Abstract

In this paper, we propose a real-valued interleaved single-carrier frequency-division multiplexing (I-SC-FDM) scheme for intensity-modulation and direct-detection optical interconnects. By simplifying the encoding structure, the computational complexity can be reduced from Nlog2N complex multiplications to N complex multiplications. At the complementary cumulative distribution function of 10−2, a reduction of 10 dB and 7.5 dB for the peak-to-average power ratio (PAPR) of the I-SC-FDM is achieved than that of orthogonal frequency-division multiplexing modulated with QPSK and 16QAM, respectively, when the subcarrier number is set to 4096. We experimentally demonstrate the I-SC-FDM scheme for optical interconnects with data rates of 12 Gbit/s, 24 Gbit/s and 128 Gbit/s transmitted over 22.5-km, 22.5-km and 2.4-km standard single mode fiber, respectively. The I-SC-FDM scheme shows great potential for cost-sensitive and power-sensitive optical interconnects owing to its low computational complexity and low PAPR.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Computational complexity comparison of single-carrier DMT and conventional DMT in data center interconnect

Dongdong Zou, Zibin Li, Yidan Sun, Fan Li, and Zhaohui Li
Opt. Express 27(12) 17007-17016 (2019)

Performance of 16 QAM-OFDM With New Null Subcarrier Shifting in an Intensity-Modulated Direct Detection System

Hongxian Chen, Jing He, Jin Tang, Fan Li, Ming Chen, and Lin Chen
J. Opt. Commun. Netw. 6(2) 159-164 (2014)

An energy-efficient and elastic optical multiple access system based on coherent interleaved frequency division multiple access

Yuki Yoshida, Akihiro Maruta, Kenji Ishii, Yuji Akiyama, Tsuyoshi Yoshida, Naoki Suzuki, Kazuumi Koguchi, Junichi Nakagawa, Takashi Mizuochi, and Ken-ichi Kitayama
Opt. Express 21(10) 12282-12301 (2013)

References

  • View by:
  • |
  • |
  • |

  1. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
    [Crossref] [PubMed]
  2. J. Armstrong, “OFDM for Optical Communications,” J. Lightwave Technol. 27(3), 189–204 (2009).
    [Crossref]
  3. A. J. Lowery, L. B. Du, and J. Armstrong, “Performance of Optical OFDM in Ultralong-Haul WDM Lightwave Systems,” J. Lightwave Technol. 25(1), 131–138 (2007).
    [Crossref]
  4. Y. Wang, J. Yu, H. Chien, X. Li, and N. Chi, “Transmission and Direct Detection of 300-Gbps DFT-S OFDM Signals Based on O-ISB Modulation with Joint Image-cancellation and Nonlinearity-mitigation,” in Proceedings of European Conference on Optical Communication (ECOC, 2016), pp 827–829.
  5. N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightwave Technol. 30(4), 384–398 (2011).
    [Crossref]
  6. T. Takahara, T. Tanaka, M. Nishihara, Y. Kai, L. Li, Z. Tao, and J. Rasmussen, “Discrete multi-tone for 100 Gb/s optical access networks,” in Optical Fiber Communication Conference 2014, OSA Technical Digest (Optical Society of America, 2014), paper M2I.1.
  7. C. Xie, P. Dong, S. Randel, D. Pilori, P. J. Winzer, S. Spiga, B. Kögel, C. Neumeyr, and M. Amann, “Single-VCSEL 100-Gb/s short-reach system using discrete multi-tone modulation and direct detection,” in Optical Fiber Communication Conference 2015, OSA Technical Digest (Optical Society of America, 2015), paper Tu2H.2.
  8. P. Dong, J. Lee, K. Kim, Y. Chen, and C. Gui, “Ten-channel discrete multi-tone modulation using silicon microring modulator array,” in Optical Fiber Communication Conference 2016, OSA Technical Digest (Optical Society of America, 2016), paper W4J.4.
  9. K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems,” Opt. Express 23(2), 1176–1189 (2015).
    [Crossref] [PubMed]
  10. N. Abu-Ali, A. M. Taha, M. Salah, and H. Hassanein, “Uplink scheduling in LTE and LTE-Advanced: tutorial, survey and evaluation framework,” IEEE Commun. Surveys Tutorials 16(3), 1239–1265 (2014).
    [Crossref]
  11. H. G. Myung, J. Lim, and D. J. Goodman, “Single carrier FDMA for uplink wireless transmission,” IEEE Veh. Technol. Mag. 1(3), 30–38 (2006).
    [Crossref]
  12. I. C. Wong, O. Oteri, and W. Mccoy, “Optimal resource allocation in uplink SC-FDMA systems,” IEEE Trans. Wireless Commun. 8(5), 2161–2165 (2009).
    [Crossref]
  13. Y. Wang, J. Yu, and N. Chi, “Demonstration of 4 × 128-Gb/s DFT-S OFDM Signal Transmission over 320-km SMF With IM/DD,” IEEE Photonics J. 8(2), 7903209 (2016).
  14. F. Li, J. Yu, Z. Cao, J. Zhang, M. Chen, and X. Li, “Experimental Demonstration of Four-Channel WDM 560 Gbit/s 128QAM-DMT using IM/DD for 2-km Optical Interconnect,” J. Lightwave Technol., to be published.
  15. F. Li, X. Li, L. Chen, Y. Xia, C. Ge, and Y. Chen, “High-level QAM OFDM system using DML for low-cost short reach optical communications,” IEEE Photonics Technol. Lett. 26(9), 941–944 (2014).
    [Crossref]
  16. J. Zhou, F. Xu, E. Sun, T. Zhang, Z. Zhang, M. Guo, X. Tang, Z. Wang, and Y. Qiao, “Coherent optical interleaved SC-FDM uplink scheme for long-reach passive nptical network,” IEEE Photonics J. 8(2), 7902208 (2016).
    [Crossref]
  17. J. Armstrong, “Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering,” Electron. Lett. 38(5), 246–247 (2002).
    [Crossref]
  18. D. George, R. Bowen, and J. Storey, “An Adaptive Decision Feedback Equalizer,” IEEE Trans. Commun. Tech. 19(3), 281–293 (1971).
    [Crossref]
  19. Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least-squares algorithm,” IEEE Trans. Signal Process. 52(8), 2275–2285 (2004).
    [Crossref]

