Abstract

Surface-texture with silicon (Si) nanopyramid arrays has been considered as a promising choice for extremely high performance solar cells due to their excellent anti-reflective effects and inherent low parasitic surface areas. However, the current techniques of fabricating Si nanopyramid arrays are always complicated and cost-ineffective. Here, a high throughput nanosphere patterning method is developed to form periodic upright nanopyramid (UNP) arrays in wafer-scale. A direct comparison with the state-of-the-art texture of random pyramids is demonstrated in optical and electronic properties. In combination with the antireflection effect of a SiNx coating layer, the periodic UNP arrays help to provide a remarkable improvement in short-wavelength response over the random pyramids, attributing to a short-current density gain of 1.35 mA/cm2. The advanced texture of periodic UNP arrays provided in this work shows a huge potential to be integrated into the mass production of high-efficiency Si solar cells.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced conversion efficiency of a crystalline silicon solar cell with frustum nanorod arrays

Min-An Tsai, Ping-Chen Tseng, Hsin-Chu Chen, Hao-Chung Kuo, and Peichen Yu
Opt. Express 19(S1) A28-A34 (2011)

Lithography-free sub-100 nm nanocone array antireflection layer for low-cost silicon solar cell

Zhida Xu, Jing Jiang, and Gang Logan Liu
Appl. Opt. 51(19) 4430-4435 (2012)

