Abstract

Lateral leakage of light has been identified as a detrimental loss source in many suggested and experimentally realized GaN-based VCSELs. In the present work we include thermal effects to realistically account for the substantial Joule heating in these devices. In contrast to what could be expected from the previous results, the induced thermal lensing does not make antiguided cavities more positively guided, so that they approach the unguided regime with extremely high lateral leakage. Rather, thermal lensing strongly suppresses lateral leakage for both antiguided and guided cavities. This is explained in terms of lowered launch of power from the central part of the cavity and/or lower total internal reflection in the peripheral part; the former effect is active in all cavities whereas the latter only contributes to the very strongly reduced leakage in weakly antiguided cavities. Thermal lensing suppresses lateral leakage both for the fundamental and the first higher order mode, but a strong modal discrimination is still achieved for the antiguided cavities. Thus, strongly antiguided cavities could be used to achieve single-mode devices, but at the cost of slightly higher threshold gain and stronger temperature dependent performance characteristics.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of structurally sensitive loss in GaN-based VCSEL cavities and its effect on modal discrimination

Ehsan Hashemi, Jörgen Bengtsson, Johan Gustavsson, Martin Stattin, Gatien Cosendey, Nicolas Grandjean, and Åsa Haglund
Opt. Express 22(1) 411-426 (2014)

Demonstration of GaN-based vertical-cavity surface-emitting lasers with buried tunnel junction contacts

SeungGeun Lee, Charles A. Forman, Jared Kearns, John T. Leonard, Daniel A. Cohen, Shuji Nakamura, and Steven P. DenBaars
Opt. Express 27(22) 31621-31628 (2019)

Modeling thermal effects and polarization competition in vertical-cavity surface-emitting lasers

C. Masollera and M. S. Torreb
Opt. Express 16(26) 21282-21296 (2008)

References

  • View by:
  • |
  • |
  • |

  1. G. Cosendey, A. Castiglia, G. Rossbach, J. F. Carlin, and N. Grandjean, “Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate,” Appl. Phys. Lett. 101(15), 151113 (2012).
    [Crossref]
  2. T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
    [Crossref]
  3. D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature,” Appl. Phys. Express 4(7), 072103 (2011).
    [Crossref]
  4. T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature,” IEEE J. Quantum Electron. 48(9), 1107–1112 (2012).
    [Crossref]
  5. W. J. Liu, X. L. Hu, L. Y. Ying, J. Y. Zhang, and B. P. Zhang, “Room temperature continuous wave lasing of electrically injected GaN-based vertical cavity surface emitting lasers,” Appl. Phys. Lett. 104(25), 251116 (2014).
    [Crossref]
  6. G. Weng, Y. Mei, J. P. Liu, W. Hofmann, L. Y. Ying, J. Y. Zhang, Y. K. Bu, Z. C. Li, H. Yang, and B. P. Zhang, “Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers,” Opt. Express 24(14), 15546–15553 (2016).
    [Crossref] [PubMed]
  7. J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
    [Crossref]
  8. J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015).
    [Crossref]
  9. J. T. Leonard, B. P. Yonkee, D. A. Cohen, L. Megalini, S. Lee, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture,” Appl. Phys. Lett. 108(3), 031111 (2016).
    [Crossref]
  10. T. Hamaguchi, N. Fuutagawa, S. Izumi, M. Murayama, and H. Narui, “Milliwatt-class GaN-based blue vertical-cavity surface-emitting lasers fabricated by epitaxial lateral overgrowth,” Phys. Stat. Sol. A 213(5), 1170–1176 (2016).
    [Crossref]
  11. K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9(10), 102101 (2016).
    [Crossref]
  12. E. Hashemi, J. Bengtsson, J. Gustavsson, M. Stattin, G. Cosendey, N. Grandjean, and Å. Haglund, “Analysis of structurally sensitive loss in GaN-based VCSEL cavities and its effect on modal discrimination,” Opt. Express 22(1), 411–426 (2014).
    [Crossref] [PubMed]
  13. J. Piprek, Z. M. Li, R. Farrell, S. P. DenBaars, and S. Nakamura, “Electronic Properties of InGaN/GaN Vertical-Cavity Lasers,” in Nitride Semiconductor Devices: Simulations and Principles, J. Piprek, ed. (Wiley, 2007).
  14. J. Piprek, “What is the problem with GaN-based VCSELs?” Proc. International Conference on Numerical Simulation of Optoelectronic Devices (IEEE, 2013), pp. 89–90.
  15. D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 50 Gb/s NRZ Modulated 850 nm VCSEL Transmitter Operating Error Free to 90°C,” J. Lightwave Technol. 33(4), 802–810 (2015).
    [Crossref]
  16. K. Matsui, T. Furuta, N. Hayashi, Y. Kozuka, T. Akagi, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “3-mW RT-CW GaN-Based VCSELs and Their Temperature Dependence,” International Workshop on Nitride Semiconductors, Orlando, USA, 2–7 Oct. 2016.
  17. E. Hashemi, J. Gustavsson, J. Bengtsson, M. Stattin, G. Cosendey, N. Grandjean, and Å. Haglund, “Engineering the lateral optical guiding in gallium nitride-based vertical-cavity surface-emitting laser cavities to reach the lowest threshold gain,” Jap. J. Appl. Phys. 52(8S), 08JG04 (2013).
    [Crossref]
  18. G. R. Hadley, “Effective index model for vertical-cavity surface-emitting lasers,” Opt. Lett. 20(13), 1483–1485 (1995).
    [Crossref] [PubMed]
  19. T. Czyszanowski, M. Wasiak, R. P. Sarzała, and W. Nakwaski, “Exactness of simplified scalar optical approaches in modeling a threshold operation of possible nitride vertical-cavity surface-emitting lasers,” Phys. Stat. Sol. A 204(10), 3562–3573 (2007).
    [Crossref]
  20. R. Sarzała, T. Czyszanowski, M. Wasiak, M. Dems, L. Piskorski, W. Nakwaski, and K. Panajotov, “Numerical self-consistent analysis of VCSELs,” Adv. Opt. Technol., 689519 (2012).
  21. E. Hashemi, J. Bengtsson, J. Gustavsson, M. Stattin, M. Glauser, G. Cosendey, N. Grandjean, M. Calciati, M. Goano, and Å. Haglund, “Triggering of guiding and antiguiding effects in GaN-based VCSELs,” Proc. SPIE 9001, 90010A (2014).
    [Crossref]
  22. M. Ohya, K. Fukuda, I. Masumoto, S. Kohmoto, K. Naniwae, M. Yamada, M. Matsudate, T. Tsukuda, T. Akagawa, and C. Sasaoka, “High-power operation of inner-stripe GaN-based blue-violet laser diodes,” Proc. SPIE 6485, 648505 (2007).
    [Crossref]
  23. W. S. Tan, K. Takahashi, V. Bousquet, A. Ariyoshi, Y. Tsuda, M. Ohta, and M. Kauer, “Blue-violet inner stripe laser diodes using lattice matched AlInN as current confinement layer for high power operation,” Appl. Phys. Express 2(11), 112101 (2009).
    [Crossref]
  24. B. S. Cheng, Y. L. Wu, T. C. Lu, C. H. Chiu, C. H. Chen, P. M. Tu, H. C. Kuo, S. C. Wang, and C. Y. Chang, “High Q microcavity light emitting diodes with buried AlN current apertures,” Appl. Phys. Lett. 99(4), 041101 (2011).
    [Crossref]
  25. Y. Y. Lai, S. C. Huang, T. L. Ho, T. C. Lu, and S. C. Wang, “Numerical analysis on current and optical confinement of III-nitride vertical-cavity surface-emitting lasers,” Opt. Express 22(8), 9789–9797 (2014).
    [Crossref] [PubMed]
  26. P. Śpiewak, A. K. Sokół, M. Wasiak, and R. P. Sarzała, “Impact of AlN-aperture on optical and electrical properties on nitride VCSEL,” Proc. International Conference on Numerical Simulation of Optoelectronic Devices (IEEE, 2016), pp. 41–42.
  27. J. F. Carlin, C. Zellweger, J. Dorsaz, S. Nicolay, G. Christmann, E. Feltin, R. Butté, and N. Grandjean, “Progresses in III-nitride distributed Bragg reflectors and microcavities using AlInN/GaN materials,” Phys. Stat. Sol. B 242(11), 2326–2344 (2005).
    [Crossref]
  28. D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Höpler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys.,  82(10), 5090–5096 (1997).
    [Crossref]
  29. W. Nakwaski, T. Czyszanowski, and R. P. Sarzała, “Optical design of Vertical-Cavity Lasers,” in Nitride Semiconductor Devices: Simulations and Principles,, J. Piprek, ed. (Wiley, 2007).
  30. N. Watanabe, T. Kimoto, and J. Suda, “Thermo-optic coefficients of SiC, GaN, and AlN up to 512°C from infrared to ultraviolet region for tunable filter applications,” Proc. SPIE 7926, 7926042011).
    [Crossref]
  31. R. Hui, Y. Wan, J. Li, S. Jin, J. Lin, and H. Jiang, “III-nitride-based planar lightwave circuits for long wavelength optical communications,” IEEE J. Quantum Electron. 41(1), 100–110 (2005).
    [Crossref]
  32. L. Redaelli, H. Wenzel, M. Martens, S. Einfeldt, M. Kneissl, and G. Tränkle, “Index antiguiding in narrow ridge-waveguide (In, Al)GaN-based laser diodes,” J. Appl. Phys. 114(11), 113102 (2013).
    [Crossref]