2016 (2)

Y. Wang, J. Yu, and N. Chi, “Demonstration of 4 × 128-Gb/s DFT-S OFDM Signal Transmission over 320-km SMF With IM/DD,” IEEE Photonics J. 8(2), 7903209 (2016).

J. Zhou, F. Xu, E. Sun, T. Zhang, Z. Zhang, M. Guo, X. Tang, Z. Wang, and Y. Qiao, “Coherent optical interleaved SC-FDM uplink scheme for long-reach passive nptical network,” IEEE Photonics J. 8(2), 7902208 (2016).
[Crossref]

2015 (1)

2014 (2)

N. Abu-Ali, A. M. Taha, M. Salah, and H. Hassanein, “Uplink scheduling in LTE and LTE-Advanced: tutorial, survey and evaluation framework,” IEEE Commun. Surveys Tutorials 16(3), 1239–1265 (2014).
[Crossref]

F. Li, X. Li, L. Chen, Y. Xia, C. Ge, and Y. Chen, “High-level QAM OFDM system using DML for low-cost short reach optical communications,” IEEE Photonics Technol. Lett. 26(9), 941–944 (2014).
[Crossref]

2011 (1)

2009 (2)

J. Armstrong, “OFDM for Optical Communications,” J. Lightwave Technol. 27(3), 189–204 (2009).
[Crossref]

I. C. Wong, O. Oteri, and W. Mccoy, “Optimal resource allocation in uplink SC-FDMA systems,” IEEE Trans. Wireless Commun. 8(5), 2161–2165 (2009).
[Crossref]

2008 (1)

2007 (1)

2006 (1)

H. G. Myung, J. Lim, and D. J. Goodman, “Single carrier FDMA for uplink wireless transmission,” IEEE Veh. Technol. Mag. 1(3), 30–38 (2006).
[Crossref]

2004 (1)

Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least-squares algorithm,” IEEE Trans. Signal Process. 52(8), 2275–2285 (2004).
[Crossref]

2002 (1)

J. Armstrong, “Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering,” Electron. Lett. 38(5), 246–247 (2002).
[Crossref]

1971 (1)

D. George, R. Bowen, and J. Storey, “An Adaptive Decision Feedback Equalizer,” IEEE Trans. Commun. Tech. 19(3), 281–293 (1971).
[Crossref]

Abu-Ali, N.

N. Abu-Ali, A. M. Taha, M. Salah, and H. Hassanein, “Uplink scheduling in LTE and LTE-Advanced: tutorial, survey and evaluation framework,” IEEE Commun. Surveys Tutorials 16(3), 1239–1265 (2014).
[Crossref]

Amann, M.

