Abstract

We demonstrate hybrid integration of modified uni-traveling carrier photodiodes on a multi-layer silicon nitride platform using total reflection mirrors etched by focused ion beam. The hybrid photodetectors show external responsivity of 0.15 A/W and bandwidth of 3.5 GHz for devices with a diameter of 80 µm. The insertion loss of the waveguide is 3 dB and the coupling efficiency of the total reflection mirror is −3 dB. The highest RF output power is −0.5 dBm measured at 3 GHz with 9 mA photocurrent and −9 V bias.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-power high-linearity flip-chip bonded modified uni-traveling carrier photodiode

Zhi Li, Yang Fu, Molly Piels, Huapu Pan, Andreas Beling, John E. Bowers, and Joe C. Campbell
Opt. Express 19(26) B385-B390 (2011)

170 GHz uni-traveling carrier photodiodes for
InP-based photonic integrated circuits

E. Rouvalis, M. Chtioui, F. van Dijk, F. Lelarge, M. J. Fice, C. C. Renaud, G. Carpintero, and A. J. Seeds
Opt. Express 20(18) 20090-20095 (2012)

High-bandwidth uni-traveling carrier waveguide photodetector on an InP-membrane-on-silicon platform

L. Shen, Y. Jiao, W. Yao, Z. Cao, J. P. van Engelen, G. Roelkens, M. K. Smit, and J. J. G. M. van der Tol
Opt. Express 24(8) 8290-8301 (2016)

References

  • View by:
  • |
  • |
  • |

  1. F. Boeuf, S. Cremer, E. Temporiti, M. Fere, M. Shaw, N. Vulliet, B. Orlando, D. Ristoiu, A. Farcy, T. Pinguet, A. Mekis, G. Masini, P. Sun, Y. Chi, H. Petition, S. Jan, J.R. Manouvrier, C. Baudot, P. L. Maitre, J-F. Carpentier, L. Salager, M. Traldi, L. Maggi, D. Rigamonti, C. Zaccherini, C. Elemi, B. Sautreuil, and L. Verga, “Recent progress in silicon photonics R&D and manufacturing on 300mm wafer platform,” in Optical Fiber Communications Conference and Exhibition (OFC, 2015), pp. 1–3.
  2. A. E. Lim, T.-Y. Liow, J. Song, C. Li, Q. Fang, X. Tu, N. Duan, K. K. Chen, R. P. C. Tern, C. Peng, B. W. Mun, M. N. Islam, J. S. Park, C. Subbu, and G.-Q. Lo, “Path to silicon photonics commercialization: 25 Gb/s platform development in a CMOS manufacturing Foundry Line,” in OSA Technical Digest (2014), paper Th2A.51.
  3. P. P. Absil, P. Verheyen, P. De Heyn, M. Pantouvaki, G. Lepage, J. De Coster, and J. Van Campenhout, “Silicon photonics integrated circuits: a manufacturing platform for high density, low power optical I/O’s,” Opt. Express 23(7), 9369–9378 (2015).
    [Crossref] [PubMed]
  4. M. Smit and K. Williams, “Progress in InP-based photonic integration,” in Frontiers in Optics 2015, OSA Technical Digest (OSA, 2015), paper FW5B.4.
  5. J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M. C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
    [Crossref] [PubMed]
  6. C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K. J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21(19), 22937–22961 (2013).
    [Crossref] [PubMed]
  7. K. Shang, S. Pathak, B. Guan, G. Liu, and S. J. B. Yoo, “Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits,” Opt. Express 23(16), 21334–21342 (2015).
    [Crossref] [PubMed]
  8. V. Rymanov, B. A. Khani, S. A. Dülme, P. A. Lu, and A. A. Stöhr, “InP-based waveguide triple transit region photodiodes for hybrid integration with passive optical silica waveguides,” Photonics 2(4), 1152–1163 (2015).
    [Crossref]
  9. D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
    [Crossref]
  10. M. Piels, J. F. Bauters, M. L. Davenport, M. J. R. Heck, and J. E. Bowers, “Low-loss silicon nitride AWG demultiplexer heterogeneously integrated with hybrid III–V/silicon photodetectors,” J. Lightwave Technol. 32(4), 817–823 (2014).
    [Crossref]
  11. H. Zhang, C. Li, X. Tu, X. Luo, M. Yu, and P. G. Lo, “High efficiency silicon nitride grating coupler,” Appl. Phys., A Mater. Sci. Process. 115(1), 79–82 (2014).
    [Crossref]
  12. S. Feng, Y. Geng, K. M. Lau, and A. W. Poon, “Epitaxial III–V-on-silicon waveguide butt-coupled photodetectors,” in 9th International Conference on Group IV Photonics (GFP) (2012), pp. 51–53.
    [Crossref]
  13. Y. Kurata, Y. Nasu, M. Tamura, H. Yokoyama, and Y. Muramoto, “Heterogeneous integration of high-speed InP PDs on silica-based planar lightwave circuit platform,” in 37th ECEOC, OSA Technical Digest (CD) (2011).
  14. L. Davenpora, L. Chang, D. Huang, N. Volet, and J. E. Bowers, “(Invited) Heterogeneous photonic integration by direct wafer bonding.” Meeting Abstracts. No. 32. The Electrochemical Society, (2016).
  15. M. L. Davenport, J. F. Bauters, M. Piels, M. J. R. Heck, A. Chen, A. W. Fang, and J. E. Bowers, “ A 400 Gb/s WDM receiver using a low loss silicon nitride AWG integrated with hybrid silicon photodetectors,” in National Fiber Optic Engineers Conference (2013), paper PDP5C–5.
  16. M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
    [Crossref]
  17. M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” J. Laser Photonics Rev. 20(5), 667–686 (2014).
    [Crossref]
  18. Z. Li, Y. Fu, M. Piels, H. Pan, A. Beling, J. E. Bowers, and J. C. Campbell, “High-power high-linearity flip-chip bonded modified uni-traveling carrier photodiode,” Opt. Express 19(26), B385–B390 (2011).
    [Crossref] [PubMed]