2016 (4)

J. T. Leonard, B. P. Yonkee, D. A. Cohen, L. Megalini, S. Lee, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture,” Appl. Phys. Lett. 108(3), 031111 (2016).
[Crossref]

T. Hamaguchi, N. Fuutagawa, S. Izumi, M. Murayama, and H. Narui, “Milliwatt-class GaN-based blue vertical-cavity surface-emitting lasers fabricated by epitaxial lateral overgrowth,” Phys. Stat. Sol. A 213(5), 1170–1176 (2016).
[Crossref]

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9(10), 102101 (2016).
[Crossref]

G. Weng, Y. Mei, J. P. Liu, W. Hofmann, L. Y. Ying, J. Y. Zhang, Y. K. Bu, Z. C. Li, H. Yang, and B. P. Zhang, “Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers,” Opt. Express 24(14), 15546–15553 (2016).
[Crossref] [PubMed]

2015 (3)

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
[Crossref]

J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 50 Gb/s NRZ Modulated 850 nm VCSEL Transmitter Operating Error Free to 90°C,” J. Lightwave Technol. 33(4), 802–810 (2015).
[Crossref]

2014 (4)

W. J. Liu, X. L. Hu, L. Y. Ying, J. Y. Zhang, and B. P. Zhang, “Room temperature continuous wave lasing of electrically injected GaN-based vertical cavity surface emitting lasers,” Appl. Phys. Lett. 104(25), 251116 (2014).
[Crossref]

E. Hashemi, J. Bengtsson, J. Gustavsson, M. Stattin, M. Glauser, G. Cosendey, N. Grandjean, M. Calciati, M. Goano, and Å. Haglund, “Triggering of guiding and antiguiding effects in GaN-based VCSELs,” Proc. SPIE 9001, 90010A (2014).
[Crossref]

E. Hashemi, J. Bengtsson, J. Gustavsson, M. Stattin, G. Cosendey, N. Grandjean, and Å. Haglund, “Analysis of structurally sensitive loss in GaN-based VCSEL cavities and its effect on modal discrimination,” Opt. Express 22(1), 411–426 (2014).
[Crossref] [PubMed]

Y. Y. Lai, S. C. Huang, T. L. Ho, T. C. Lu, and S. C. Wang, “Numerical analysis on current and optical confinement of III-nitride vertical-cavity surface-emitting lasers,” Opt. Express 22(8), 9789–9797 (2014).
[Crossref] [PubMed]

2013 (2)

L. Redaelli, H. Wenzel, M. Martens, S. Einfeldt, M. Kneissl, and G. Tränkle, “Index antiguiding in narrow ridge-waveguide (In, Al)GaN-based laser diodes,” J. Appl. Phys. 114(11), 113102 (2013).
[Crossref]

E. Hashemi, J. Gustavsson, J. Bengtsson, M. Stattin, G. Cosendey, N. Grandjean, and Å. Haglund, “Engineering the lateral optical guiding in gallium nitride-based vertical-cavity surface-emitting laser cavities to reach the lowest threshold gain,” Jap. J. Appl. Phys. 52(8S), 08JG04 (2013).
[Crossref]

2012 (2)

G. Cosendey, A. Castiglia, G. Rossbach, J. F. Carlin, and N. Grandjean, “Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate,” Appl. Phys. Lett. 101(15), 151113 (2012).
[Crossref]

T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature,” IEEE J. Quantum Electron. 48(9), 1107–1112 (2012).
[Crossref]

2011 (3)

D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature,” Appl. Phys. Express 4(7), 072103 (2011).
[Crossref]

N. Watanabe, T. Kimoto, and J. Suda, “Thermo-optic coefficients of SiC, GaN, and AlN up to 512°C from infrared to ultraviolet region for tunable filter applications,” Proc. SPIE 7926, 7926042011).
[Crossref]

B. S. Cheng, Y. L. Wu, T. C. Lu, C. H. Chiu, C. H. Chen, P. M. Tu, H. C. Kuo, S. C. Wang, and C. Y. Chang, “High Q microcavity light emitting diodes with buried AlN current apertures,” Appl. Phys. Lett. 99(4), 041101 (2011).
[Crossref]

2010 (1)

T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
[Crossref]

2009 (1)

W. S. Tan, K. Takahashi, V. Bousquet, A. Ariyoshi, Y. Tsuda, M. Ohta, and M. Kauer, “Blue-violet inner stripe laser diodes using lattice matched AlInN as current confinement layer for high power operation,” Appl. Phys. Express 2(11), 112101 (2009).
[Crossref]

2007 (2)

M. Ohya, K. Fukuda, I. Masumoto, S. Kohmoto, K. Naniwae, M. Yamada, M. Matsudate, T. Tsukuda, T. Akagawa, and C. Sasaoka, “High-power operation of inner-stripe GaN-based blue-violet laser diodes,” Proc. SPIE 6485, 648505 (2007).
[Crossref]

T. Czyszanowski, M. Wasiak, R. P. Sarzała, and W. Nakwaski, “Exactness of simplified scalar optical approaches in modeling a threshold operation of possible nitride vertical-cavity surface-emitting lasers,” Phys. Stat. Sol. A 204(10), 3562–3573 (2007).
[Crossref]

2005 (2)

J. F. Carlin, C. Zellweger, J. Dorsaz, S. Nicolay, G. Christmann, E. Feltin, R. Butté, and N. Grandjean, “Progresses in III-nitride distributed Bragg reflectors and microcavities using AlInN/GaN materials,” Phys. Stat. Sol. B 242(11), 2326–2344 (2005).
[Crossref]

R. Hui, Y. Wan, J. Li, S. Jin, J. Lin, and H. Jiang, “III-nitride-based planar lightwave circuits for long wavelength optical communications,” IEEE J. Quantum Electron. 41(1), 100–110 (2005).
[Crossref]

1997 (1)

D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Höpler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys.,  82(10), 5090–5096 (1997).
[Crossref]

1995 (1)

Akagawa, T.

M. Ohya, K. Fukuda, I. Masumoto, S. Kohmoto, K. Naniwae, M. Yamada, M. Matsudate, T. Tsukuda, T. Akagawa, and C. Sasaoka, “High-power operation of inner-stripe GaN-based blue-violet laser diodes,” Proc. SPIE 6485, 648505 (2007).
[Crossref]

Akagi, T.

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9(10), 102101 (2016).
[Crossref]

K. Matsui, T. Furuta, N. Hayashi, Y. Kozuka, T. Akagi, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “3-mW RT-CW GaN-Based VCSELs and Their Temperature Dependence,” International Workshop on Nitride Semiconductors, Orlando, USA, 2–7 Oct. 2016.

Akasaki, I.

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9(10), 102101 (2016).
[Crossref]

K. Matsui, T. Furuta, N. Hayashi, Y. Kozuka, T. Akagi, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “3-mW RT-CW GaN-Based VCSELs and Their Temperature Dependence,” International Workshop on Nitride Semiconductors, Orlando, USA, 2–7 Oct. 2016.

Akatsuka, Y.

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9(10), 102101 (2016).
[Crossref]

Ambacher, O.

D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Höpler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys.,  82(10), 5090–5096 (1997).
[Crossref]

Angerer, H.

D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Höpler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys.,  82(10), 5090–5096 (1997).
[Crossref]

Ariyoshi, A.

W. S. Tan, K. Takahashi, V. Bousquet, A. Ariyoshi, Y. Tsuda, M. Ohta, and M. Kauer, “Blue-violet inner stripe laser diodes using lattice matched AlInN as current confinement layer for high power operation,” Appl. Phys. Express 2(11), 112101 (2009).
[Crossref]

Baks, C. W.

Bengtsson, J.

E. Hashemi, J. Bengtsson, J. Gustavsson, M. Stattin, G. Cosendey, N. Grandjean, and Å. Haglund, “Analysis of structurally sensitive loss in GaN-based VCSEL cavities and its effect on modal discrimination,” Opt. Express 22(1), 411–426 (2014).
[Crossref] [PubMed]

E. Hashemi, J. Bengtsson, J. Gustavsson, M. Stattin, M. Glauser, G. Cosendey, N. Grandjean, M. Calciati, M. Goano, and Å. Haglund, “Triggering of guiding and antiguiding effects in GaN-based VCSELs,” Proc. SPIE 9001, 90010A (2014).
[Crossref]

E. Hashemi, J. Gustavsson, J. Bengtsson, M. Stattin, G. Cosendey, N. Grandjean, and Å. Haglund, “Engineering the lateral optical guiding in gallium nitride-based vertical-cavity surface-emitting laser cavities to reach the lowest threshold gain,” Jap. J. Appl. Phys. 52(8S), 08JG04 (2013).
[Crossref]

Bousquet, V.