References

  • View by:
  • |
  • |
  • |

  1. F. Teng, N. Li, L. Liu, D. Xu, D. Xiao, and N. Lu, “Fabrication of ordered Si nanopillar arrays for ultralow reflectivity,” RSC. Adv. 6(19), 15803–15807 (2016).
  2. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
    [Crossref] [PubMed]
  3. P. Gao, H. Wang, Z. Sun, W. Han, J. Li, and J. Ye, “Efficient light trapping in low aspect-ratio honeycomb nanobowl surface texturing for crystalline silicon solar cell applications,” Appl. Phys. Lett. 103(25), 253105 (2013).
    [Crossref]
  4. Y. Li, L. Yue, Y. Luo, W. Liu, and M. Li, “Light harvesting of Silicon Nanostructure for Solar Cells Application,” Opt. Express 24(14), A1075–A1082 (2016).
    [Crossref] [PubMed]
  5. M. Tang, L. Zhou, S. Gu, W. Zhu, Y. Wang, J. Xu, Z. Deng, T. Yu, Z. Lu, and J. Zhu, “Fine-tuning the metallic core-shell nanostructures for plasmonic perovskite solar cells,” Appl. Phys. Lett. 109(18), 183901 (2016).
    [Crossref]
  6. L. Zhou, X. Yu, and J. Zhu, “Metal-core/semiconductor-shell nanocones for broadband solar absorption enhancement,” Nano Lett. 14(2), 1093–1098 (2014).
    [Crossref] [PubMed]
  7. J. Zhu, Z. Yu, S. Fan, and Y. Cui, “Nanostructured photon management for high performance solar cells,” Mater. Sci. Eng. A 70(3-6), 330–340 (2010).
    [Crossref]
  8. S. Zhong, W. Wang, Y. Zhuang, Z. Huang, and W. Shen, “All-solution-processed random Si nanopyramids for excellent light trapping in ultrathin solar cells,” Adv. Funct. Mater. 26(26), 4768–4777 (2016).
    [Crossref]
  9. H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
    [Crossref] [PubMed]
  10. J. Zhao, A. Wang, P. P. Altermatt, and M. A. Green, “Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss,” Appl. Phys. Lett. 66(26), 3636–3638 (1995).
    [Crossref]
  11. S. Zhou, Z. Yang, P. Gao, X. Li, X. Yang, D. Wang, J. He, Z. Ying, and J. Ye, “Wafer-scale integration of inverted nanopyramid arrays for advanced light trapping in crystalline silicon thin film solar cells,” Nanoscale Res. Lett. 11(1), 194 (2016).
    [Crossref] [PubMed]
  12. S. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 133109 (2008).
    [Crossref]
  13. J. He, P. Gao, M. Liao, X. Yang, Z. Ying, S. Zhou, J. Ye, and Y. Cui, “Realization of 13.6% efficiency on 20 μm thick Si/organic hybrid heterojunction solar cells via advanced nanotexturing and surface recombination suppression,” ACS Nano 9(6), 6522–6531 (2015).
    [Crossref] [PubMed]
  14. H. Lin, H. Y. Cheung, F. Xiu, F. Wang, S. P. Yip, N. Han, T. Hung, J. Zhou, J. C. Ho, and C. Y. Wong, “Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping,” J. Mater. Chem. A Mater. Energy Sustain. 1(34), 9942–9946 (2013).
    [Crossref]
  15. H. Lin, F. Xiu, M. Fang, S. Yip, H. Y. Cheung, F. Wang, N. Han, K. S. Chan, C. Y. Wong, and J. C. Ho, “Rational design of inverted nanopencil arrays for cost-effective, broadband, and omnidirectional light harvesting,” ACS Nano 8(4), 3752–3760 (2014).
    [Crossref] [PubMed]
  16. Y. Yao, J. Yao, V. K. Narasimhan, Z. Ruan, C. Xie, S. Fan, and Y. Cui, “Broadband light management using low-Q whispering gallery modes in spherical nanoshells,” Nat. Commun. 3(6), 664 (2012).
    [Crossref] [PubMed]
  17. M. Koh, S. Sawara, T. Goto, Y. Ando, T. Shinada, and I. Ohdomari, “New process for Si nanopyramid array (NPA) fabrication by ion-beam irradiation and wet etching,” Jpn. J. Appl. Phys. 39(39), 2186–2188 (2000).
    [Crossref]
  18. A. Mavrokefalos, S. E. Han, S. Yerci, M. S. Branham, and G. Chen, “Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications,” Nano Lett. 12(6), 2792–2796 (2012).
    [Crossref] [PubMed]
  19. M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, A. Ebong, and G. Chen, “Empirical comparison of random and periodic surface light-trapping structures for ultrathin silicon photovoltaics,” Adv. Opt. Mater. 4(6), 858–863 (2016).
    [Crossref]
  20. A. Ingenito, O. Isabella, and M. Zeman, “Nano-cones on micro-pyramids: modulated surface textures for maximal spectral response and high-efficiency solar cells,” Prog. Photovolt. Res. Appl. 23(11), 1649–1659 (2015).
    [Crossref]
  21. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
    [Crossref] [PubMed]
  22. S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
    [Crossref] [PubMed]
  23. Y. Li, P. Gao, Q. Chen, J. Yang, J. Li, and D. He, “Nanostructured semiconductor solar absorbers with near 100% absorption and related light management picture,” J. Phys. D Appl. Phys. 49(21), 215104 (2016).
    [Crossref]
  24. K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, “Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching,” Nanotechnology 19(34), 345301 (2008).
    [Crossref] [PubMed]
  25. S. W. Schmitt, F. Schechtel, D. Amkreutz, M. Bashouti, S. K. Srivastava, B. Hoffmann, C. Dieker, E. Spiecker, B. Rech, and S. H. Christiansen, “Nanowire arrays in multicrystalline silicon thin films on glass: a promising material for research and applications in nanotechnology,” Nano Lett. 12(8), 4050–4054 (2012).
    [Crossref] [PubMed]
  26. T. Mårtensson, P. Carlberg, M. Borgström, L. Montelius, A. W. Seifert, and L. Samuelson, “Nanowire arrays defined by nanoimprint lithography,” Nano Lett. 4(4), 699–702 (2004).
    [Crossref]
  27. P. B. Fischer and S. Y. Chou, “Sub-50 nm high aspect-ratio silicon pillars, ridges and trenches fabricated using ultra-high e-beam lithography and RIE,” Appl. Phys. Lett. 62, 1414–1416 (1993).
    [Crossref]
  28. P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15(7), 4591–4598 (2015).
    [Crossref] [PubMed]
  29. P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
    [Crossref]
  30. C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
    [Crossref] [PubMed]
  31. P. Campbell and M. A. Green, “High performance light trapping textures for monocrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 65(1), 369–375 (2001).
    [Crossref]
  32. Y. Kanamori, M. Okochi, and K. Hane, “Fabrication of antireflection subwavelength gratings at the tips of optical fibers using UV nanoimprint lithography,” Opt. Express 21(1), 322–328 (2013).
    [Crossref] [PubMed]
  33. L. Zhao, Y. Zuo, C. Zhou, H. Li, H. Diao, and W. Wang, “Theoretical investigation on the absorption enhancement of the crystalline silicon solar cells by pyramid texture coated with SiNx:H layer,” Sol. Energy 85(3), 530–537 (2011).
    [Crossref]
  34. J. He, Z. Yang, P. Liu, S. Wu, P. Gao, M. Wang, S. Zhou, X. Li, H. Cao, and J. Ye, “Enhanced electro-optical properties of nanocone/nanopillar dual-structured arrays for ultrathin silicon/organic hybrid solar cell applications,” Adv. Energy Mater. 6(8), 1501793 (2016).
    [Crossref]
  35. Z. Yang, X. Li, S. Wu, P. Gao, and J. Ye, “High-efficiency photon capturing in ultrathin silicon solar cells with front nanobowl texture and truncated-nanopyramid reflector,” Opt. Lett. 40(6), 1077–1080 (2015).
    [Crossref] [PubMed]
  36. Z. Yang, A. Shang, L. Qin, Y. Zhan, C. Zhang, P. Gao, J. Ye, and X. Li, “Broadband and wide-angle light harvesting by ultra-thin silicon solar cells with partially embedded dielectric spheres,” Opt. Lett. 41(7), 1329–1332 (2016).
    [Crossref] [PubMed]
  37. X. Li, N. P. Hylton, V. Giannini, K. H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Multi-dimensional modeling of solar cells with electromagnetic and carrier transport calculations,” Prog. Photovolt. Res. Appl. 21(1), 109–120 (2013).
    [Crossref]
  38. X. Li, N. P. Hylton, V. Giannini, K. H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells,” Opt. Express 19(14), A888–A896 (2011).
    [Crossref] [PubMed]