C. Xie, P. Dong, S. Randel, D. Pilori, P. J. Winzer, S. Spiga, B. Kögel, C. Neumeyr, and M. Amann, “Single-VCSEL 100-Gb/s short-reach system using discrete multi-tone modulation and direct detection,” in Optical Fiber Communication Conference 2015, OSA Technical Digest (Optical Society of America, 2015), paper Tu2H.2.

Armstrong, J.

Bao, H.

Bowen, R.

D. George, R. Bowen, and J. Storey, “An Adaptive Decision Feedback Equalizer,” IEEE Trans. Commun. Tech. 19(3), 281–293 (1971).
[Crossref]

Cao, Z.

F. Li, J. Yu, Z. Cao, J. Zhang, M. Chen, and X. Li, “Experimental Demonstration of Four-Channel WDM 560 Gbit/s 128QAM-DMT using IM/DD for 2-km Optical Interconnect,” J. Lightwave Technol., to be published.

Chen, L.

F. Li, X. Li, L. Chen, Y. Xia, C. Ge, and Y. Chen, “High-level QAM OFDM system using DML for low-cost short reach optical communications,” IEEE Photonics Technol. Lett. 26(9), 941–944 (2014).
[Crossref]

Chen, M.

F. Li, J. Yu, Z. Cao, J. Zhang, M. Chen, and X. Li, “Experimental Demonstration of Four-Channel WDM 560 Gbit/s 128QAM-DMT using IM/DD for 2-km Optical Interconnect,” J. Lightwave Technol., to be published.

Chen, W.

Chen, Y.

F. Li, X. Li, L. Chen, Y. Xia, C. Ge, and Y. Chen, “High-level QAM OFDM system using DML for low-cost short reach optical communications,” IEEE Photonics Technol. Lett. 26(9), 941–944 (2014).
[Crossref]

P. Dong, J. Lee, K. Kim, Y. Chen, and C. Gui, “Ten-channel discrete multi-tone modulation using silicon microring modulator array,” in Optical Fiber Communication Conference 2016, OSA Technical Digest (Optical Society of America, 2016), paper W4J.4.

Chi, N.

Y. Wang, J. Yu, and N. Chi, “Demonstration of 4 × 128-Gb/s DFT-S OFDM Signal Transmission over 320-km SMF With IM/DD,” IEEE Photonics J. 8(2), 7903209 (2016).

Y. Wang, J. Yu, H. Chien, X. Li, and N. Chi, “Transmission and Direct Detection of 300-Gbps DFT-S OFDM Signals Based on O-ISB Modulation with Joint Image-cancellation and Nonlinearity-mitigation,” in Proceedings of European Conference on Optical Communication (ECOC, 2016), pp 827–829.

Chien, H.

Y. Wang, J. Yu, H. Chien, X. Li, and N. Chi, “Transmission and Direct Detection of 300-Gbps DFT-S OFDM Signals Based on O-ISB Modulation with Joint Image-cancellation and Nonlinearity-mitigation,” in Proceedings of European Conference on Optical Communication (ECOC, 2016), pp 827–829.

Cvijetic, N.

Dong, P.

P. Dong, J. Lee, K. Kim, Y. Chen, and C. Gui, “Ten-channel discrete multi-tone modulation using silicon microring modulator array,” in Optical Fiber Communication Conference 2016, OSA Technical Digest (Optical Society of America, 2016), paper W4J.4.

C. Xie, P. Dong, S. Randel, D. Pilori, P. J. Winzer, S. Spiga, B. Kögel, C. Neumeyr, and M. Amann, “Single-VCSEL 100-Gb/s short-reach system using discrete multi-tone modulation and direct detection,” in Optical Fiber Communication Conference 2015, OSA Technical Digest (Optical Society of America, 2015), paper Tu2H.2.

Du, L. B.

Engel, Y.

Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least-squares algorithm,” IEEE Trans. Signal Process. 52(8), 2275–2285 (2004).
[Crossref]

Gao, Y.

Ge, C.

F. Li, X. Li, L. Chen, Y. Xia, C. Ge, and Y. Chen, “High-level QAM OFDM system using DML for low-cost short reach optical communications,” IEEE Photonics Technol. Lett. 26(9), 941–944 (2014).
[Crossref]

George, D.

D. George, R. Bowen, and J. Storey, “An Adaptive Decision Feedback Equalizer,” IEEE Trans. Commun. Tech. 19(3), 281–293 (1971).
[Crossref]

Goodman, D. J.

H. G. Myung, J. Lim, and D. J. Goodman, “Single carrier FDMA for uplink wireless transmission,” IEEE Veh. Technol. Mag. 1(3), 30–38 (2006).
[Crossref]

Gui, C.

