Abstract

We present experimental and numerical data on the supercontinuum generation in an optical fiber pumped in the normal dispersion range where the seeded dark and the spontaneously generated bright solitons contribute to the spectral broadening. We report the dispersive radiation arising from the interaction of the bright and dark solitons. This radiation consists of the two weak dispersing pulses that continuously shift their frequencies and shape the short and long wavelength wings of the supercontinuum spectrum.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generating dark solitons through cross-phase modulation in optical fibers

B. J. Hong, C. C. Yang, and Likarn Wang
J. Opt. Soc. Am. B 8(2) 464-470 (1991)

Transformation of a dark soliton into a bright pulse

Boris A. Malomed, Amir Mostofi, and Pak L. Chu
J. Opt. Soc. Am. B 17(4) 507-513 (2000)

Generation of tunable ultra-short pulse sequences in a quasi-discrete spectral supercontinuum by dark solitons

Saili Zhao, Hua Yang, Ying Huang, and Yuzhe Xiao
Opt. Express 27(16) 23539-23548 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135 (2006).
    [Crossref]
  2. D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287 (2010).
    [Crossref]
  3. C. Milián, D. Skryabin, and A. Ferrando, “Continuum generation by dark solitons,” Opt. Lett. 34, 2096–2098 (2009).
    [Crossref] [PubMed]
  4. I. Oreshnikov, R. Driben, and A. Yulin, “Weak and strong interactions between dark solitons and dispersive waves,” Opt. Lett. 40, 4871–4874 (2015).
    [Crossref] [PubMed]
  5. V. I. Karpman, “Stationary and radiating dark solitons of the third order nonlinear Schrödinger equation,” Phys. Lett. A 181, 211–217 (1993).
    [Crossref]
  6. V. V. Afanasjev, Y. S. Kivshar, and C. R. Menyuk, “Effect of third-order dispersion on dark solitons,” Opt. Lett. 21, 1975–1977 (1996).
    [Crossref] [PubMed]
  7. T. Marest, C. Mas Arabi, M. Conforti, A. Mussot, C. Milian, D. V. Skryabin, and A. Kudlinski, “Emission of dispersive waves from a train of dark solitons in optical fibers,” Opt. Lett. 41, 2454–2457 (2016).
    [Crossref] [PubMed]
  8. M. Conforti, F. Baronio, and S. Trillo, “Resonant radiation shed by dispersive shock waves,” Phys. Rev. A 89, 013807 (2014).
    [Crossref]
  9. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White light supercontinuum generation with 60 ps pump pulses in a photonic crystal fiber,” Opt. Lett. 26, 1356–1358 (2001).
    [Crossref]
  10. K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre,” Electron. Lett. 42, 989–991 (2006).
    [Crossref]
  11. A. Al-Kadry, L. Li, M. El Amraoui, T. North, Y. Messaddeq, and M. Rochette, “Broadband supercontinuum generation in all-normal dispersion chalcogenide microwires,” Opt. Lett. 40, 4687–4690 (2015).
    [Crossref] [PubMed]
  12. J. E. Rothenberg and H. K. Heinrich, “Observation of the formation of dark-soliton trains in optical fibers,” Opt. Lett. 17, 261–263 (1992).
    [Crossref] [PubMed]
  13. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).
  14. S. Bose, S. Roy, R. Chattopadhyay, M. Pal, and S.K. Bhadra, “Experimental and theoretical study of red-shifted solitonic resonant radiation in photonic crystal fibers and generation of radiation seeded Raman soliton,” J. Opt. 17, 105506 (2015).
    [Crossref]
  15. A.V. Gorbach and D.V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photon. 1, 653–657 (2007).
    [Crossref]
  16. A. Bendahmane, A. Mussot, M. Conforti, and A. Kudlinski, “Observation of the stepwise blue shift of a dispersive wave preceding its trapping by a soliton,” Opt. Express 23, 16595–16601 (2015).
    [Crossref] [PubMed]

2016 (1)

2015 (4)

2014 (1)

M. Conforti, F. Baronio, and S. Trillo, “Resonant radiation shed by dispersive shock waves,” Phys. Rev. A 89, 013807 (2014).
[Crossref]