2016 (9)

Y. Li, L. Yue, Y. Luo, W. Liu, and M. Li, “Light harvesting of Silicon Nanostructure for Solar Cells Application,” Opt. Express 24(14), A1075–A1082 (2016).
[Crossref] [PubMed]

M. Tang, L. Zhou, S. Gu, W. Zhu, Y. Wang, J. Xu, Z. Deng, T. Yu, Z. Lu, and J. Zhu, “Fine-tuning the metallic core-shell nanostructures for plasmonic perovskite solar cells,” Appl. Phys. Lett. 109(18), 183901 (2016).
[Crossref]

F. Teng, N. Li, L. Liu, D. Xu, D. Xiao, and N. Lu, “Fabrication of ordered Si nanopillar arrays for ultralow reflectivity,” RSC. Adv. 6(19), 15803–15807 (2016).

S. Zhong, W. Wang, Y. Zhuang, Z. Huang, and W. Shen, “All-solution-processed random Si nanopyramids for excellent light trapping in ultrathin solar cells,” Adv. Funct. Mater. 26(26), 4768–4777 (2016).
[Crossref]

S. Zhou, Z. Yang, P. Gao, X. Li, X. Yang, D. Wang, J. He, Z. Ying, and J. Ye, “Wafer-scale integration of inverted nanopyramid arrays for advanced light trapping in crystalline silicon thin film solar cells,” Nanoscale Res. Lett. 11(1), 194 (2016).
[Crossref] [PubMed]

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, A. Ebong, and G. Chen, “Empirical comparison of random and periodic surface light-trapping structures for ultrathin silicon photovoltaics,” Adv. Opt. Mater. 4(6), 858–863 (2016).
[Crossref]

Y. Li, P. Gao, Q. Chen, J. Yang, J. Li, and D. He, “Nanostructured semiconductor solar absorbers with near 100% absorption and related light management picture,” J. Phys. D Appl. Phys. 49(21), 215104 (2016).
[Crossref]

J. He, Z. Yang, P. Liu, S. Wu, P. Gao, M. Wang, S. Zhou, X. Li, H. Cao, and J. Ye, “Enhanced electro-optical properties of nanocone/nanopillar dual-structured arrays for ultrathin silicon/organic hybrid solar cell applications,” Adv. Energy Mater. 6(8), 1501793 (2016).
[Crossref]

Z. Yang, A. Shang, L. Qin, Y. Zhan, C. Zhang, P. Gao, J. Ye, and X. Li, “Broadband and wide-angle light harvesting by ultra-thin silicon solar cells with partially embedded dielectric spheres,” Opt. Lett. 41(7), 1329–1332 (2016).
[Crossref] [PubMed]

2015 (4)

Z. Yang, X. Li, S. Wu, P. Gao, and J. Ye, “High-efficiency photon capturing in ultrathin silicon solar cells with front nanobowl texture and truncated-nanopyramid reflector,” Opt. Lett. 40(6), 1077–1080 (2015).
[Crossref] [PubMed]

A. Ingenito, O. Isabella, and M. Zeman, “Nano-cones on micro-pyramids: modulated surface textures for maximal spectral response and high-efficiency solar cells,” Prog. Photovolt. Res. Appl. 23(11), 1649–1659 (2015).
[Crossref]

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15(7), 4591–4598 (2015).
[Crossref] [PubMed]

J. He, P. Gao, M. Liao, X. Yang, Z. Ying, S. Zhou, J. Ye, and Y. Cui, “Realization of 13.6% efficiency on 20 μm thick Si/organic hybrid heterojunction solar cells via advanced nanotexturing and surface recombination suppression,” ACS Nano 9(6), 6522–6531 (2015).
[Crossref] [PubMed]

2014 (2)

H. Lin, F. Xiu, M. Fang, S. Yip, H. Y. Cheung, F. Wang, N. Han, K. S. Chan, C. Y. Wong, and J. C. Ho, “Rational design of inverted nanopencil arrays for cost-effective, broadband, and omnidirectional light harvesting,” ACS Nano 8(4), 3752–3760 (2014).
[Crossref] [PubMed]