2015 (3)

2014 (3)

M. Piels, J. F. Bauters, M. L. Davenport, M. J. R. Heck, and J. E. Bowers, “Low-loss silicon nitride AWG demultiplexer heterogeneously integrated with hybrid III–V/silicon photodetectors,” J. Lightwave Technol. 32(4), 817–823 (2014).
[Crossref]

H. Zhang, C. Li, X. Tu, X. Luo, M. Yu, and P. G. Lo, “High efficiency silicon nitride grating coupler,” Appl. Phys., A Mater. Sci. Process. 115(1), 79–82 (2014).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” J. Laser Photonics Rev. 20(5), 667–686 (2014).
[Crossref]

2013 (2)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K. J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21(19), 22937–22961 (2013).
[Crossref] [PubMed]

2012 (1)

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

2011 (2)

Absil, P. P.

Barton, J. S.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M. C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
[Crossref] [PubMed]

Bauters, J. F.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” J. Laser Photonics Rev. 20(5), 667–686 (2014).
[Crossref]

M. Piels, J. F. Bauters, M. L. Davenport, M. J. R. Heck, and J. E. Bowers, “Low-loss silicon nitride AWG demultiplexer heterogeneously integrated with hybrid III–V/silicon photodetectors,” J. Lightwave Technol. 32(4), 817–823 (2014).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M. C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
[Crossref] [PubMed]

M. L. Davenport, J. F. Bauters, M. Piels, M. J. R. Heck, A. Chen, A. W. Fang, and J. E. Bowers, “ A 400 Gb/s WDM receiver using a low loss silicon nitride AWG integrated with hybrid silicon photodetectors,” in National Fiber Optic Engineers Conference (2013), paper PDP5C–5.

Beling, A.

Blumenthal, D. J.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M. C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
[Crossref] [PubMed]

Boller, K. J.