2010 (1)

D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287 (2010).
[Crossref]

2009 (1)

2007 (1)

A.V. Gorbach and D.V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photon. 1, 653–657 (2007).
[Crossref]

2006 (2)

K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre,” Electron. Lett. 42, 989–991 (2006).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135 (2006).
[Crossref]

2001 (1)

1996 (1)

1993 (1)

V. I. Karpman, “Stationary and radiating dark solitons of the third order nonlinear Schrödinger equation,” Phys. Lett. A 181, 211–217 (1993).
[Crossref]

1992 (1)

Afanasjev, V. V.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).

Al-Kadry, A.

Amraoui, M. El

Baronio, F.

M. Conforti, F. Baronio, and S. Trillo, “Resonant radiation shed by dispersive shock waves,” Phys. Rev. A 89, 013807 (2014).
[Crossref]

Bendahmane, A.

Bhadra, S.K.

S. Bose, S. Roy, R. Chattopadhyay, M. Pal, and S.K. Bhadra, “Experimental and theoretical study of red-shifted solitonic resonant radiation in photonic crystal fibers and generation of radiation seeded Raman soliton,” J. Opt. 17, 105506 (2015).
[Crossref]

Bjarklev, A.

K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre,” Electron. Lett. 42, 989–991 (2006).
[Crossref]

Bose, S.

S. Bose, S. Roy, R. Chattopadhyay, M. Pal, and S.K. Bhadra, “Experimental and theoretical study of red-shifted solitonic resonant radiation in photonic crystal fibers and generation of radiation seeded Raman soliton,” J. Opt. 17, 105506 (2015).
[Crossref]

Chattopadhyay, R.

S. Bose, S. Roy, R. Chattopadhyay, M. Pal, and S.K. Bhadra, “Experimental and theoretical study of red-shifted solitonic resonant radiation in photonic crystal fibers and generation of radiation seeded Raman soliton,” J. Opt. 17, 105506 (2015).
[Crossref]

Chau, A. H. L.

Chow, K.

K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre,” Electron. Lett. 42, 989–991 (2006).
[Crossref]

Coen, S.

Conforti, M.

Driben, R.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135 (2006).
[Crossref]

Ferrando, A.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135 (2006).
[Crossref]

Gorbach, A. V.

D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287 (2010).
[Crossref]

Gorbach, A.V.

A.V. Gorbach and D.V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photon. 1, 653–657 (2007).
[Crossref]

Harvey, J. D.

Heinrich, H. K.

Karpman, V. I.

V. I. Karpman, “Stationary and radiating dark solitons of the third order nonlinear Schrödinger equation,” Phys. Lett. A 181, 211–217 (1993).
[Crossref]

Kivshar, Y. S.

Knight, J. C.

Kudlinski, A.

Leonhardt, R.

Li, L.

Lin, C.

K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre,” Electron. Lett. 42, 989–991 (2006).
[Crossref]

Marest, T.

Mas Arabi, C.

Menyuk, C. R.

Messaddeq, Y.

Milian, C.

Milián, C.

Mussot, A.

North, T.

Oreshnikov, I.

Pal, M.

S. Bose, S. Roy, R. Chattopadhyay, M. Pal, and S.K. Bhadra, “Experimental and theoretical study of red-shifted solitonic resonant radiation in photonic crystal fibers and generation of radiation seeded Raman soliton,” J. Opt. 17, 105506 (2015).
[Crossref]

Rochette, M.

Rothenberg, J. E.

Roy, S.

S. Bose, S. Roy, R. Chattopadhyay, M. Pal, and S.K. Bhadra, “Experimental and theoretical study of red-shifted solitonic resonant radiation in photonic crystal fibers and generation of radiation seeded Raman soliton,” J. Opt. 17, 105506 (2015).
[Crossref]

Russell, P. St. J.

Shu, C.

K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre,” Electron. Lett. 42, 989–991 (2006).
[Crossref]

Skryabin, D.

Skryabin, D. V.

Skryabin, D.V.