W. S. Tan, K. Takahashi, V. Bousquet, A. Ariyoshi, Y. Tsuda, M. Ohta, and M. Kauer, “Blue-violet inner stripe laser diodes using lattice matched AlInN as current confinement layer for high power operation,” Appl. Phys. Express 2(11), 112101 (2009).
[Crossref]

Brunner, D.

D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Höpler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys.,  82(10), 5090–5096 (1997).
[Crossref]

Bu, Y. K.

Bustarret, E.

D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Höpler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys.,  82(10), 5090–5096 (1997).
[Crossref]

Butté, R.

J. F. Carlin, C. Zellweger, J. Dorsaz, S. Nicolay, G. Christmann, E. Feltin, R. Butté, and N. Grandjean, “Progresses in III-nitride distributed Bragg reflectors and microcavities using AlInN/GaN materials,” Phys. Stat. Sol. B 242(11), 2326–2344 (2005).
[Crossref]

Calciati, M.

E. Hashemi, J. Bengtsson, J. Gustavsson, M. Stattin, M. Glauser, G. Cosendey, N. Grandjean, M. Calciati, M. Goano, and Å. Haglund, “Triggering of guiding and antiguiding effects in GaN-based VCSELs,” Proc. SPIE 9001, 90010A (2014).
[Crossref]

Carlin, J. F.

G. Cosendey, A. Castiglia, G. Rossbach, J. F. Carlin, and N. Grandjean, “Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate,” Appl. Phys. Lett. 101(15), 151113 (2012).
[Crossref]

J. F. Carlin, C. Zellweger, J. Dorsaz, S. Nicolay, G. Christmann, E. Feltin, R. Butté, and N. Grandjean, “Progresses in III-nitride distributed Bragg reflectors and microcavities using AlInN/GaN materials,” Phys. Stat. Sol. B 242(11), 2326–2344 (2005).
[Crossref]

Castiglia, A.

G. Cosendey, A. Castiglia, G. Rossbach, J. F. Carlin, and N. Grandjean, “Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate,” Appl. Phys. Lett. 101(15), 151113 (2012).
[Crossref]

Chang, C. Y.

B. S. Cheng, Y. L. Wu, T. C. Lu, C. H. Chiu, C. H. Chen, P. M. Tu, H. C. Kuo, S. C. Wang, and C. Y. Chang, “High Q microcavity light emitting diodes with buried AlN current apertures,” Appl. Phys. Lett. 99(4), 041101 (2011).
[Crossref]

Chen, C. H.

B. S. Cheng, Y. L. Wu, T. C. Lu, C. H. Chiu, C. H. Chen, P. M. Tu, H. C. Kuo, S. C. Wang, and C. Y. Chang, “High Q microcavity light emitting diodes with buried AlN current apertures,” Appl. Phys. Lett. 99(4), 041101 (2011).
[Crossref]

T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
[Crossref]

Chen, C. K.

T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
[Crossref]

Chen, S. W.

T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
[Crossref]

Cheng, B. S.

B. S. Cheng, Y. L. Wu, T. C. Lu, C. H. Chiu, C. H. Chen, P. M. Tu, H. C. Kuo, S. C. Wang, and C. Y. Chang, “High Q microcavity light emitting diodes with buried AlN current apertures,” Appl. Phys. Lett. 99(4), 041101 (2011).
[Crossref]

Chiu, C. H.

B. S. Cheng, Y. L. Wu, T. C. Lu, C. H. Chiu, C. H. Chen, P. M. Tu, H. C. Kuo, S. C. Wang, and C. Y. Chang, “High Q microcavity light emitting diodes with buried AlN current apertures,” Appl. Phys. Lett. 99(4), 041101 (2011).
[Crossref]

Christmann, G.

J. F. Carlin, C. Zellweger, J. Dorsaz, S. Nicolay, G. Christmann, E. Feltin, R. Butté, and N. Grandjean, “Progresses in III-nitride distributed Bragg reflectors and microcavities using AlInN/GaN materials,” Phys. Stat. Sol. B 242(11), 2326–2344 (2005).
[Crossref]

Cohen, D. A.

J. T. Leonard, B. P. Yonkee, D. A. Cohen, L. Megalini, S. Lee, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture,” Appl. Phys. Lett. 108(3), 031111 (2016).
[Crossref]

J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
[Crossref]

Cosendey, G.

E. Hashemi, J. Bengtsson, J. Gustavsson, M. Stattin, G. Cosendey, N. Grandjean, and Å. Haglund, “Analysis of structurally sensitive loss in GaN-based VCSEL cavities and its effect on modal discrimination,” Opt. Express 22(1), 411–426 (2014).
[Crossref] [PubMed]

E. Hashemi, J. Bengtsson, J. Gustavsson, M. Stattin, M. Glauser, G. Cosendey, N. Grandjean, M. Calciati, M. Goano, and Å. Haglund, “Triggering of guiding and antiguiding effects in GaN-based VCSELs,” Proc. SPIE 9001, 90010A (2014).
[Crossref]

E. Hashemi, J. Gustavsson, J. Bengtsson, M. Stattin, G. Cosendey, N. Grandjean, and Å. Haglund, “Engineering the lateral optical guiding in gallium nitride-based vertical-cavity surface-emitting laser cavities to reach the lowest threshold gain,” Jap. J. Appl. Phys. 52(8S), 08JG04 (2013).
[Crossref]

G. Cosendey, A. Castiglia, G. Rossbach, J. F. Carlin, and N. Grandjean, “Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate,” Appl. Phys. Lett. 101(15), 151113 (2012).
[Crossref]

Czyszanowski, T.

T. Czyszanowski, M. Wasiak, R. P. Sarzała, and W. Nakwaski, “Exactness of simplified scalar optical approaches in modeling a threshold operation of possible nitride vertical-cavity surface-emitting lasers,” Phys. Stat. Sol. A 204(10), 3562–3573 (2007).
[Crossref]

R. Sarzała, T. Czyszanowski, M. Wasiak, M. Dems, L. Piskorski, W. Nakwaski, and K. Panajotov, “Numerical self-consistent analysis of VCSELs,” Adv. Opt. Technol., 689519 (2012).

W. Nakwaski, T. Czyszanowski, and R. P. Sarzała, “Optical design of Vertical-Cavity Lasers,” in Nitride Semiconductor Devices: Simulations and Principles,, J. Piprek, ed. (Wiley, 2007).

Dems, M.

R. Sarzała, T. Czyszanowski, M. Wasiak, M. Dems, L. Piskorski, W. Nakwaski, and K. Panajotov, “Numerical self-consistent analysis of VCSELs,” Adv. Opt. Technol., 689519 (2012).

DenBaars, S. P.

J. T. Leonard, B. P. Yonkee, D. A. Cohen, L. Megalini, S. Lee, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture,” Appl. Phys. Lett. 108(3), 031111 (2016).
[Crossref]

J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
[Crossref]

J. Piprek, Z. M. Li, R. Farrell, S. P. DenBaars, and S. Nakamura, “Electronic Properties of InGaN/GaN Vertical-Cavity Lasers,” in Nitride Semiconductor Devices: Simulations and Principles, J. Piprek, ed. (Wiley, 2007).

Dimitrov, R.

D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Höpler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys.,  82(10), 5090–5096 (1997).
[Crossref]

Dorsaz, J.

J. F. Carlin, C. Zellweger, J. Dorsaz, S. Nicolay, G. Christmann, E. Feltin, R. Butté, and N. Grandjean, “Progresses in III-nitride distributed Bragg reflectors and microcavities using AlInN/GaN materials,” Phys. Stat. Sol. B 242(11), 2326–2344 (2005).
[Crossref]

Einfeldt, S.

L. Redaelli, H. Wenzel, M. Martens, S. Einfeldt, M. Kneissl, and G. Tränkle, “Index antiguiding in narrow ridge-waveguide (In, Al)GaN-based laser diodes,” J. Appl. Phys. 114(11), 113102 (2013).
[Crossref]

Farrell, R.

J. Piprek, Z. M. Li, R. Farrell, S. P. DenBaars, and S. Nakamura, “Electronic Properties of InGaN/GaN Vertical-Cavity Lasers,” in Nitride Semiconductor Devices: Simulations and Principles, J. Piprek, ed. (Wiley, 2007).

Farrell, R. M.

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
[Crossref]

Feltin, E.

J. F. Carlin, C. Zellweger, J. Dorsaz, S. Nicolay, G. Christmann, E. Feltin, R. Butté, and N. Grandjean, “Progresses in III-nitride distributed Bragg reflectors and microcavities using AlInN/GaN materials,” Phys. Stat. Sol. B 242(11), 2326–2344 (2005).
[Crossref]

Freudenberg, F.