L. Zhou, X. Yu, and J. Zhu, “Metal-core/semiconductor-shell nanocones for broadband solar absorption enhancement,” Nano Lett. 14(2), 1093–1098 (2014).
[Crossref] [PubMed]

2013 (4)

P. Gao, H. Wang, Z. Sun, W. Han, J. Li, and J. Ye, “Efficient light trapping in low aspect-ratio honeycomb nanobowl surface texturing for crystalline silicon solar cell applications,” Appl. Phys. Lett. 103(25), 253105 (2013).
[Crossref]

H. Lin, H. Y. Cheung, F. Xiu, F. Wang, S. P. Yip, N. Han, T. Hung, J. Zhou, J. C. Ho, and C. Y. Wong, “Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping,” J. Mater. Chem. A Mater. Energy Sustain. 1(34), 9942–9946 (2013).
[Crossref]

X. Li, N. P. Hylton, V. Giannini, K. H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Multi-dimensional modeling of solar cells with electromagnetic and carrier transport calculations,” Prog. Photovolt. Res. Appl. 21(1), 109–120 (2013).
[Crossref]

Y. Kanamori, M. Okochi, and K. Hane, “Fabrication of antireflection subwavelength gratings at the tips of optical fibers using UV nanoimprint lithography,” Opt. Express 21(1), 322–328 (2013).
[Crossref] [PubMed]

2012 (4)

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

S. W. Schmitt, F. Schechtel, D. Amkreutz, M. Bashouti, S. K. Srivastava, B. Hoffmann, C. Dieker, E. Spiecker, B. Rech, and S. H. Christiansen, “Nanowire arrays in multicrystalline silicon thin films on glass: a promising material for research and applications in nanotechnology,” Nano Lett. 12(8), 4050–4054 (2012).
[Crossref] [PubMed]

A. Mavrokefalos, S. E. Han, S. Yerci, M. S. Branham, and G. Chen, “Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications,” Nano Lett. 12(6), 2792–2796 (2012).
[Crossref] [PubMed]

Y. Yao, J. Yao, V. K. Narasimhan, Z. Ruan, C. Xie, S. Fan, and Y. Cui, “Broadband light management using low-Q whispering gallery modes in spherical nanoshells,” Nat. Commun. 3(6), 664 (2012).
[Crossref] [PubMed]

2011 (3)

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
[Crossref] [PubMed]

L. Zhao, Y. Zuo, C. Zhou, H. Li, H. Diao, and W. Wang, “Theoretical investigation on the absorption enhancement of the crystalline silicon solar cells by pyramid texture coated with SiNx:H layer,” Sol. Energy 85(3), 530–537 (2011).
[Crossref]

X. Li, N. P. Hylton, V. Giannini, K. H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells,” Opt. Express 19(14), A888–A896 (2011).
[Crossref] [PubMed]

2010 (2)

J. Zhu, Z. Yu, S. Fan, and Y. Cui, “Nanostructured photon management for high performance solar cells,” Mater. Sci. Eng. A 70(3-6), 330–340 (2010).
[Crossref]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref] [PubMed]

2008 (2)

S. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 133109 (2008).
[Crossref]

K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, “Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching,” Nanotechnology 19(34), 345301 (2008).
[Crossref] [PubMed]

2007 (1)

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

2004 (2)

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

T. Mårtensson, P. Carlberg, M. Borgström, L. Montelius, A. W. Seifert, and L. Samuelson, “Nanowire arrays defined by nanoimprint lithography,” Nano Lett. 4(4), 699–702 (2004).
[Crossref]

2001 (1)

P. Campbell and M. A. Green, “High performance light trapping textures for monocrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 65(1), 369–375 (2001).
[Crossref]

2000 (1)

M. Koh, S. Sawara, T. Goto, Y. Ando, T. Shinada, and I. Ohdomari, “New process for Si nanopyramid array (NPA) fabrication by ion-beam irradiation and wet etching,” Jpn. J. Appl. Phys. 39(39), 2186–2188 (2000).
[Crossref]

1995 (1)

J. Zhao, A. Wang, P. P. Altermatt, and M. A. Green, “Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss,” Appl. Phys. Lett. 66(26), 3636–3638 (1995).
[Crossref]

1993 (1)

P. B. Fischer and S. Y. Chou, “Sub-50 nm high aspect-ratio silicon pillars, ridges and trenches fabricated using ultra-high e-beam lithography and RIE,” Appl. Phys. Lett. 62, 1414–1416 (1993).
[Crossref]

1987 (1)

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[Crossref]

Alexander, D. T.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Altermatt, P. P.