P. Dong, J. Lee, K. Kim, Y. Chen, and C. Gui, “Ten-channel discrete multi-tone modulation using silicon microring modulator array,” in Optical Fiber Communication Conference 2016, OSA Technical Digest (Optical Society of America, 2016), paper W4J.4.

Gui, T.

Guo, M.

J. Zhou, F. Xu, E. Sun, T. Zhang, Z. Zhang, M. Guo, X. Tang, Z. Wang, and Y. Qiao, “Coherent optical interleaved SC-FDM uplink scheme for long-reach passive nptical network,” IEEE Photonics J. 8(2), 7902208 (2016).
[Crossref]

Hassanein, H.

N. Abu-Ali, A. M. Taha, M. Salah, and H. Hassanein, “Uplink scheduling in LTE and LTE-Advanced: tutorial, survey and evaluation framework,” IEEE Commun. Surveys Tutorials 16(3), 1239–1265 (2014).
[Crossref]

Kai, Y.

T. Takahara, T. Tanaka, M. Nishihara, Y. Kai, L. Li, Z. Tao, and J. Rasmussen, “Discrete multi-tone for 100 Gb/s optical access networks,” in Optical Fiber Communication Conference 2014, OSA Technical Digest (Optical Society of America, 2014), paper M2I.1.

Kim, K.

P. Dong, J. Lee, K. Kim, Y. Chen, and C. Gui, “Ten-channel discrete multi-tone modulation using silicon microring modulator array,” in Optical Fiber Communication Conference 2016, OSA Technical Digest (Optical Society of America, 2016), paper W4J.4.

Kögel, B.

C. Xie, P. Dong, S. Randel, D. Pilori, P. J. Winzer, S. Spiga, B. Kögel, C. Neumeyr, and M. Amann, “Single-VCSEL 100-Gb/s short-reach system using discrete multi-tone modulation and direct detection,” in Optical Fiber Communication Conference 2015, OSA Technical Digest (Optical Society of America, 2015), paper Tu2H.2.

Lau, A. P. T.

Lee, J.

P. Dong, J. Lee, K. Kim, Y. Chen, and C. Gui, “Ten-channel discrete multi-tone modulation using silicon microring modulator array,” in Optical Fiber Communication Conference 2016, OSA Technical Digest (Optical Society of America, 2016), paper W4J.4.

Li, F.

F. Li, X. Li, L. Chen, Y. Xia, C. Ge, and Y. Chen, “High-level QAM OFDM system using DML for low-cost short reach optical communications,” IEEE Photonics Technol. Lett. 26(9), 941–944 (2014).
[Crossref]

F. Li, J. Yu, Z. Cao, J. Zhang, M. Chen, and X. Li, “Experimental Demonstration of Four-Channel WDM 560 Gbit/s 128QAM-DMT using IM/DD for 2-km Optical Interconnect,” J. Lightwave Technol., to be published.

Li, L.

T. Takahara, T. Tanaka, M. Nishihara, Y. Kai, L. Li, Z. Tao, and J. Rasmussen, “Discrete multi-tone for 100 Gb/s optical access networks,” in Optical Fiber Communication Conference 2014, OSA Technical Digest (Optical Society of America, 2014), paper M2I.1.

Li, X.

F. Li, X. Li, L. Chen, Y. Xia, C. Ge, and Y. Chen, “High-level QAM OFDM system using DML for low-cost short reach optical communications,” IEEE Photonics Technol. Lett. 26(9), 941–944 (2014).
[Crossref]

F. Li, J. Yu, Z. Cao, J. Zhang, M. Chen, and X. Li, “Experimental Demonstration of Four-Channel WDM 560 Gbit/s 128QAM-DMT using IM/DD for 2-km Optical Interconnect,” J. Lightwave Technol., to be published.

Y. Wang, J. Yu, H. Chien, X. Li, and N. Chi, “Transmission and Direct Detection of 300-Gbps DFT-S OFDM Signals Based on O-ISB Modulation with Joint Image-cancellation and Nonlinearity-mitigation,” in Proceedings of European Conference on Optical Communication (ECOC, 2016), pp 827–829.

Lim, J.

H. G. Myung, J. Lim, and D. J. Goodman, “Single carrier FDMA for uplink wireless transmission,” IEEE Veh. Technol. Mag. 1(3), 30–38 (2006).
[Crossref]

Lowery, A. J.

Lu, C.

Man, J.

Mannor, S.

Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least-squares algorithm,” IEEE Trans. Signal Process. 52(8), 2275–2285 (2004).
[Crossref]

Mccoy, W.