D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Höpler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys.,  82(10), 5090–5096 (1997).
[Crossref]

Fukuda, K.

M. Ohya, K. Fukuda, I. Masumoto, S. Kohmoto, K. Naniwae, M. Yamada, M. Matsudate, T. Tsukuda, T. Akagawa, and C. Sasaoka, “High-power operation of inner-stripe GaN-based blue-violet laser diodes,” Proc. SPIE 6485, 648505 (2007).
[Crossref]

Furuta, T.

K. Matsui, T. Furuta, N. Hayashi, Y. Kozuka, T. Akagi, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “3-mW RT-CW GaN-Based VCSELs and Their Temperature Dependence,” International Workshop on Nitride Semiconductors, Orlando, USA, 2–7 Oct. 2016.

Fuutagawa, N.

T. Hamaguchi, N. Fuutagawa, S. Izumi, M. Murayama, and H. Narui, “Milliwatt-class GaN-based blue vertical-cavity surface-emitting lasers fabricated by epitaxial lateral overgrowth,” Phys. Stat. Sol. A 213(5), 1170–1176 (2016).
[Crossref]

Glauser, M.

E. Hashemi, J. Bengtsson, J. Gustavsson, M. Stattin, M. Glauser, G. Cosendey, N. Grandjean, M. Calciati, M. Goano, and Å. Haglund, “Triggering of guiding and antiguiding effects in GaN-based VCSELs,” Proc. SPIE 9001, 90010A (2014).
[Crossref]

Goano, M.

E. Hashemi, J. Bengtsson, J. Gustavsson, M. Stattin, M. Glauser, G. Cosendey, N. Grandjean, M. Calciati, M. Goano, and Å. Haglund, “Triggering of guiding and antiguiding effects in GaN-based VCSELs,” Proc. SPIE 9001, 90010A (2014).
[Crossref]

Grandjean, N.

E. Hashemi, J. Bengtsson, J. Gustavsson, M. Stattin, M. Glauser, G. Cosendey, N. Grandjean, M. Calciati, M. Goano, and Å. Haglund, “Triggering of guiding and antiguiding effects in GaN-based VCSELs,” Proc. SPIE 9001, 90010A (2014).
[Crossref]

E. Hashemi, J. Bengtsson, J. Gustavsson, M. Stattin, G. Cosendey, N. Grandjean, and Å. Haglund, “Analysis of structurally sensitive loss in GaN-based VCSEL cavities and its effect on modal discrimination,” Opt. Express 22(1), 411–426 (2014).
[Crossref] [PubMed]

E. Hashemi, J. Gustavsson, J. Bengtsson, M. Stattin, G. Cosendey, N. Grandjean, and Å. Haglund, “Engineering the lateral optical guiding in gallium nitride-based vertical-cavity surface-emitting laser cavities to reach the lowest threshold gain,” Jap. J. Appl. Phys. 52(8S), 08JG04 (2013).
[Crossref]

G. Cosendey, A. Castiglia, G. Rossbach, J. F. Carlin, and N. Grandjean, “Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate,” Appl. Phys. Lett. 101(15), 151113 (2012).
[Crossref]

J. F. Carlin, C. Zellweger, J. Dorsaz, S. Nicolay, G. Christmann, E. Feltin, R. Butté, and N. Grandjean, “Progresses in III-nitride distributed Bragg reflectors and microcavities using AlInN/GaN materials,” Phys. Stat. Sol. B 242(11), 2326–2344 (2005).
[Crossref]

Gustavsson, J.

E. Hashemi, J. Bengtsson, J. Gustavsson, M. Stattin, M. Glauser, G. Cosendey, N. Grandjean, M. Calciati, M. Goano, and Å. Haglund, “Triggering of guiding and antiguiding effects in GaN-based VCSELs,” Proc. SPIE 9001, 90010A (2014).
[Crossref]

E. Hashemi, J. Bengtsson, J. Gustavsson, M. Stattin, G. Cosendey, N. Grandjean, and Å. Haglund, “Analysis of structurally sensitive loss in GaN-based VCSEL cavities and its effect on modal discrimination,” Opt. Express 22(1), 411–426 (2014).
[Crossref] [PubMed]

E. Hashemi, J. Gustavsson, J. Bengtsson, M. Stattin, G. Cosendey, N. Grandjean, and Å. Haglund, “Engineering the lateral optical guiding in gallium nitride-based vertical-cavity surface-emitting laser cavities to reach the lowest threshold gain,” Jap. J. Appl. Phys. 52(8S), 08JG04 (2013).
[Crossref]

Gustavsson, J. S.

Hadley, G. R.

Haglund, Å.

E. Hashemi, J. Bengtsson, J. Gustavsson, M. Stattin, G. Cosendey, N. Grandjean, and Å. Haglund, “Analysis of structurally sensitive loss in GaN-based VCSEL cavities and its effect on modal discrimination,” Opt. Express 22(1), 411–426 (2014).
[Crossref] [PubMed]

E. Hashemi, J. Bengtsson, J. Gustavsson, M. Stattin, M. Glauser, G. Cosendey, N. Grandjean, M. Calciati, M. Goano, and Å. Haglund, “Triggering of guiding and antiguiding effects in GaN-based VCSELs,” Proc. SPIE 9001, 90010A (2014).
[Crossref]

E. Hashemi, J. Gustavsson, J. Bengtsson, M. Stattin, G. Cosendey, N. Grandjean, and Å. Haglund, “Engineering the lateral optical guiding in gallium nitride-based vertical-cavity surface-emitting laser cavities to reach the lowest threshold gain,” Jap. J. Appl. Phys. 52(8S), 08JG04 (2013).
[Crossref]

Hamaguchi, T.

T. Hamaguchi, N. Fuutagawa, S. Izumi, M. Murayama, and H. Narui, “Milliwatt-class GaN-based blue vertical-cavity surface-emitting lasers fabricated by epitaxial lateral overgrowth,” Phys. Stat. Sol. A 213(5), 1170–1176 (2016).
[Crossref]

Hashemi, E.

E. Hashemi, J. Bengtsson, J. Gustavsson, M. Stattin, G. Cosendey, N. Grandjean, and Å. Haglund, “Analysis of structurally sensitive loss in GaN-based VCSEL cavities and its effect on modal discrimination,” Opt. Express 22(1), 411–426 (2014).
[Crossref] [PubMed]

E. Hashemi, J. Bengtsson, J. Gustavsson, M. Stattin, M. Glauser, G. Cosendey, N. Grandjean, M. Calciati, M. Goano, and Å. Haglund, “Triggering of guiding and antiguiding effects in GaN-based VCSELs,” Proc. SPIE 9001, 90010A (2014).
[Crossref]

E. Hashemi, J. Gustavsson, J. Bengtsson, M. Stattin, G. Cosendey, N. Grandjean, and Å. Haglund, “Engineering the lateral optical guiding in gallium nitride-based vertical-cavity surface-emitting laser cavities to reach the lowest threshold gain,” Jap. J. Appl. Phys. 52(8S), 08JG04 (2013).
[Crossref]

Hayashi, N.

K. Matsui, T. Furuta, N. Hayashi, Y. Kozuka, T. Akagi, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “3-mW RT-CW GaN-Based VCSELs and Their Temperature Dependence,” International Workshop on Nitride Semiconductors, Orlando, USA, 2–7 Oct. 2016.

Higuchi, Y.

D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature,” Appl. Phys. Express 4(7), 072103 (2011).
[Crossref]

Ho, T. L.

Hofmann, W.

Höpler, R.

D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Höpler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys.,  82(10), 5090–5096 (1997).
[Crossref]

Hu, X. L.

W. J. Liu, X. L. Hu, L. Y. Ying, J. Y. Zhang, and B. P. Zhang, “Room temperature continuous wave lasing of electrically injected GaN-based vertical cavity surface emitting lasers,” Appl. Phys. Lett. 104(25), 251116 (2014).
[Crossref]

Huang, S. C.

Hui, R.

R. Hui, Y. Wan, J. Li, S. Jin, J. Lin, and H. Jiang, “III-nitride-based planar lightwave circuits for long wavelength optical communications,” IEEE J. Quantum Electron. 41(1), 100–110 (2005).
[Crossref]

Ikeyama, K.

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9(10), 102101 (2016).
[Crossref]

Imafuji, O.

T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature,” IEEE J. Quantum Electron. 48(9), 1107–1112 (2012).
[Crossref]

Iwaya, M.

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9(10), 102101 (2016).
[Crossref]

K. Matsui, T. Furuta, N. Hayashi, Y. Kozuka, T. Akagi, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “3-mW RT-CW GaN-Based VCSELs and Their Temperature Dependence,” International Workshop on Nitride Semiconductors, Orlando, USA, 2–7 Oct. 2016.

Izumi, S.