J. Zhao, A. Wang, P. P. Altermatt, and M. A. Green, “Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss,” Appl. Phys. Lett. 66(26), 3636–3638 (1995).
[Crossref]

Amkreutz, D.

S. W. Schmitt, F. Schechtel, D. Amkreutz, M. Bashouti, S. K. Srivastava, B. Hoffmann, C. Dieker, E. Spiecker, B. Rech, and S. H. Christiansen, “Nanowire arrays in multicrystalline silicon thin films on glass: a promising material for research and applications in nanotechnology,” Nano Lett. 12(8), 4050–4054 (2012).
[Crossref] [PubMed]

Ando, Y.

M. Koh, S. Sawara, T. Goto, Y. Ando, T. Shinada, and I. Ohdomari, “New process for Si nanopyramid array (NPA) fabrication by ion-beam irradiation and wet etching,” Jpn. J. Appl. Phys. 39(39), 2186–2188 (2000).
[Crossref]

Baek, S.

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
[Crossref] [PubMed]

Bai, S.

K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, “Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching,” Nanotechnology 19(34), 345301 (2008).
[Crossref] [PubMed]

Ballif, C.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Bashouti, M.

S. W. Schmitt, F. Schechtel, D. Amkreutz, M. Bashouti, S. K. Srivastava, B. Hoffmann, C. Dieker, E. Spiecker, B. Rech, and S. H. Christiansen, “Nanowire arrays in multicrystalline silicon thin films on glass: a promising material for research and applications in nanotechnology,” Nano Lett. 12(8), 4050–4054 (2012).
[Crossref] [PubMed]

Battaglia, C.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Boccard, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Borgström, M.

T. Mårtensson, P. Carlberg, M. Borgström, L. Montelius, A. W. Seifert, and L. Samuelson, “Nanowire arrays defined by nanoimprint lithography,” Nano Lett. 4(4), 699–702 (2004).
[Crossref]

Boriskina, S. V.

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, A. Ebong, and G. Chen, “Empirical comparison of random and periodic surface light-trapping structures for ultrathin silicon photovoltaics,” Adv. Opt. Mater. 4(6), 858–863 (2016).
[Crossref]

Branham, M. S.

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, A. Ebong, and G. Chen, “Empirical comparison of random and periodic surface light-trapping structures for ultrathin silicon photovoltaics,” Adv. Opt. Mater. 4(6), 858–863 (2016).
[Crossref]

A. Mavrokefalos, S. E. Han, S. Yerci, M. S. Branham, and G. Chen, “Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications,” Nano Lett. 12(6), 2792–2796 (2012).
[Crossref] [PubMed]

Brolo, A. G.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Campbell, P.

P. Campbell and M. A. Green, “High performance light trapping textures for monocrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 65(1), 369–375 (2001).
[Crossref]

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[Crossref]

Cantoni, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Cao, H.

J. He, Z. Yang, P. Liu, S. Wu, P. Gao, M. Wang, S. Zhou, X. Li, H. Cao, and J. Ye, “Enhanced electro-optical properties of nanocone/nanopillar dual-structured arrays for ultrathin silicon/organic hybrid solar cell applications,” Adv. Energy Mater. 6(8), 1501793 (2016).
[Crossref]

Carlberg, P.

T. Mårtensson, P. Carlberg, M. Borgström, L. Montelius, A. W. Seifert, and L. Samuelson, “Nanowire arrays defined by nanoimprint lithography,” Nano Lett. 4(4), 699–702 (2004).
[Crossref]

Chan, K. S.

H. Lin, F. Xiu, M. Fang, S. Yip, H. Y. Cheung, F. Wang, N. Han, K. S. Chan, C. Y. Wong, and J. C. Ho, “Rational design of inverted nanopencil arrays for cost-effective, broadband, and omnidirectional light harvesting,” ACS Nano 8(4), 3752–3760 (2014).
[Crossref] [PubMed]

Charrière, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Chen, G.

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, A. Ebong, and G. Chen, “Empirical comparison of random and periodic surface light-trapping structures for ultrathin silicon photovoltaics,” Adv. Opt. Mater. 4(6), 858–863 (2016).
[Crossref]

A. Mavrokefalos, S. E. Han, S. Yerci, M. S. Branham, and G. Chen, “Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications,” Nano Lett. 12(6), 2792–2796 (2012).
[Crossref] [PubMed]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref] [PubMed]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

Chen, Q.

Y. Li, P. Gao, Q. Chen, J. Yang, J. Li, and D. He, “Nanostructured semiconductor solar absorbers with near 100% absorption and related light management picture,” J. Phys. D Appl. Phys. 49(21), 215104 (2016).
[Crossref]

Cheung, H. Y.

