Commun. 22(2), 68–73 (2015).
[Crossref]

J. Lightwave Technol. (3)

J. Semicond. (1)

H. D. Chen, C. H. Wu, H. L. Li, X. B. Chen, Z. Y. Gao, S. G. Cui, and Q. Wang, “Advances and prospects in visible light communications,” J. Semicond. 37(1), 011001 (2016).
[Crossref]

Nanotechnology (2)

C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology 21(20), 205201 (2010).
[Crossref] [PubMed]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[Crossref] [PubMed]

Nat. Commun. (1)

G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat. Commun. 2, 539 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Nat. Photonics (1)

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (2)

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[Crossref]

C. K. Choi, Y. H. Kwon, B. D. Little, G. H. Gainer, J. J. Song, Y. C. Chang, S. Keller, U. K. Mishra, and S. P. DenBaars, “Time-resolved photoluminescence of InxGa1−xN/GaN multiple quantum well structures: Effect of Si doping in the barriers,” Phys. Rev. B 64(24), 245339 (2001).
[Crossref]

Phys. Rev. Lett. (1)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Sci. China Phys. Mech. Astron. (1)

L. X. Zhao, S. C. Zhu, C. H. Wu, C. Yang, Z. G. Yu, H. Yang, and L. Liu, “GaN-based LEDs for light communication,” Sci. China Phys. Mech. Astron. 59(10), 107301 (2016).
[Crossref]

Sci. Rep. (1)

A. Fadil, D. Iida, Y. Chen, J. Ma, Y. Ou, P. M. Petersen, and H. Ou, “Surface plasmon coupling dynamics in InGaN/GaN quantum-well structures and radiative efficiency improvement,” Sci. Rep. 4, 6392 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic diagram of the GaN-based SP-LEDs structure. The inset shows the cross section view. (b) SEM image for the SP-LED with Ag nanoparticles obtained from the annealed 9 nm Ag film. (c) The Ag nanoparticles diameter distributions for different designed Ag film thicknesses.
Fig. 2
Fig. 2 (a) Transmission spectra of Ag nanoparticles annealed from 3, 6 and 9 nm Ag thin film. During the measurements, the baseline is the transmission spectrum of the nanorod LED without Ag nanoparticles. (b) The schematic structure of the 3-D FDTD simulation to calculate the absorption cross section. The Ag nanoparticle is located around the GaN nanorod with a diameter D, and depth at d = 0.3D. (c) Calculated absorption cross section spectra of Ag nanoparticles with different diameter ranging from 10 to 70 nm. (d) The calculated absorption cross section spectra of Ag nanoparticles annealed from 3, 6 and 9 nm thin film.
Fig. 3
Fig. 3 (a) PL spectra and (b) TRPL spectra of nanorod LED without Ag nanoparticles (black), nanorod LED with Ag nanoparticles obtained from annealed 3 nm (blue), 6 nm (red) and 9 nm (green) Ag films. The excitation source is a 405 nm laser diode. (c) PL spectra excited by a 325 nm He–Cd laser. (d) TRPL spectra excited by a 360 nm light sources. The black dashed lines in (a) and (c) correspond to the peak wavelength of the reference nanorod LED without Ag nanoparticles.
Fig. 4
Fig. 4 The Purcell factor as a function of wavelength for Ag nanoparticles with a diameter range from 10 nm to 70 nm. The dipole source locates in the first QW and 11 nm horizontal away from the Ag nanoparticle.
Fig. 5
Fig. 5 The electric field distribution (log|E|2) of the nanorod LED with a 40 nm Ag nanoparticle excited by a light source with a wavelength of (a) 325 nm, (b) 360 nm, and (c) 405 nm. The three dashed lines indicate the topmost three QWs. The white solid lines indicate the interfaces of HfO2 and GaN. The grey spherical dome at the left side of the GaN nanorod is the Ag nanoparticle.
Fig. 6
Fig. 6 (a) The Purcell factor as a function of horizontal distances between the Ag nanoparticle and the dipole source. The red lines, blue lines and green lines indicate the situation that the dipole locates at the first (z = 10 nm), the second (z = −7 nm) and the third QW (z = −24 nm), respectively. The black dashed line indicates the Purcell factor equals to 1. The inset is the 3-D FDTD simulation model. (b) The enhancement of spontaneous emission rate (average Purcell factor) for the entire nanorod LEDs as a function of the nanorod diameter.
Fig. 7
Fig. 7 Calculated absorption cross section spectra of Ag nanoparticles with different buried depth d range from 0.1D (4 nm) to 0.5D (20 nm).

Tables (1)

Tables Icon

Table 1 Extracted fast decay parameters of LEDs with and without Ag nanoparticles excited by two different excitation light sources

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I(t)= A 1 exp( t τ 1 )+(1 A 1 )exp( t τ 1 ).
R r = F r R r
R ¯ r = 0 r 0 A (r) R r (r)dr
R r ¯ = 0 r 0 A (r) F r (r) R r (r)dr
F ¯ = R r ¯ / R r ¯ = 0 r 0 A (r) F r (r) R r (r)dr 0 r 0 A (r) R r (r)dr

Metrics