T. Hamaguchi, N. Fuutagawa, S. Izumi, M. Murayama, and H. Narui, “Milliwatt-class GaN-based blue vertical-cavity surface-emitting lasers fabricated by epitaxial lateral overgrowth,” Phys. Stat. Sol. A 213(5), 1170–1176 (2016).
[Crossref]

Jiang, H.

R. Hui, Y. Wan, J. Li, S. Jin, J. Lin, and H. Jiang, “III-nitride-based planar lightwave circuits for long wavelength optical communications,” IEEE J. Quantum Electron. 41(1), 100–110 (2005).
[Crossref]

Jin, S.

R. Hui, Y. Wan, J. Li, S. Jin, J. Lin, and H. Jiang, “III-nitride-based planar lightwave circuits for long wavelength optical communications,” IEEE J. Quantum Electron. 41(1), 100–110 (2005).
[Crossref]

Kamiyama, S.

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9(10), 102101 (2016).
[Crossref]

K. Matsui, T. Furuta, N. Hayashi, Y. Kozuka, T. Akagi, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “3-mW RT-CW GaN-Based VCSELs and Their Temperature Dependence,” International Workshop on Nitride Semiconductors, Orlando, USA, 2–7 Oct. 2016.

Kasahara, D.

D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature,” Appl. Phys. Express 4(7), 072103 (2011).
[Crossref]

Kauer, M.

W. S. Tan, K. Takahashi, V. Bousquet, A. Ariyoshi, Y. Tsuda, M. Ohta, and M. Kauer, “Blue-violet inner stripe laser diodes using lattice matched AlInN as current confinement layer for high power operation,” Appl. Phys. Express 2(11), 112101 (2009).
[Crossref]

Kawaguchi, M.

T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature,” IEEE J. Quantum Electron. 48(9), 1107–1112 (2012).
[Crossref]

Kawamata, J.

D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature,” Appl. Phys. Express 4(7), 072103 (2011).
[Crossref]

Kimoto, T.

N. Watanabe, T. Kimoto, and J. Suda, “Thermo-optic coefficients of SiC, GaN, and AlN up to 512°C from infrared to ultraviolet region for tunable filter applications,” Proc. SPIE 7926, 7926042011).
[Crossref]

Kneissl, M.

L. Redaelli, H. Wenzel, M. Martens, S. Einfeldt, M. Kneissl, and G. Tränkle, “Index antiguiding in narrow ridge-waveguide (In, Al)GaN-based laser diodes,” J. Appl. Phys. 114(11), 113102 (2013).
[Crossref]

Kohmoto, S.

M. Ohya, K. Fukuda, I. Masumoto, S. Kohmoto, K. Naniwae, M. Yamada, M. Matsudate, T. Tsukuda, T. Akagawa, and C. Sasaoka, “High-power operation of inner-stripe GaN-based blue-violet laser diodes,” Proc. SPIE 6485, 648505 (2007).
[Crossref]

Koide, N.

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9(10), 102101 (2016).
[Crossref]

Kosugi, T.

D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature,” Appl. Phys. Express 4(7), 072103 (2011).
[Crossref]

Kozuka, Y.

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9(10), 102101 (2016).
[Crossref]

K. Matsui, T. Furuta, N. Hayashi, Y. Kozuka, T. Akagi, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “3-mW RT-CW GaN-Based VCSELs and Their Temperature Dependence,” International Workshop on Nitride Semiconductors, Orlando, USA, 2–7 Oct. 2016.

Kuchta, D. M.

Kuo, H. C.

B. S. Cheng, Y. L. Wu, T. C. Lu, C. H. Chiu, C. H. Chen, P. M. Tu, H. C. Kuo, S. C. Wang, and C. Y. Chang, “High Q microcavity light emitting diodes with buried AlN current apertures,” Appl. Phys. Lett. 99(4), 041101 (2011).
[Crossref]

T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
[Crossref]

Lai, Y. Y.

Larsson, A.

Lee, S.

J. T. Leonard, B. P. Yonkee, D. A. Cohen, L. Megalini, S. Lee, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture,” Appl. Phys. Lett. 108(3), 031111 (2016).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
[Crossref]

Leonard, J. T.

J. T. Leonard, B. P. Yonkee, D. A. Cohen, L. Megalini, S. Lee, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture,” Appl. Phys. Lett. 108(3), 031111 (2016).
[Crossref]

J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
[Crossref]

Li, J.

R. Hui, Y. Wan, J. Li, S. Jin, J. Lin, and H. Jiang, “III-nitride-based planar lightwave circuits for long wavelength optical communications,” IEEE J. Quantum Electron. 41(1), 100–110 (2005).
[Crossref]

Li, Z. C.

Li, Z. M.

J. Piprek, Z. M. Li, R. Farrell, S. P. DenBaars, and S. Nakamura, “Electronic Properties of InGaN/GaN Vertical-Cavity Lasers,” in Nitride Semiconductor Devices: Simulations and Principles, J. Piprek, ed. (Wiley, 2007).

Li, Z. Y.

T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
[Crossref]

Lin, J.

R. Hui, Y. Wan, J. Li, S. Jin, J. Lin, and H. Jiang, “III-nitride-based planar lightwave circuits for long wavelength optical communications,” IEEE J. Quantum Electron. 41(1), 100–110 (2005).
[Crossref]

Liu, J. P.

Liu, W. J.

W. J. Liu, X. L. Hu, L. Y. Ying, J. Y. Zhang, and B. P. Zhang, “Room temperature continuous wave lasing of electrically injected GaN-based vertical cavity surface emitting lasers,” Appl. Phys. Lett. 104(25), 251116 (2014).
[Crossref]

Lu, T. C.

Y. Y. Lai, S. C. Huang, T. L. Ho, T. C. Lu, and S. C. Wang, “Numerical analysis on current and optical confinement of III-nitride vertical-cavity surface-emitting lasers,” Opt. Express 22(8), 9789–9797 (2014).
[Crossref] [PubMed]

B. S. Cheng, Y. L. Wu, T. C. Lu, C. H. Chiu, C. H. Chen, P. M. Tu, H. C. Kuo, S. C. Wang, and C. Y. Chang, “High Q microcavity light emitting diodes with buried AlN current apertures,” Appl. Phys. Lett. 99(4), 041101 (2011).
[Crossref]

T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
[Crossref]

Margalith, T.

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
[Crossref]

J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015).
[Crossref]

Martens, M.

L. Redaelli, H. Wenzel, M. Martens, S. Einfeldt, M. Kneissl, and G. Tränkle, “Index antiguiding in narrow ridge-waveguide (In, Al)GaN-based laser diodes,” J. Appl. Phys. 114(11), 113102 (2013).
[Crossref]

Masumoto, I.

M. Ohya, K. Fukuda, I. Masumoto, S. Kohmoto, K. Naniwae, M. Yamada, M. Matsudate, T. Tsukuda, T. Akagawa, and C. Sasaoka, “High-power operation of inner-stripe GaN-based blue-violet laser diodes,” Proc. SPIE 6485, 648505 (2007).
[Crossref]

Matsudate, M.

M. Ohya, K. Fukuda, I. Masumoto, S. Kohmoto, K. Naniwae, M. Yamada, M. Matsudate, T. Tsukuda, T. Akagawa, and C. Sasaoka, “High-power operation of inner-stripe GaN-based blue-violet laser diodes,” Proc. SPIE 6485, 648505 (2007).
[Crossref]

Matsui, K.

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9(10), 102101 (2016).
[Crossref]

K. Matsui, T. Furuta, N. Hayashi, Y. Kozuka, T. Akagi, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “3-mW RT-CW GaN-Based VCSELs and Their Temperature Dependence,” International Workshop on Nitride Semiconductors, Orlando, USA, 2–7 Oct. 2016.

Matsumura, H.

D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature,” Appl. Phys. Express 4(7), 072103 (2011).
[Crossref]

Megalini, L.

J. T. Leonard, B. P. Yonkee, D. A. Cohen, L. Megalini, S. Lee, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture,” Appl. Phys. Lett. 108(3), 031111 (2016).
[Crossref]

Mei, Y.

Morita, D.

D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature,” Appl. Phys. Express 4(7), 072103 (2011).
[Crossref]

Mukai, T.

D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature,” Appl. Phys. Express 4(7), 072103 (2011).
[Crossref]

Murayama, M.

T. Hamaguchi, N. Fuutagawa, S. Izumi, M. Murayama, and H. Narui, “Milliwatt-class GaN-based blue vertical-cavity surface-emitting lasers fabricated by epitaxial lateral overgrowth,” Phys. Stat. Sol. A 213(5), 1170–1176 (2016).
[Crossref]

Nagamatsu, K.

T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature,” IEEE J. Quantum Electron. 48(9), 1107–1112 (2012).
[Crossref]

Nakagawa, K.

D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature,” Appl. Phys. Express 4(7), 072103 (2011).
[Crossref]

Nakamura, S.