H. Lin, F. Xiu, M. Fang, S. Yip, H. Y. Cheung, F. Wang, N. Han, K. S. Chan, C. Y. Wong, and J. C. Ho, “Rational design of inverted nanopencil arrays for cost-effective, broadband, and omnidirectional light harvesting,” ACS Nano 8(4), 3752–3760 (2014).
[Crossref] [PubMed]

H. Lin, H. Y. Cheung, F. Xiu, F. Wang, S. P. Yip, N. Han, T. Hung, J. Zhou, J. C. Ho, and C. Y. Wong, “Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping,” J. Mater. Chem. A Mater. Energy Sustain. 1(34), 9942–9946 (2013).
[Crossref]

Chou, S. Y.

K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, “Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching,” Nanotechnology 19(34), 345301 (2008).
[Crossref] [PubMed]

P. B. Fischer and S. Y. Chou, “Sub-50 nm high aspect-ratio silicon pillars, ridges and trenches fabricated using ultra-high e-beam lithography and RIE,” Appl. Phys. Lett. 62, 1414–1416 (1993).
[Crossref]

Christiansen, S. H.

S. W. Schmitt, F. Schechtel, D. Amkreutz, M. Bashouti, S. K. Srivastava, B. Hoffmann, C. Dieker, E. Spiecker, B. Rech, and S. H. Christiansen, “Nanowire arrays in multicrystalline silicon thin films on glass: a promising material for research and applications in nanotechnology,” Nano Lett. 12(8), 4050–4054 (2012).
[Crossref] [PubMed]

Connor, S. T.

S. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 133109 (2008).
[Crossref]

Cui, Y.

J. He, P. Gao, M. Liao, X. Yang, Z. Ying, S. Zhou, J. Ye, and Y. Cui, “Realization of 13.6% efficiency on 20 μm thick Si/organic hybrid heterojunction solar cells via advanced nanotexturing and surface recombination suppression,” ACS Nano 9(6), 6522–6531 (2015).
[Crossref] [PubMed]

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15(7), 4591–4598 (2015).
[Crossref] [PubMed]

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Y. Yao, J. Yao, V. K. Narasimhan, Z. Ruan, C. Xie, S. Fan, and Y. Cui, “Broadband light management using low-Q whispering gallery modes in spherical nanoshells,” Nat. Commun. 3(6), 664 (2012).
[Crossref] [PubMed]

J. Zhu, Z. Yu, S. Fan, and Y. Cui, “Nanostructured photon management for high performance solar cells,” Mater. Sci. Eng. A 70(3-6), 330–340 (2010).
[Crossref]

S. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 133109 (2008).
[Crossref]

Deng, Z.

M. Tang, L. Zhou, S. Gu, W. Zhu, Y. Wang, J. Xu, Z. Deng, T. Yu, Z. Lu, and J. Zhu, “Fine-tuning the metallic core-shell nanostructures for plasmonic perovskite solar cells,” Appl. Phys. Lett. 109(18), 183901 (2016).
[Crossref]

Despeisse, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Diao, H.

L. Zhao, Y. Zuo, C. Zhou, H. Li, H. Diao, and W. Wang, “Theoretical investigation on the absorption enhancement of the crystalline silicon solar cells by pyramid texture coated with SiNx:H layer,” Sol. Energy 85(3), 530–537 (2011).
[Crossref]

Dieker, C.

S. W. Schmitt, F. Schechtel, D. Amkreutz, M. Bashouti, S. K. Srivastava, B. Hoffmann, C. Dieker, E. Spiecker, B. Rech, and S. H. Christiansen, “Nanowire arrays in multicrystalline silicon thin films on glass: a promising material for research and applications in nanotechnology,” Nano Lett. 12(8), 4050–4054 (2012).
[Crossref] [PubMed]

Ebong, A.

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, A. Ebong, and G. Chen, “Empirical comparison of random and periodic surface light-trapping structures for ultrathin silicon photovoltaics,” Adv. Opt. Mater. 4(6), 858–863 (2016).
[Crossref]

Ekins-Daukes, N. J.

X. Li, N. P. Hylton, V. Giannini, K. H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Multi-dimensional modeling of solar cells with electromagnetic and carrier transport calculations,” Prog. Photovolt. Res. Appl. 21(1), 109–120 (2013).
[Crossref]

X. Li, N. P. Hylton, V. Giannini, K. H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells,” Opt. Express 19(14), A888–A896 (2011).
[Crossref] [PubMed]

Escarré, J.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Fan, S.

Y. Yao, J. Yao, V. K. Narasimhan, Z. Ruan, C. Xie, S. Fan, and Y. Cui, “Broadband light management using low-Q whispering gallery modes in spherical nanoshells,” Nat. Commun. 3(6), 664 (2012).
[Crossref] [PubMed]

J. Zhu, Z. Yu, S. Fan, and Y. Cui, “Nanostructured photon management for high performance solar cells,” Mater. Sci. Eng. A 70(3-6), 330–340 (2010).
[Crossref]

Fang, M.