Bowers, J. E.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” J. Laser Photonics Rev. 20(5), 667–686 (2014).
[Crossref]

M. Piels, J. F. Bauters, M. L. Davenport, M. J. R. Heck, and J. E. Bowers, “Low-loss silicon nitride AWG demultiplexer heterogeneously integrated with hybrid III–V/silicon photodetectors,” J. Lightwave Technol. 32(4), 817–823 (2014).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

Z. Li, Y. Fu, M. Piels, H. Pan, A. Beling, J. E. Bowers, and J. C. Campbell, “High-power high-linearity flip-chip bonded modified uni-traveling carrier photodiode,” Opt. Express 19(26), B385–B390 (2011).
[Crossref] [PubMed]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M. C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
[Crossref] [PubMed]

M. L. Davenport, J. F. Bauters, M. Piels, M. J. R. Heck, A. Chen, A. W. Fang, and J. E. Bowers, “ A 400 Gb/s WDM receiver using a low loss silicon nitride AWG integrated with hybrid silicon photodetectors,” in National Fiber Optic Engineers Conference (2013), paper PDP5C–5.

Burla, M.

Campbell, J. C.

Chen, A.

M. L. Davenport, J. F. Bauters, M. Piels, M. J. R. Heck, A. Chen, A. W. Fang, and J. E. Bowers, “ A 400 Gb/s WDM receiver using a low loss silicon nitride AWG integrated with hybrid silicon photodetectors,” in National Fiber Optic Engineers Conference (2013), paper PDP5C–5.

Dai, D.

Davenport, M. L.

M. Piels, J. F. Bauters, M. L. Davenport, M. J. R. Heck, and J. E. Bowers, “Low-loss silicon nitride AWG demultiplexer heterogeneously integrated with hybrid III–V/silicon photodetectors,” J. Lightwave Technol. 32(4), 817–823 (2014).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” J. Laser Photonics Rev. 20(5), 667–686 (2014).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

M. L. Davenport, J. F. Bauters, M. Piels, M. J. R. Heck, A. Chen, A. W. Fang, and J. E. Bowers, “ A 400 Gb/s WDM receiver using a low loss silicon nitride AWG integrated with hybrid silicon photodetectors,” in National Fiber Optic Engineers Conference (2013), paper PDP5C–5.

De Coster, J.

De Heyn, P.

Doylend, J. K.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Dülme, S. A.

V. Rymanov, B. A. Khani, S. A. Dülme, P. A. Lu, and A. A. Stöhr, “InP-based waveguide triple transit region photodiodes for hybrid integration with passive optical silica waveguides,” Photonics 2(4), 1152–1163 (2015).
[Crossref]

Fang, A. W.

M. L. Davenport, J. F. Bauters, M. Piels, M. J. R. Heck, A. Chen, A. W. Fang, and J. E. Bowers, “ A 400 Gb/s WDM receiver using a low loss silicon nitride AWG integrated with hybrid silicon photodetectors,” in National Fiber Optic Engineers Conference (2013), paper PDP5C–5.

Feng, S.

S. Feng, Y. Geng, K. M. Lau, and A. W. Poon, “Epitaxial III–V-on-silicon waveguide butt-coupled photodetectors,” in 9th International Conference on Group IV Photonics (GFP) (2012), pp. 51–53.
[Crossref]

Fu, Y.

Geng, Y.

S. Feng, Y. Geng, K. M. Lau, and A. W. Poon, “Epitaxial III–V-on-silicon waveguide butt-coupled photodetectors,” in 9th International Conference on Group IV Photonics (GFP) (2012), pp. 51–53.
[Crossref]

Guan, B.

Heck, M. J. R.

M. Piels, J. F. Bauters, M. L. Davenport, M. J. R. Heck, and J. E. Bowers, “Low-loss silicon nitride AWG demultiplexer heterogeneously integrated with hybrid III–V/silicon photodetectors,” J. Lightwave Technol. 32(4), 817–823 (2014).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” J. Laser Photonics Rev. 20(5), 667–686 (2014).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M. C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
[Crossref] [PubMed]

M. L. Davenport, J. F. Bauters, M. Piels, M. J. R. Heck, A. Chen, A. W. Fang, and J. E. Bowers, “ A 400 Gb/s WDM receiver using a low loss silicon nitride AWG integrated with hybrid silicon photodetectors,” in National Fiber Optic Engineers Conference (2013), paper PDP5C–5.

Heideman, R. G.

Jain, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

John, D.

John, D. D.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

Khani, B. A.

V. Rymanov, B. A. Khani, S. A. Dülme, P. A. Lu, and A. A. Stöhr, “InP-based waveguide triple transit region photodiodes for hybrid integration with passive optical silica waveguides,” Photonics 2(4), 1152–1163 (2015).
[Crossref]

Kurczveil, G.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Lau, K. M.