J. T. Leonard, B. P. Yonkee, D. A. Cohen, L. Megalini, S. Lee, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture,” Appl. Phys. Lett. 108(3), 031111 (2016).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
[Crossref]

J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015).
[Crossref]

J. Piprek, Z. M. Li, R. Farrell, S. P. DenBaars, and S. Nakamura, “Electronic Properties of InGaN/GaN Vertical-Cavity Lasers,” in Nitride Semiconductor Devices: Simulations and Principles, J. Piprek, ed. (Wiley, 2007).

Nakwaski, W.

T. Czyszanowski, M. Wasiak, R. P. Sarzała, and W. Nakwaski, “Exactness of simplified scalar optical approaches in modeling a threshold operation of possible nitride vertical-cavity surface-emitting lasers,” Phys. Stat. Sol. A 204(10), 3562–3573 (2007).
[Crossref]

R. Sarzała, T. Czyszanowski, M. Wasiak, M. Dems, L. Piskorski, W. Nakwaski, and K. Panajotov, “Numerical self-consistent analysis of VCSELs,” Adv. Opt. Technol., 689519 (2012).

W. Nakwaski, T. Czyszanowski, and R. P. Sarzała, “Optical design of Vertical-Cavity Lasers,” in Nitride Semiconductor Devices: Simulations and Principles,, J. Piprek, ed. (Wiley, 2007).

Naniwae, K.

M. Ohya, K. Fukuda, I. Masumoto, S. Kohmoto, K. Naniwae, M. Yamada, M. Matsudate, T. Tsukuda, T. Akagawa, and C. Sasaoka, “High-power operation of inner-stripe GaN-based blue-violet laser diodes,” Proc. SPIE 6485, 648505 (2007).
[Crossref]

Narui, H.

T. Hamaguchi, N. Fuutagawa, S. Izumi, M. Murayama, and H. Narui, “Milliwatt-class GaN-based blue vertical-cavity surface-emitting lasers fabricated by epitaxial lateral overgrowth,” Phys. Stat. Sol. A 213(5), 1170–1176 (2016).
[Crossref]

Nicolay, S.

J. F. Carlin, C. Zellweger, J. Dorsaz, S. Nicolay, G. Christmann, E. Feltin, R. Butté, and N. Grandjean, “Progresses in III-nitride distributed Bragg reflectors and microcavities using AlInN/GaN materials,” Phys. Stat. Sol. B 242(11), 2326–2344 (2005).
[Crossref]

Ohta, M.

W. S. Tan, K. Takahashi, V. Bousquet, A. Ariyoshi, Y. Tsuda, M. Ohta, and M. Kauer, “Blue-violet inner stripe laser diodes using lattice matched AlInN as current confinement layer for high power operation,” Appl. Phys. Express 2(11), 112101 (2009).
[Crossref]

Ohya, M.

M. Ohya, K. Fukuda, I. Masumoto, S. Kohmoto, K. Naniwae, M. Yamada, M. Matsudate, T. Tsukuda, T. Akagawa, and C. Sasaoka, “High-power operation of inner-stripe GaN-based blue-violet laser diodes,” Proc. SPIE 6485, 648505 (2007).
[Crossref]

Onishi, T.

T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature,” IEEE J. Quantum Electron. 48(9), 1107–1112 (2012).
[Crossref]

Panajotov, K.

R. Sarzała, T. Czyszanowski, M. Wasiak, M. Dems, L. Piskorski, W. Nakwaski, and K. Panajotov, “Numerical self-consistent analysis of VCSELs,” Adv. Opt. Technol., 689519 (2012).

Piprek, J.

J. Piprek, “What is the problem with GaN-based VCSELs?” Proc. International Conference on Numerical Simulation of Optoelectronic Devices (IEEE, 2013), pp. 89–90.

J. Piprek, Z. M. Li, R. Farrell, S. P. DenBaars, and S. Nakamura, “Electronic Properties of InGaN/GaN Vertical-Cavity Lasers,” in Nitride Semiconductor Devices: Simulations and Principles, J. Piprek, ed. (Wiley, 2007).

Piskorski, L.

R. Sarzała, T. Czyszanowski, M. Wasiak, M. Dems, L. Piskorski, W. Nakwaski, and K. Panajotov, “Numerical self-consistent analysis of VCSELs,” Adv. Opt. Technol., 689519 (2012).

Proesel, J. E.

Redaelli, L.

L. Redaelli, H. Wenzel, M. Martens, S. Einfeldt, M. Kneissl, and G. Tränkle, “Index antiguiding in narrow ridge-waveguide (In, Al)GaN-based laser diodes,” J. Appl. Phys. 114(11), 113102 (2013).
[Crossref]

Rossbach, G.

G. Cosendey, A. Castiglia, G. Rossbach, J. F. Carlin, and N. Grandjean, “Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate,” Appl. Phys. Lett. 101(15), 151113 (2012).
[Crossref]

Rylyakov, A. V.

Sarzala, R.

R. Sarzała, T. Czyszanowski, M. Wasiak, M. Dems, L. Piskorski, W. Nakwaski, and K. Panajotov, “Numerical self-consistent analysis of VCSELs,” Adv. Opt. Technol., 689519 (2012).

Sarzala, R. P.

T. Czyszanowski, M. Wasiak, R. P. Sarzała, and W. Nakwaski, “Exactness of simplified scalar optical approaches in modeling a threshold operation of possible nitride vertical-cavity surface-emitting lasers,” Phys. Stat. Sol. A 204(10), 3562–3573 (2007).
[Crossref]

W. Nakwaski, T. Czyszanowski, and R. P. Sarzała, “Optical design of Vertical-Cavity Lasers,” in Nitride Semiconductor Devices: Simulations and Principles,, J. Piprek, ed. (Wiley, 2007).

P. Śpiewak, A. K. Sokół, M. Wasiak, and R. P. Sarzała, “Impact of AlN-aperture on optical and electrical properties on nitride VCSEL,” Proc. International Conference on Numerical Simulation of Optoelectronic Devices (IEEE, 2016), pp. 41–42.

Sasaoka, C.

M. Ohya, K. Fukuda, I. Masumoto, S. Kohmoto, K. Naniwae, M. Yamada, M. Matsudate, T. Tsukuda, T. Akagawa, and C. Sasaoka, “High-power operation of inner-stripe GaN-based blue-violet laser diodes,” Proc. SPIE 6485, 648505 (2007).
[Crossref]

Schow, C. L.

Sokól, A. K.

P. Śpiewak, A. K. Sokół, M. Wasiak, and R. P. Sarzała, “Impact of AlN-aperture on optical and electrical properties on nitride VCSEL,” Proc. International Conference on Numerical Simulation of Optoelectronic Devices (IEEE, 2016), pp. 41–42.

Speck, J. S.

J. T. Leonard, B. P. Yonkee, D. A. Cohen, L. Megalini, S. Lee, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture,” Appl. Phys. Lett. 108(3), 031111 (2016).
[Crossref]

J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
[Crossref]

Spiewak, P.

P. Śpiewak, A. K. Sokół, M. Wasiak, and R. P. Sarzała, “Impact of AlN-aperture on optical and electrical properties on nitride VCSEL,” Proc. International Conference on Numerical Simulation of Optoelectronic Devices (IEEE, 2016), pp. 41–42.

Stattin, M.

E. Hashemi, J. Bengtsson, J. Gustavsson, M. Stattin, G. Cosendey, N. Grandjean, and Å. Haglund, “Analysis of structurally sensitive loss in GaN-based VCSEL cavities and its effect on modal discrimination,” Opt. Express 22(1), 411–426 (2014).
[Crossref] [PubMed]

E. Hashemi, J. Bengtsson, J. Gustavsson, M. Stattin, M. Glauser, G. Cosendey, N. Grandjean, M. Calciati, M. Goano, and Å. Haglund, “Triggering of guiding and antiguiding effects in GaN-based VCSELs,” Proc. SPIE 9001, 90010A (2014).
[Crossref]

E. Hashemi, J. Gustavsson, J. Bengtsson, M. Stattin, G. Cosendey, N. Grandjean, and Å. Haglund, “Engineering the lateral optical guiding in gallium nitride-based vertical-cavity surface-emitting laser cavities to reach the lowest threshold gain,” Jap. J. Appl. Phys. 52(8S), 08JG04 (2013).
[Crossref]

Stutzmann, M.

D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Höpler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys.,  82(10), 5090–5096 (1997).
[Crossref]

Suda, J.

N. Watanabe, T. Kimoto, and J. Suda, “Thermo-optic coefficients of SiC, GaN, and AlN up to 512°C from infrared to ultraviolet region for tunable filter applications,” Proc. SPIE 7926, 7926042011).
[Crossref]

Takahashi, K.

W. S. Tan, K. Takahashi, V. Bousquet, A. Ariyoshi, Y. Tsuda, M. Ohta, and M. Kauer, “Blue-violet inner stripe laser diodes using lattice matched AlInN as current confinement layer for high power operation,” Appl. Phys. Express 2(11), 112101 (2009).
[Crossref]

Takeuchi, T.