I. C. Wong, O. Oteri, and W. Mccoy, “Optimal resource allocation in uplink SC-FDMA systems,” IEEE Trans. Wireless Commun. 8(5), 2161–2165 (2009).
[Crossref]

Meir, R.

Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least-squares algorithm,” IEEE Trans. Signal Process. 52(8), 2275–2285 (2004).
[Crossref]

Myung, H. G.

H. G. Myung, J. Lim, and D. J. Goodman, “Single carrier FDMA for uplink wireless transmission,” IEEE Veh. Technol. Mag. 1(3), 30–38 (2006).
[Crossref]

Neumeyr, C.

C. Xie, P. Dong, S. Randel, D. Pilori, P. J. Winzer, S. Spiga, B. Kögel, C. Neumeyr, and M. Amann, “Single-VCSEL 100-Gb/s short-reach system using discrete multi-tone modulation and direct detection,” in Optical Fiber Communication Conference 2015, OSA Technical Digest (Optical Society of America, 2015), paper Tu2H.2.

Nishihara, M.

T. Takahara, T. Tanaka, M. Nishihara, Y. Kai, L. Li, Z. Tao, and J. Rasmussen, “Discrete multi-tone for 100 Gb/s optical access networks,” in Optical Fiber Communication Conference 2014, OSA Technical Digest (Optical Society of America, 2014), paper M2I.1.

Oteri, O.

I. C. Wong, O. Oteri, and W. Mccoy, “Optimal resource allocation in uplink SC-FDMA systems,” IEEE Trans. Wireless Commun. 8(5), 2161–2165 (2009).
[Crossref]

Pilori, D.

C. Xie, P. Dong, S. Randel, D. Pilori, P. J. Winzer, S. Spiga, B. Kögel, C. Neumeyr, and M. Amann, “Single-VCSEL 100-Gb/s short-reach system using discrete multi-tone modulation and direct detection,” in Optical Fiber Communication Conference 2015, OSA Technical Digest (Optical Society of America, 2015), paper Tu2H.2.

Qiao, Y.

J. Zhou, F. Xu, E. Sun, T. Zhang, Z. Zhang, M. Guo, X. Tang, Z. Wang, and Y. Qiao, “Coherent optical interleaved SC-FDM uplink scheme for long-reach passive nptical network,” IEEE Photonics J. 8(2), 7902208 (2016).
[Crossref]

Randel, S.

C. Xie, P. Dong, S. Randel, D. Pilori, P. J. Winzer, S. Spiga, B. Kögel, C. Neumeyr, and M. Amann, “Single-VCSEL 100-Gb/s short-reach system using discrete multi-tone modulation and direct detection,” in Optical Fiber Communication Conference 2015, OSA Technical Digest (Optical Society of America, 2015), paper Tu2H.2.

Rasmussen, J.

T. Takahara, T. Tanaka, M. Nishihara, Y. Kai, L. Li, Z. Tao, and J. Rasmussen, “Discrete multi-tone for 100 Gb/s optical access networks,” in Optical Fiber Communication Conference 2014, OSA Technical Digest (Optical Society of America, 2014), paper M2I.1.

Salah, M.

N. Abu-Ali, A. M. Taha, M. Salah, and H. Hassanein, “Uplink scheduling in LTE and LTE-Advanced: tutorial, survey and evaluation framework,” IEEE Commun. Surveys Tutorials 16(3), 1239–1265 (2014).
[Crossref]

Shieh, W.

Spiga, S.

C. Xie, P. Dong, S. Randel, D. Pilori, P. J. Winzer, S. Spiga, B. Kögel, C. Neumeyr, and M. Amann, “Single-VCSEL 100-Gb/s short-reach system using discrete multi-tone modulation and direct detection,” in Optical Fiber Communication Conference 2015, OSA Technical Digest (Optical Society of America, 2015), paper Tu2H.2.

Storey, J.

D. George, R. Bowen, and J. Storey, “An Adaptive Decision Feedback Equalizer,” IEEE Trans. Commun. Tech. 19(3), 281–293 (1971).
[Crossref]

Sun, E.

J. Zhou, F. Xu, E. Sun, T. Zhang, Z. Zhang, M. Guo, X. Tang, Z. Wang, and Y. Qiao, “Coherent optical interleaved SC-FDM uplink scheme for long-reach passive nptical network,” IEEE Photonics J. 8(2), 7902208 (2016).
[Crossref]

Taha, A. M.