A.V. Gorbach and D.V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photon. 1, 653–657 (2007).
[Crossref]

Takushima, Y.

K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre,” Electron. Lett. 42, 989–991 (2006).
[Crossref]

Trillo, S.

M. Conforti, F. Baronio, and S. Trillo, “Resonant radiation shed by dispersive shock waves,” Phys. Rev. A 89, 013807 (2014).
[Crossref]

Wadsworth, W. J.

Yulin, A.

Electron. Lett. (1)

K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre,” Electron. Lett. 42, 989–991 (2006).
[Crossref]

J. Opt. (1)

S. Bose, S. Roy, R. Chattopadhyay, M. Pal, and S.K. Bhadra, “Experimental and theoretical study of red-shifted solitonic resonant radiation in photonic crystal fibers and generation of radiation seeded Raman soliton,” J. Opt. 17, 105506 (2015).
[Crossref]

Nat. Photon. (1)

A.V. Gorbach and D.V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photon. 1, 653–657 (2007).
[Crossref]

Opt. Express (1)

Opt. Lett. (7)

Phys. Lett. A (1)

V. I. Karpman, “Stationary and radiating dark solitons of the third order nonlinear Schrödinger equation,” Phys. Lett. A 181, 211–217 (1993).
[Crossref]

Phys. Rev. A (1)

M. Conforti, F. Baronio, and S. Trillo, “Resonant radiation shed by dispersive shock waves,” Phys. Rev. A 89, 013807 (2014).
[Crossref]

Rev. Mod. Phys. (2)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135 (2006).
[Crossref]

D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287 (2010).
[Crossref]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Experimental measurements and numerical modeling of the spontaneous formation of bright solitons on top of the train of dark solitons. (a,b) Comparison of the generated spectra and of the corresponding modeling results for two fiber lengths z = 12 and 20m. (c) shows the simulated time domain dynamics. (d) is the measured spectral evolution long the fiber by the cut-back technique. (e) is the numerical modeling corresponding to (d), but for longer distances. The peaks around 870 and 1250 nm in (b,d,e) correspond to the continuum wings associated with the interaction between the bright and dark solitons. Parameters of the input pulses and of the fibers are described in the text.
Fig. 2
Fig. 2 Numerical simulation of the collision of a bright soliton with the dark soliton train. Top row disregards and the bottom one accounts for the Raman effect. (a,c) show temporal and (b,d) spectral dynamics. Input conditions and fiber parameters as in Fig. 1. The spectra corresponding to the Raman shifting bright soliton and its trapped radiation, as per Ref. [15], correspond to the right most red and to the left most yellow/orange stripes in (d). The diverging pale blue wings on both sides of the continuum in (b,d) is the effect studied here.
Fig. 3
Fig. 3 XFROG spectrograms showing time-frequency structure of the supercontinuum field from Fig. 2(a,b) for z = 7LD (a) and 25LD (b). Vertical solid line marks the zero GVD wavelength. Dashed vertical lines in (b) mark the career wavelengths of the bright (1060nm) and dark (895nm) solitons, and the wavelengths of the continuum wings (770 and 1310nm), calculated using Eqs. (6). The intense signal just on the left from the ωds line in (b) is the Cherenkov radiation emitted by the bright soliton.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

i z A + D ^ ( t ) A + γ | A | 2 A + Q A = 0 ,
A ( t , z = 0 ) = P 0 [ exp { ( t + t d e l 2 T 0 ) 2 } + exp { ( t 2 T 0 ) 2 } ] ,
A = Ψ + g , Ψ = Ψ b s + Ψ d s + Ψ d s d w .
i z g + D ^ g + 2 γ | Ψ | 2 g + γ Ψ 2 g * = γ S f w m γ S d i s p .
S f w m = Ψ b s 2 Ψ d s * + Ψ d s 2 Ψ b s * + Ψ d s d w * ( Ψ b s + Ψ d s ) 2 + 4 Ψ d s d w Re ( Ψ d s Ψ b s * ) + ,
ω w 1 = 2 ω d s ω b s = ω d s + δ , ω w 2 = 2 ω b s ω d s = ω b s δ ,

Metrics