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9(10), 102101 (2016).
[Crossref]

K. Matsui, T. Furuta, N. Hayashi, Y. Kozuka, T. Akagi, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “3-mW RT-CW GaN-Based VCSELs and Their Temperature Dependence,” International Workshop on Nitride Semiconductors, Orlando, USA, 2–7 Oct. 2016.

Takigawa, S.

T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature,” IEEE J. Quantum Electron. 48(9), 1107–1112 (2012).
[Crossref]

Tan, W. S.

W. S. Tan, K. Takahashi, V. Bousquet, A. Ariyoshi, Y. Tsuda, M. Ohta, and M. Kauer, “Blue-violet inner stripe laser diodes using lattice matched AlInN as current confinement layer for high power operation,” Appl. Phys. Express 2(11), 112101 (2009).
[Crossref]

Tränkle, G.

L. Redaelli, H. Wenzel, M. Martens, S. Einfeldt, M. Kneissl, and G. Tränkle, “Index antiguiding in narrow ridge-waveguide (In, Al)GaN-based laser diodes,” J. Appl. Phys. 114(11), 113102 (2013).
[Crossref]

Tsuda, Y.

W. S. Tan, K. Takahashi, V. Bousquet, A. Ariyoshi, Y. Tsuda, M. Ohta, and M. Kauer, “Blue-violet inner stripe laser diodes using lattice matched AlInN as current confinement layer for high power operation,” Appl. Phys. Express 2(11), 112101 (2009).
[Crossref]

Tsukuda, T.

M. Ohya, K. Fukuda, I. Masumoto, S. Kohmoto, K. Naniwae, M. Yamada, M. Matsudate, T. Tsukuda, T. Akagawa, and C. Sasaoka, “High-power operation of inner-stripe GaN-based blue-violet laser diodes,” Proc. SPIE 6485, 648505 (2007).
[Crossref]

Tu, P. M.

B. S. Cheng, Y. L. Wu, T. C. Lu, C. H. Chiu, C. H. Chen, P. M. Tu, H. C. Kuo, S. C. Wang, and C. Y. Chang, “High Q microcavity light emitting diodes with buried AlN current apertures,” Appl. Phys. Lett. 99(4), 041101 (2011).
[Crossref]

T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
[Crossref]

Wan, Y.

R. Hui, Y. Wan, J. Li, S. Jin, J. Lin, and H. Jiang, “III-nitride-based planar lightwave circuits for long wavelength optical communications,” IEEE J. Quantum Electron. 41(1), 100–110 (2005).
[Crossref]

Wang, S. C.

Y. Y. Lai, S. C. Huang, T. L. Ho, T. C. Lu, and S. C. Wang, “Numerical analysis on current and optical confinement of III-nitride vertical-cavity surface-emitting lasers,” Opt. Express 22(8), 9789–9797 (2014).
[Crossref] [PubMed]

B. S. Cheng, Y. L. Wu, T. C. Lu, C. H. Chiu, C. H. Chen, P. M. Tu, H. C. Kuo, S. C. Wang, and C. Y. Chang, “High Q microcavity light emitting diodes with buried AlN current apertures,” Appl. Phys. Lett. 99(4), 041101 (2011).
[Crossref]

T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
[Crossref]

Wasiak, M.

T. Czyszanowski, M. Wasiak, R. P. Sarzała, and W. Nakwaski, “Exactness of simplified scalar optical approaches in modeling a threshold operation of possible nitride vertical-cavity surface-emitting lasers,” Phys. Stat. Sol. A 204(10), 3562–3573 (2007).
[Crossref]

R. Sarzała, T. Czyszanowski, M. Wasiak, M. Dems, L. Piskorski, W. Nakwaski, and K. Panajotov, “Numerical self-consistent analysis of VCSELs,” Adv. Opt. Technol., 689519 (2012).

P. Śpiewak, A. K. Sokół, M. Wasiak, and R. P. Sarzała, “Impact of AlN-aperture on optical and electrical properties on nitride VCSEL,” Proc. International Conference on Numerical Simulation of Optoelectronic Devices (IEEE, 2016), pp. 41–42.

Watanabe, N.

N. Watanabe, T. Kimoto, and J. Suda, “Thermo-optic coefficients of SiC, GaN, and AlN up to 512°C from infrared to ultraviolet region for tunable filter applications,” Proc. SPIE 7926, 7926042011).
[Crossref]

Weng, G.

Wenzel, H.

L. Redaelli, H. Wenzel, M. Martens, S. Einfeldt, M. Kneissl, and G. Tränkle, “Index antiguiding in narrow ridge-waveguide (In, Al)GaN-based laser diodes,” J. Appl. Phys. 114(11), 113102 (2013).
[Crossref]

Westbergh, P.

Wu, T. T.

T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
[Crossref]

Wu, Y. L.

B. S. Cheng, Y. L. Wu, T. C. Lu, C. H. Chiu, C. H. Chen, P. M. Tu, H. C. Kuo, S. C. Wang, and C. Y. Chang, “High Q microcavity light emitting diodes with buried AlN current apertures,” Appl. Phys. Lett. 99(4), 041101 (2011).
[Crossref]

Yamada, M.

M. Ohya, K. Fukuda, I. Masumoto, S. Kohmoto, K. Naniwae, M. Yamada, M. Matsudate, T. Tsukuda, T. Akagawa, and C. Sasaoka, “High-power operation of inner-stripe GaN-based blue-violet laser diodes,” Proc. SPIE 6485, 648505 (2007).
[Crossref]

Yamanaka, K.

T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature,” IEEE J. Quantum Electron. 48(9), 1107–1112 (2012).
[Crossref]

Yang, H.

Ying, L. Y.

G. Weng, Y. Mei, J. P. Liu, W. Hofmann, L. Y. Ying, J. Y. Zhang, Y. K. Bu, Z. C. Li, H. Yang, and B. P. Zhang, “Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers,” Opt. Express 24(14), 15546–15553 (2016).
[Crossref] [PubMed]

W. J. Liu, X. L. Hu, L. Y. Ying, J. Y. Zhang, and B. P. Zhang, “Room temperature continuous wave lasing of electrically injected GaN-based vertical cavity surface emitting lasers,” Appl. Phys. Lett. 104(25), 251116 (2014).
[Crossref]

Yonkee, B. P.

J. T. Leonard, B. P. Yonkee, D. A. Cohen, L. Megalini, S. Lee, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture,” Appl. Phys. Lett. 108(3), 031111 (2016).
[Crossref]

J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
[Crossref]

Yoshida, S.

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9(10), 102101 (2016).
[Crossref]

Young, E. C.

J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015).
[Crossref]

Zellweger, C.

J. F. Carlin, C. Zellweger, J. Dorsaz, S. Nicolay, G. Christmann, E. Feltin, R. Butté, and N. Grandjean, “Progresses in III-nitride distributed Bragg reflectors and microcavities using AlInN/GaN materials,” Phys. Stat. Sol. B 242(11), 2326–2344 (2005).
[Crossref]

Zhang, B. P.

G. Weng, Y. Mei, J. P. Liu, W. Hofmann, L. Y. Ying, J. Y. Zhang, Y. K. Bu, Z. C. Li, H. Yang, and B. P. Zhang, “Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers,” Opt. Express 24(14), 15546–15553 (2016).
[Crossref] [PubMed]

W. J. Liu, X. L. Hu, L. Y. Ying, J. Y. Zhang, and B. P. Zhang, “Room temperature continuous wave lasing of electrically injected GaN-based vertical cavity surface emitting lasers,” Appl. Phys. Lett. 104(25), 251116 (2014).
[Crossref]

Zhang, J. Y.