N. Abu-Ali, A. M. Taha, M. Salah, and H. Hassanein, “Uplink scheduling in LTE and LTE-Advanced: tutorial, survey and evaluation framework,” IEEE Commun. Surveys Tutorials 16(3), 1239–1265 (2014).
[Crossref]

Takahara, T.

T. Takahara, T. Tanaka, M. Nishihara, Y. Kai, L. Li, Z. Tao, and J. Rasmussen, “Discrete multi-tone for 100 Gb/s optical access networks,” in Optical Fiber Communication Conference 2014, OSA Technical Digest (Optical Society of America, 2014), paper M2I.1.

Tanaka, T.

T. Takahara, T. Tanaka, M. Nishihara, Y. Kai, L. Li, Z. Tao, and J. Rasmussen, “Discrete multi-tone for 100 Gb/s optical access networks,” in Optical Fiber Communication Conference 2014, OSA Technical Digest (Optical Society of America, 2014), paper M2I.1.

Tang, X.

J. Zhou, F. Xu, E. Sun, T. Zhang, Z. Zhang, M. Guo, X. Tang, Z. Wang, and Y. Qiao, “Coherent optical interleaved SC-FDM uplink scheme for long-reach passive nptical network,” IEEE Photonics J. 8(2), 7902208 (2016).
[Crossref]

Tang, Y.

Tao, L.

Tao, Z.

T. Takahara, T. Tanaka, M. Nishihara, Y. Kai, L. Li, Z. Tao, and J. Rasmussen, “Discrete multi-tone for 100 Gb/s optical access networks,” in Optical Fiber Communication Conference 2014, OSA Technical Digest (Optical Society of America, 2014), paper M2I.1.

Wang, Y.

Y. Wang, J. Yu, and N. Chi, “Demonstration of 4 × 128-Gb/s DFT-S OFDM Signal Transmission over 320-km SMF With IM/DD,” IEEE Photonics J. 8(2), 7903209 (2016).

Y. Wang, J. Yu, H. Chien, X. Li, and N. Chi, “Transmission and Direct Detection of 300-Gbps DFT-S OFDM Signals Based on O-ISB Modulation with Joint Image-cancellation and Nonlinearity-mitigation,” in Proceedings of European Conference on Optical Communication (ECOC, 2016), pp 827–829.

Wang, Z.

J. Zhou, F. Xu, E. Sun, T. Zhang, Z. Zhang, M. Guo, X. Tang, Z. Wang, and Y. Qiao, “Coherent optical interleaved SC-FDM uplink scheme for long-reach passive nptical network,” IEEE Photonics J. 8(2), 7902208 (2016).
[Crossref]

Winzer, P. J.

C. Xie, P. Dong, S. Randel, D. Pilori, P. J. Winzer, S. Spiga, B. Kögel, C. Neumeyr, and M. Amann, “Single-VCSEL 100-Gb/s short-reach system using discrete multi-tone modulation and direct detection,” in Optical Fiber Communication Conference 2015, OSA Technical Digest (Optical Society of America, 2015), paper Tu2H.2.

Wong, I. C.

I. C. Wong, O. Oteri, and W. Mccoy, “Optimal resource allocation in uplink SC-FDMA systems,” IEEE Trans. Wireless Commun. 8(5), 2161–2165 (2009).
[Crossref]

Xia, Y.

F. Li, X. Li, L. Chen, Y. Xia, C. Ge, and Y. Chen, “High-level QAM OFDM system using DML for low-cost short reach optical communications,” IEEE Photonics Technol. Lett. 26(9), 941–944 (2014).
[Crossref]

Xie, C.

C. Xie, P. Dong, S. Randel, D. Pilori, P. J. Winzer, S. Spiga, B. Kögel, C. Neumeyr, and M. Amann, “Single-VCSEL 100-Gb/s short-reach system using discrete multi-tone modulation and direct detection,” in Optical Fiber Communication Conference 2015, OSA Technical Digest (Optical Society of America, 2015), paper Tu2H.2.

Xu, F.

J. Zhou, F. Xu, E. Sun, T. Zhang, Z. Zhang, M. Guo, X. Tang, Z. Wang, and Y. Qiao, “Coherent optical interleaved SC-FDM uplink scheme for long-reach passive nptical network,” IEEE Photonics J. 8(2), 7902208 (2016).
[Crossref]

Yu, J.

Y. Wang, J. Yu, and N. Chi, “Demonstration of 4 × 128-Gb/s DFT-S OFDM Signal Transmission over 320-km SMF With IM/DD,” IEEE Photonics J. 8(2), 7903209 (2016).