H. Lin, F. Xiu, M. Fang, S. Yip, H. Y. Cheung, F. Wang, N. Han, K. S. Chan, C. Y. Wong, and J. C. Ho, “Rational design of inverted nanopencil arrays for cost-effective, broadband, and omnidirectional light harvesting,” ACS Nano 8(4), 3752–3760 (2014).
[Crossref] [PubMed]

Fischer, P. B.

P. B. Fischer and S. Y. Chou, “Sub-50 nm high aspect-ratio silicon pillars, ridges and trenches fabricated using ultra-high e-beam lithography and RIE,” Appl. Phys. Lett. 62, 1414–1416 (1993).
[Crossref]

Gao, P.

J. He, Z. Yang, P. Liu, S. Wu, P. Gao, M. Wang, S. Zhou, X. Li, H. Cao, and J. Ye, “Enhanced electro-optical properties of nanocone/nanopillar dual-structured arrays for ultrathin silicon/organic hybrid solar cell applications,” Adv. Energy Mater. 6(8), 1501793 (2016).
[Crossref]

Z. Yang, A. Shang, L. Qin, Y. Zhan, C. Zhang, P. Gao, J. Ye, and X. Li, “Broadband and wide-angle light harvesting by ultra-thin silicon solar cells with partially embedded dielectric spheres,” Opt. Lett. 41(7), 1329–1332 (2016).
[Crossref] [PubMed]

Y. Li, P. Gao, Q. Chen, J. Yang, J. Li, and D. He, “Nanostructured semiconductor solar absorbers with near 100% absorption and related light management picture,” J. Phys. D Appl. Phys. 49(21), 215104 (2016).
[Crossref]

S. Zhou, Z. Yang, P. Gao, X. Li, X. Yang, D. Wang, J. He, Z. Ying, and J. Ye, “Wafer-scale integration of inverted nanopyramid arrays for advanced light trapping in crystalline silicon thin film solar cells,” Nanoscale Res. Lett. 11(1), 194 (2016).
[Crossref] [PubMed]

J. He, P. Gao, M. Liao, X. Yang, Z. Ying, S. Zhou, J. Ye, and Y. Cui, “Realization of 13.6% efficiency on 20 μm thick Si/organic hybrid heterojunction solar cells via advanced nanotexturing and surface recombination suppression,” ACS Nano 9(6), 6522–6531 (2015).
[Crossref] [PubMed]

Z. Yang, X. Li, S. Wu, P. Gao, and J. Ye, “High-efficiency photon capturing in ultrathin silicon solar cells with front nanobowl texture and truncated-nanopyramid reflector,” Opt. Lett. 40(6), 1077–1080 (2015).
[Crossref] [PubMed]

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15(7), 4591–4598 (2015).
[Crossref] [PubMed]

P. Gao, H. Wang, Z. Sun, W. Han, J. Li, and J. Ye, “Efficient light trapping in low aspect-ratio honeycomb nanobowl surface texturing for crystalline silicon solar cell applications,” Appl. Phys. Lett. 103(25), 253105 (2013).
[Crossref]

Giannini, V.

X. Li, N. P. Hylton, V. Giannini, K. H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Multi-dimensional modeling of solar cells with electromagnetic and carrier transport calculations,” Prog. Photovolt. Res. Appl. 21(1), 109–120 (2013).
[Crossref]

X. Li, N. P. Hylton, V. Giannini, K. H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells,” Opt. Express 19(14), A888–A896 (2011).
[Crossref] [PubMed]

Gordon, R.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Goto, T.

M. Koh, S. Sawara, T. Goto, Y. Ando, T. Shinada, and I. Ohdomari, “New process for Si nanopyramid array (NPA) fabrication by ion-beam irradiation and wet etching,” Jpn. J. Appl. Phys. 39(39), 2186–2188 (2000).
[Crossref]

Green, M. A.

P. Campbell and M. A. Green, “High performance light trapping textures for monocrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 65(1), 369–375 (2001).
[Crossref]

J. Zhao, A. Wang, P. P. Altermatt, and M. A. Green, “Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss,” Appl. Phys. Lett. 66(26), 3636–3638 (1995).
[Crossref]

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[Crossref]

Gu, S.

M. Tang, L. Zhou, S. Gu, W. Zhu, Y. Wang, J. Xu, Z. Deng, T. Yu, Z. Lu, and J. Zhu, “Fine-tuning the metallic core-shell nanostructures for plasmonic perovskite solar cells,” Appl. Phys. Lett. 109(18), 183901 (2016).
[Crossref]

Han, N.