G. Weng, Y. Mei, J. P. Liu, W. Hofmann, L. Y. Ying, J. Y. Zhang, Y. K. Bu, Z. C. Li, H. Yang, and B. P. Zhang, “Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers,” Opt. Express 24(14), 15546–15553 (2016).
[Crossref] [PubMed]

W. J. Liu, X. L. Hu, L. Y. Ying, J. Y. Zhang, and B. P. Zhang, “Room temperature continuous wave lasing of electrically injected GaN-based vertical cavity surface emitting lasers,” Appl. Phys. Lett. 104(25), 251116 (2014).
[Crossref]

Appl. Phys. Express (3)

D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature,” Appl. Phys. Express 4(7), 072103 (2011).
[Crossref]

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9(10), 102101 (2016).
[Crossref]

W. S. Tan, K. Takahashi, V. Bousquet, A. Ariyoshi, Y. Tsuda, M. Ohta, and M. Kauer, “Blue-violet inner stripe laser diodes using lattice matched AlInN as current confinement layer for high power operation,” Appl. Phys. Express 2(11), 112101 (2009).
[Crossref]

Appl. Phys. Lett. (7)

B. S. Cheng, Y. L. Wu, T. C. Lu, C. H. Chiu, C. H. Chen, P. M. Tu, H. C. Kuo, S. C. Wang, and C. Y. Chang, “High Q microcavity light emitting diodes with buried AlN current apertures,” Appl. Phys. Lett. 99(4), 041101 (2011).
[Crossref]

G. Cosendey, A. Castiglia, G. Rossbach, J. F. Carlin, and N. Grandjean, “Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate,” Appl. Phys. Lett. 101(15), 151113 (2012).
[Crossref]

T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
[Crossref]

W. J. Liu, X. L. Hu, L. Y. Ying, J. Y. Zhang, and B. P. Zhang, “Room temperature continuous wave lasing of electrically injected GaN-based vertical cavity surface emitting lasers,” Appl. Phys. Lett. 104(25), 251116 (2014).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
[Crossref]

J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015).
[Crossref]

J. T. Leonard, B. P. Yonkee, D. A. Cohen, L. Megalini, S. Lee, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture,” Appl. Phys. Lett. 108(3), 031111 (2016).
[Crossref]

IEEE J. Quantum Electron. (2)

T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature,” IEEE J. Quantum Electron. 48(9), 1107–1112 (2012).
[Crossref]

R. Hui, Y. Wan, J. Li, S. Jin, J. Lin, and H. Jiang, “III-nitride-based planar lightwave circuits for long wavelength optical communications,” IEEE J. Quantum Electron. 41(1), 100–110 (2005).
[Crossref]

J. Appl. Phys. (2)

L. Redaelli, H. Wenzel, M. Martens, S. Einfeldt, M. Kneissl, and G. Tränkle, “Index antiguiding in narrow ridge-waveguide (In, Al)GaN-based laser diodes,” J. Appl. Phys. 114(11), 113102 (2013).
[Crossref]

D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Höpler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys.,  82(10), 5090–5096 (1997).
[Crossref]

J. Lightwave Technol. (1)

Jap. J. Appl. Phys. (1)

E. Hashemi, J. Gustavsson, J. Bengtsson, M. Stattin, G. Cosendey, N. Grandjean, and Å. Haglund, “Engineering the lateral optical guiding in gallium nitride-based vertical-cavity surface-emitting laser cavities to reach the lowest threshold gain,” Jap. J. Appl. Phys. 52(8S), 08JG04 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Stat. Sol. A (2)

T. Czyszanowski, M. Wasiak, R. P. Sarzała, and W. Nakwaski, “Exactness of simplified scalar optical approaches in modeling a threshold operation of possible nitride vertical-cavity surface-emitting lasers,” Phys. Stat. Sol. A 204(10), 3562–3573 (2007).
[Crossref]

T. Hamaguchi, N. Fuutagawa, S. Izumi, M. Murayama, and H. Narui, “Milliwatt-class GaN-based blue vertical-cavity surface-emitting lasers fabricated by epitaxial lateral overgrowth,” Phys. Stat. Sol. A 213(5), 1170–1176 (2016).
[Crossref]

Phys. Stat. Sol. B (1)

J. F. Carlin, C. Zellweger, J. Dorsaz, S. Nicolay, G. Christmann, E. Feltin, R. Butté, and N. Grandjean, “Progresses in III-nitride distributed Bragg reflectors and microcavities using AlInN/GaN materials,” Phys. Stat. Sol. B 242(11), 2326–2344 (2005).
[Crossref]

Proc. SPIE (3)

N. Watanabe, T. Kimoto, and J. Suda, “Thermo-optic coefficients of SiC, GaN, and AlN up to 512°C from infrared to ultraviolet region for tunable filter applications,” Proc. SPIE 7926, 7926042011).
[Crossref]

E. Hashemi, J. Bengtsson, J. Gustavsson, M. Stattin, M. Glauser, G. Cosendey, N. Grandjean, M. Calciati, M. Goano, and Å. Haglund, “Triggering of guiding and antiguiding effects in GaN-based VCSELs,” Proc. SPIE 9001, 90010A (2014).
[Crossref]

M. Ohya, K. Fukuda, I. Masumoto, S. Kohmoto, K. Naniwae, M. Yamada, M. Matsudate, T. Tsukuda, T. Akagawa, and C. Sasaoka, “High-power operation of inner-stripe GaN-based blue-violet laser diodes,” Proc. SPIE 6485, 648505 (2007).
[Crossref]

Other (6)

R. Sarzała, T. Czyszanowski, M. Wasiak, M. Dems, L. Piskorski, W. Nakwaski, and K. Panajotov, “Numerical self-consistent analysis of VCSELs,” Adv. Opt. Technol., 689519 (2012).

J. Piprek, Z. M. Li, R. Farrell, S. P. DenBaars, and S. Nakamura, “Electronic Properties of InGaN/GaN Vertical-Cavity Lasers,” in Nitride Semiconductor Devices: Simulations and Principles, J. Piprek, ed. (Wiley, 2007).

J. Piprek, “What is the problem with GaN-based VCSELs?” Proc. International Conference on Numerical Simulation of Optoelectronic Devices (IEEE, 2013), pp. 89–90.

K. Matsui, T. Furuta, N. Hayashi, Y. Kozuka, T. Akagi, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “3-mW RT-CW GaN-Based VCSELs and Their Temperature Dependence,” International Workshop on Nitride Semiconductors, Orlando, USA, 2–7 Oct. 2016.

W. Nakwaski, T. Czyszanowski, and R. P. Sarzała, “Optical design of Vertical-Cavity Lasers,” in Nitride Semiconductor Devices: Simulations and Principles,, J. Piprek, ed. (Wiley, 2007).

P. Śpiewak, A. K. Sokół, M. Wasiak, and R. P. Sarzała, “Impact of AlN-aperture on optical and electrical properties on nitride VCSEL,” Proc. International Conference on Numerical Simulation of Optoelectronic Devices (IEEE, 2016), pp. 41–42.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Left: Schematic cross-sectional view of a VCSEL with a step in the layer profile. Right: Scanning electron microscopy (SEM) image of the layer structure in a fabricated GaN/AlInN-based VCSEL [1].
Fig. 2
Fig. 2 Details of the layer structure in the different studied types of current apertures. For clarity, in the shown layer structures the ITO layer in the central region appears to be isolated from that in the periphery, but in reality the ITO-layer is continuous across the step-like structure created by the aperture [21]. Thus, the ITO always provides an electrical connection between the p-GaN and the metal p-contact. The definition of the step height δ in the topmost part of the layer structure is also indicated. The inset shows the calculated temperature distribution in the indicated part of the cavity.
Fig. 3
Fig. 3 Calculated material threshold gain in the three QWs for the fundamental mode in the studied cavities, with (large marker) and without (small marker) thermal effects. The number next to each larger marker denotes the layer step height (δ) for each case. The two insets on the right hand side show the amplitude of the cavity field for the indicated cavity, without and with thermal lensing included; only the part of the cavity that is above the bottom DBR is shown. To clearly show the peripheral fields, the central fields are shown saturated to the same degree in the two cases.
Fig. 4
Fig. 4 Contributions to the total cavity loss for the fundamental mode in the studied cavities, with thermal effects included. The percentages denote the change in lateral loss compared to the cold-cavity case.
Fig. 5
Fig. 5 The same as Fig. 3 but for the first-higher order mode. The insets show the cross-sectional intracavity field near the active region for the indicated cavities.
Fig. 6
Fig. 6 The same as Fig. 4 but for the first-higher order mode.
Fig. 7
Fig. 7 The difference between threshold gain for the first-higher order mode and the fundamental mode, as a percentage of the threshold gain for the fundamental mode. To clearly show the details the two largest values for the relative modal discrimination, at 121% and 165%, are out of range on the vertical axis as indicated. The insets show the cross section of field distribution in the far-field, with the large-angle side lobe typical for strongly antiguided cavities, for the indicated cavity for both the fundamental and the first-higher order modes.
Fig. 8
Fig. 8 The simplified hard-mirror model of the cavity, illustrating the two mechanisms (i) excitation from the central part of cavity, and (ii) resonant lateral transport in peripheral part of the cavity, that influence the lateral leakage. The insets show the manipulated temperature distributions used to separate the two mechanisms to determine which is “active” in a certain cavity.
Fig. 9
Fig. 9 Threshold gain for the fundamental mode for the manipulated temperature distributions. The values shown in Fig. 3 for the cold-cavity and for the actual temperature distribution are indicated for comparison. In this figure the onset of total internal reflection in the peripheral cavity according to the simplified hard-mirror model is also indicated. The inset shows the refractive index profile in the radial direction near the active region for the manipulated cases (same color code as in the main figure).

Tables (1)

Tables Icon

Table 1 Layer structure of the simulated VCSEL cavities, with material parameters used in the simulations.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

2 k z L c = 2 k 0 n c L c = m c 2 π ,
2 k z ( L c + δ cav ) = 2 k 0 n p ( r ) cos ( θ res ( r ) ) ( L c + δ cav ) = m p 2 π ,
δ cav = L c ( n c n p ( r ) ) n p ( r ) .

Metrics