F. Li, J. Yu, Z. Cao, J. Zhang, M. Chen, and X. Li, “Experimental Demonstration of Four-Channel WDM 560 Gbit/s 128QAM-DMT using IM/DD for 2-km Optical Interconnect,” J. Lightwave Technol., to be published.

Y. Wang, J. Yu, H. Chien, X. Li, and N. Chi, “Transmission and Direct Detection of 300-Gbps DFT-S OFDM Signals Based on O-ISB Modulation with Joint Image-cancellation and Nonlinearity-mitigation,” in Proceedings of European Conference on Optical Communication (ECOC, 2016), pp 827–829.

Zeng, L.

Zhang, J.

F. Li, J. Yu, Z. Cao, J. Zhang, M. Chen, and X. Li, “Experimental Demonstration of Four-Channel WDM 560 Gbit/s 128QAM-DMT using IM/DD for 2-km Optical Interconnect,” J. Lightwave Technol., to be published.

Zhang, T.

J. Zhou, F. Xu, E. Sun, T. Zhang, Z. Zhang, M. Guo, X. Tang, Z. Wang, and Y. Qiao, “Coherent optical interleaved SC-FDM uplink scheme for long-reach passive nptical network,” IEEE Photonics J. 8(2), 7902208 (2016).
[Crossref]

Zhang, Z.

J. Zhou, F. Xu, E. Sun, T. Zhang, Z. Zhang, M. Guo, X. Tang, Z. Wang, and Y. Qiao, “Coherent optical interleaved SC-FDM uplink scheme for long-reach passive nptical network,” IEEE Photonics J. 8(2), 7902208 (2016).
[Crossref]

Zhong, K.

Zhou, J.

J. Zhou, F. Xu, E. Sun, T. Zhang, Z. Zhang, M. Guo, X. Tang, Z. Wang, and Y. Qiao, “Coherent optical interleaved SC-FDM uplink scheme for long-reach passive nptical network,” IEEE Photonics J. 8(2), 7902208 (2016).
[Crossref]

Zhou, X.

Electron. Lett. (1)

J. Armstrong, “Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering,” Electron. Lett. 38(5), 246–247 (2002).
[Crossref]

IEEE Commun. Surveys Tutorials (1)

N. Abu-Ali, A. M. Taha, M. Salah, and H. Hassanein, “Uplink scheduling in LTE and LTE-Advanced: tutorial, survey and evaluation framework,” IEEE Commun. Surveys Tutorials 16(3), 1239–1265 (2014).
[Crossref]

IEEE Photonics J. (2)

Y. Wang, J. Yu, and N. Chi, “Demonstration of 4 × 128-Gb/s DFT-S OFDM Signal Transmission over 320-km SMF With IM/DD,” IEEE Photonics J. 8(2), 7903209 (2016).

J. Zhou, F. Xu, E. Sun, T. Zhang, Z. Zhang, M. Guo, X. Tang, Z. Wang, and Y. Qiao, “Coherent optical interleaved SC-FDM uplink scheme for long-reach passive nptical network,” IEEE Photonics J. 8(2), 7902208 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

F. Li, X. Li, L. Chen, Y. Xia, C. Ge, and Y. Chen, “High-level QAM OFDM system using DML for low-cost short reach optical communications,” IEEE Photonics Technol. Lett. 26(9), 941–944 (2014).
[Crossref]

IEEE Trans. Commun. Tech. (1)

D. George, R. Bowen, and J. Storey, “An Adaptive Decision Feedback Equalizer,” IEEE Trans. Commun. Tech. 19(3), 281–293 (1971).
[Crossref]

IEEE Trans. Signal Process. (1)

Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least-squares algorithm,” IEEE Trans. Signal Process. 52(8), 2275–2285 (2004).
[Crossref]

IEEE Trans. Wireless Commun. (1)

I. C. Wong, O. Oteri, and W. Mccoy, “Optimal resource allocation in uplink SC-FDMA systems,” IEEE Trans. Wireless Commun. 8(5), 2161–2165 (2009).
[Crossref]

IEEE Veh. Technol. Mag. (1)

H. G. Myung, J. Lim, and D. J. Goodman, “Single carrier FDMA for uplink wireless transmission,” IEEE Veh. Technol. Mag. 1(3), 30–38 (2006).
[Crossref]

J. Lightwave Technol. (3)

Opt. Express (2)

Other (5)

F. Li, J. Yu, Z. Cao, J. Zhang, M. Chen, and X. Li, “Experimental Demonstration of Four-Channel WDM 560 Gbit/s 128QAM-DMT using IM/DD for 2-km Optical Interconnect,” J. Lightwave Technol., to be published.