S. Feng, Y. Geng, K. M. Lau, and A. W. Poon, “Epitaxial III–V-on-silicon waveguide butt-coupled photodetectors,” in 9th International Conference on Group IV Photonics (GFP) (2012), pp. 51–53.
[Crossref]

Leinse, A.

Lepage, G.

Li, C.

H. Zhang, C. Li, X. Tu, X. Luo, M. Yu, and P. G. Lo, “High efficiency silicon nitride grating coupler,” Appl. Phys., A Mater. Sci. Process. 115(1), 79–82 (2014).
[Crossref]

Li, Z.

Liu, G.

Lo, P. G.

H. Zhang, C. Li, X. Tu, X. Luo, M. Yu, and P. G. Lo, “High efficiency silicon nitride grating coupler,” Appl. Phys., A Mater. Sci. Process. 115(1), 79–82 (2014).
[Crossref]

Lu, P. A.

V. Rymanov, B. A. Khani, S. A. Dülme, P. A. Lu, and A. A. Stöhr, “InP-based waveguide triple transit region photodiodes for hybrid integration with passive optical silica waveguides,” Photonics 2(4), 1152–1163 (2015).
[Crossref]

Luo, X.

H. Zhang, C. Li, X. Tu, X. Luo, M. Yu, and P. G. Lo, “High efficiency silicon nitride grating coupler,” Appl. Phys., A Mater. Sci. Process. 115(1), 79–82 (2014).
[Crossref]

Marpaung, D. A. I.

Moreira, R.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

Oldenbeuving, R. M.

Pan, H.

Pantouvaki, M.

Pathak, S.

Piels, M.

Poon, A. W.

S. Feng, Y. Geng, K. M. Lau, and A. W. Poon, “Epitaxial III–V-on-silicon waveguide butt-coupled photodetectors,” in 9th International Conference on Group IV Photonics (GFP) (2012), pp. 51–53.
[Crossref]

Roeloffzen, C. G. H.

Rymanov, V.

V. Rymanov, B. A. Khani, S. A. Dülme, P. A. Lu, and A. A. Stöhr, “InP-based waveguide triple transit region photodiodes for hybrid integration with passive optical silica waveguides,” Photonics 2(4), 1152–1163 (2015).
[Crossref]

Shang, K.

Spencer, D. T.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” J. Laser Photonics Rev. 20(5), 667–686 (2014).
[Crossref]

Srinivasan, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Stöhr, A. A.

V. Rymanov, B. A. Khani, S. A. Dülme, P. A. Lu, and A. A. Stöhr, “InP-based waveguide triple transit region photodiodes for hybrid integration with passive optical silica waveguides,” Photonics 2(4), 1152–1163 (2015).
[Crossref]

Taddei, C.

Tang, Y.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Tien, M. C.

Tu, X.

H. Zhang, C. Li, X. Tu, X. Luo, M. Yu, and P. G. Lo, “High efficiency silicon nitride grating coupler,” Appl. Phys., A Mater. Sci. Process. 115(1), 79–82 (2014).
[Crossref]

Van Campenhout, J.

van Dijk, P. W. L.

Verheyen, P.

Yoo, S. J. B.

Yu, M.

H. Zhang, C. Li, X. Tu, X. Luo, M. Yu, and P. G. Lo, “High efficiency silicon nitride grating coupler,” Appl. Phys., A Mater. Sci. Process. 115(1), 79–82 (2014).
[Crossref]

Zhang, H.

H. Zhang, C. Li, X. Tu, X. Luo, M. Yu, and P. G. Lo, “High efficiency silicon nitride grating coupler,” Appl. Phys., A Mater. Sci. Process. 115(1), 79–82 (2014).
[Crossref]

Zhuang, L.