Y. Wang, J. Yu, H. Chien, X. Li, and N. Chi, “Transmission and Direct Detection of 300-Gbps DFT-S OFDM Signals Based on O-ISB Modulation with Joint Image-cancellation and Nonlinearity-mitigation,” in Proceedings of European Conference on Optical Communication (ECOC, 2016), pp 827–829.

T. Takahara, T. Tanaka, M. Nishihara, Y. Kai, L. Li, Z. Tao, and J. Rasmussen, “Discrete multi-tone for 100 Gb/s optical access networks,” in Optical Fiber Communication Conference 2014, OSA Technical Digest (Optical Society of America, 2014), paper M2I.1.

C. Xie, P. Dong, S. Randel, D. Pilori, P. J. Winzer, S. Spiga, B. Kögel, C. Neumeyr, and M. Amann, “Single-VCSEL 100-Gb/s short-reach system using discrete multi-tone modulation and direct detection,” in Optical Fiber Communication Conference 2015, OSA Technical Digest (Optical Society of America, 2015), paper Tu2H.2.

P. Dong, J. Lee, K. Kim, Y. Chen, and C. Gui, “Ten-channel discrete multi-tone modulation using silicon microring modulator array,” in Optical Fiber Communication Conference 2016, OSA Technical Digest (Optical Society of America, 2016), paper W4J.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The block diagram of IM/DD optical I-SC-FDM system for optical interconnects. S/P: series-to-parallel; P/S: parallel-to-series; DAC: digital-to-analog converter; ADC: analog-to-digital converter; IM: intensity modulation; DD: direct detection; C2RT: complex-to-real transform; R2CT: real-to-complex transform; CP: cyclic prefix.
Fig. 2
Fig. 2 The simplified encoding structure for generating the real-valued I-SC-FDM signal.
Fig. 3
Fig. 3 The number of complex multiplications for the conventional and simplified multiplexing structures.
Fig. 4
Fig. 4 The schematic diagram of the real-valued I-SC-FDM symbol.
Fig. 5
Fig. 5 The CCDFs of PAPR for I-SC-FDM, L-SC-FDM and OFDM signals.
Fig. 6
Fig. 6 The block diagram for the experimental setup of I-SC-FDM system. AWG: arbitrary waveform generator; ECL: external cavity laser; EA: electrical amplifier; MZM: Mach-Zehnder modulator; VOA: variable optical attenuator; DC: direct current; PD: photodiode.
Fig. 7
Fig. 7 The BER versus ROP for 12 Gbit/s QPSK-modulated and 24 Gbit/s 16QAM-modulated I-SC-FDM signals after back-to-back (BTB) and 22.5-km SSMF transmission.
Fig. 8
Fig. 8 (a) The BER versus ROP for QPSK-modulated I-SC-FDM, OFDM, and clipped OFDM after 22.5-km SSMF transmission; (b) The CCDF of PAPR for QPSK-modulated I-SC-FDM, OFDM, and clipped OFDM signals.
Fig. 9
Fig. 9 (a) The optical spectrum of the 128 Gbit/s 16QAM-modulated I-SC-FDM signal; (b) The electrical spectrum of the received 128 Gbit/s 16QAM-modulated I-SC-FDM signal.
Fig. 10
Fig. 10 The BER versus ROP for 128 Gbit/s 16QAM-modulated I-SC-FDM signals after BTB and 2:4-km SSMF transmission.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

X ( n ) = k = 0 N 1 x ( k ) e j 2 π N k n
Y = [ 0 , X ( 0 ) , 0 , X ( 1 ) , , 0 , X ( N 1 ) ] .
y ( m ) = 1 2 N l = 0 2 N 1 Y ( l ) e j 2 π 2 N l m
y ( m ) = { 1 2 e j π N m × x ( m ) , 0 m N 1 , 1 2 e j π N m × x ( m N ) , N m 2 N 1 ,
y r e ( m ) = real { x ( m ) } cos ( π m N ) imag { x ( m ) } sin ( π m N ) 2 ,
y i m ( m ) = real { x ( m ) } sin ( π m N ) + imag { x ( m ) } cos ( π m N ) 2 ,
PAPR = 10 log 10 ( Max { | s | 2 } E { | s | 2 } ) ( dB )
PAPR = 10 log 10 ( Max { | y | 2 } E { | y | 2 } ) = 10 log 10 ( 0.5 0.25 ) = 3 dB ,
PAPR = P ( PAPR > PAPR 0 )
CR = 10 log 10 ( A 2 E ( | y | 2 ) ) ( dB )

Metrics