Appl. Phys., A Mater. Sci. Process. (1)

H. Zhang, C. Li, X. Tu, X. Luo, M. Yu, and P. G. Lo, “High efficiency silicon nitride grating coupler,” Appl. Phys., A Mater. Sci. Process. 115(1), 79–82 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

J. Laser Photonics Rev. (1)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” J. Laser Photonics Rev. 20(5), 667–686 (2014).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (5)

Photonics (1)

V. Rymanov, B. A. Khani, S. A. Dülme, P. A. Lu, and A. A. Stöhr, “InP-based waveguide triple transit region photodiodes for hybrid integration with passive optical silica waveguides,” Photonics 2(4), 1152–1163 (2015).
[Crossref]

Other (7)

M. Smit and K. Williams, “Progress in InP-based photonic integration,” in Frontiers in Optics 2015, OSA Technical Digest (OSA, 2015), paper FW5B.4.

F. Boeuf, S. Cremer, E. Temporiti, M. Fere, M. Shaw, N. Vulliet, B. Orlando, D. Ristoiu, A. Farcy, T. Pinguet, A. Mekis, G. Masini, P. Sun, Y. Chi, H. Petition, S. Jan, J.R. Manouvrier, C. Baudot, P. L. Maitre, J-F. Carpentier, L. Salager, M. Traldi, L. Maggi, D. Rigamonti, C. Zaccherini, C. Elemi, B. Sautreuil, and L. Verga, “Recent progress in silicon photonics R&D and manufacturing on 300mm wafer platform,” in Optical Fiber Communications Conference and Exhibition (OFC, 2015), pp. 1–3.

A. E. Lim, T.-Y. Liow, J. Song, C. Li, Q. Fang, X. Tu, N. Duan, K. K. Chen, R. P. C. Tern, C. Peng, B. W. Mun, M. N. Islam, J. S. Park, C. Subbu, and G.-Q. Lo, “Path to silicon photonics commercialization: 25 Gb/s platform development in a CMOS manufacturing Foundry Line,” in OSA Technical Digest (2014), paper Th2A.51.

S. Feng, Y. Geng, K. M. Lau, and A. W. Poon, “Epitaxial III–V-on-silicon waveguide butt-coupled photodetectors,” in 9th International Conference on Group IV Photonics (GFP) (2012), pp. 51–53.
[Crossref]

Y. Kurata, Y. Nasu, M. Tamura, H. Yokoyama, and Y. Muramoto, “Heterogeneous integration of high-speed InP PDs on silica-based planar lightwave circuit platform,” in 37th ECEOC, OSA Technical Digest (CD) (2011).

L. Davenpora, L. Chang, D. Huang, N. Volet, and J. E. Bowers, “(Invited) Heterogeneous photonic integration by direct wafer bonding.” Meeting Abstracts. No. 32. The Electrochemical Society, (2016).

M. L. Davenport, J. F. Bauters, M. Piels, M. J. R. Heck, A. Chen, A. W. Fang, and J. E. Bowers, “ A 400 Gb/s WDM receiver using a low loss silicon nitride AWG integrated with hybrid silicon photodetectors,” in National Fiber Optic Engineers Conference (2013), paper PDP5C–5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a)Side- and top cross-sectional schematics of a hybrid integrated photodiode on a multi-layer Si3N4 platform. (b) SEM image of a hybrid integrated photodiode flip-chip bonded on a multi-layer Si3N4 platform.
Fig. 2
Fig. 2 (a) Simulated electric field distribution of total reflection in a side view. (b) Simulated coupling efficiency as a function of the incident angle θ, inverse taper width and photodetector area A.
Fig. 3
Fig. 3 Fabrication process of hybrid integration of an MUTC photodiode on a multi-layer Si3N4 platform: (a) Multi-layer Si3N4 platform. (b) Deep reactive ion etching of a trench. (c) FIB etching of the total reflection mirror. (d) Flip-chip bonding of an MUTC photodiode onto the finished platform.
Fig. 4
Fig. 4 Fabrication process of the designed 30 ˚ mirror by FIB etching.
Fig. 5
Fig. 5 SEM images of the FIB etched mirror. (a) Top view of the Si3N4 waveguide platform before examination etch. (b) Top view of the deep reactive ion etched window after the examination etch. (c) Side view of the FIB etched mirror.
Fig. 6
Fig. 6 (a) Dark current-voltage characteristics of MUTC photodiodes before flip-chip bonding. (b) Frequency response of hybrid photodiodes at various reverse bias voltages. (c) Calculated bandwidth versus diameter. (d) RF output power and the compression of the hybrid photodiode versus average photocurrent at 9 V and 3 GHz.

Metrics