H. Lin, F. Xiu, M. Fang, S. Yip, H. Y. Cheung, F. Wang, N. Han, K. S. Chan, C. Y. Wong, and J. C. Ho, “Rational design of inverted nanopencil arrays for cost-effective, broadband, and omnidirectional light harvesting,” ACS Nano 8(4), 3752–3760 (2014).
[Crossref] [PubMed]

H. Lin, H. Y. Cheung, F. Xiu, F. Wang, S. P. Yip, N. Han, T. Hung, J. Zhou, J. C. Ho, and C. Y. Wong, “Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping,” J. Mater. Chem. A Mater. Energy Sustain. 1(34), 9942–9946 (2013).
[Crossref]

Han, S. E.

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, A. Ebong, and G. Chen, “Empirical comparison of random and periodic surface light-trapping structures for ultrathin silicon photovoltaics,” Adv. Opt. Mater. 4(6), 858–863 (2016).
[Crossref]

A. Mavrokefalos, S. E. Han, S. Yerci, M. S. Branham, and G. Chen, “Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications,” Nano Lett. 12(6), 2792–2796 (2012).
[Crossref] [PubMed]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref] [PubMed]

Han, W.

P. Gao, H. Wang, Z. Sun, W. Han, J. Li, and J. Ye, “Efficient light trapping in low aspect-ratio honeycomb nanobowl surface texturing for crystalline silicon solar cell applications,” Appl. Phys. Lett. 103(25), 253105 (2013).
[Crossref]

Hane, K.

Haug, F. J.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

He, D.

Y. Li, P. Gao, Q. Chen, J. Yang, J. Li, and D. He, “Nanostructured semiconductor solar absorbers with near 100% absorption and related light management picture,” J. Phys. D Appl. Phys. 49(21), 215104 (2016).
[Crossref]

He, J.

S. Zhou, Z. Yang, P. Gao, X. Li, X. Yang, D. Wang, J. He, Z. Ying, and J. Ye, “Wafer-scale integration of inverted nanopyramid arrays for advanced light trapping in crystalline silicon thin film solar cells,” Nanoscale Res. Lett. 11(1), 194 (2016).
[Crossref] [PubMed]

J. He, Z. Yang, P. Liu, S. Wu, P. Gao, M. Wang, S. Zhou, X. Li, H. Cao, and J. Ye, “Enhanced electro-optical properties of nanocone/nanopillar dual-structured arrays for ultrathin silicon/organic hybrid solar cell applications,” Adv. Energy Mater. 6(8), 1501793 (2016).
[Crossref]

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15(7), 4591–4598 (2015).
[Crossref] [PubMed]

J. He, P. Gao, M. Liao, X. Yang, Z. Ying, S. Zhou, J. Ye, and Y. Cui, “Realization of 13.6% efficiency on 20 μm thick Si/organic hybrid heterojunction solar cells via advanced nanotexturing and surface recombination suppression,” ACS Nano 9(6), 6522–6531 (2015).
[Crossref] [PubMed]

Ho, J. C.

H. Lin, F. Xiu, M. Fang, S. Yip, H. Y. Cheung, F. Wang, N. Han, K. S. Chan, C. Y. Wong, and J. C. Ho, “Rational design of inverted nanopencil arrays for cost-effective, broadband, and omnidirectional light harvesting,” ACS Nano 8(4), 3752–3760 (2014).
[Crossref] [PubMed]

H. Lin, H. Y. Cheung, F. Xiu, F. Wang, S. P. Yip, N. Han, T. Hung, J. Zhou, J. C. Ho, and C. Y. Wong, “Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping,” J. Mater. Chem. A Mater. Energy Sustain. 1(34), 9942–9946 (2013).
[Crossref]

Hoard, B. R.

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, A. Ebong, and G. Chen, “Empirical comparison of random and periodic surface light-trapping structures for ultrathin silicon photovoltaics,” Adv. Opt. Mater. 4(6), 858–863 (2016).
[Crossref]

Hoffmann, B.

S. W. Schmitt, F. Schechtel, D. Amkreutz, M. Bashouti, S. K. Srivastava, B. Hoffmann, C. Dieker, E. Spiecker, B. Rech, and S. H. Christiansen, “Nanowire arrays in multicrystalline silicon thin films on glass: a promising material for research and applications in nanotechnology,” Nano Lett. 12(8), 4050–4054 (2012).
[Crossref] [PubMed]

Hsu, C. M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Hsu, S. M.

S. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 133109 (2008).
[Crossref]

Hsu, W. C.

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, A. Ebong, and G. Chen, “Empirical comparison of random and periodic surface light-trapping structures for ultrathin silicon photovoltaics,” Adv. Opt. Mater. 4(6), 858–863 (2016).
[Crossref]

Hu, L.

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

Huang, Z.

S. Zhong, W. Wang, Y. Zhuang, Z. Huang, and W. Shen, “All-solution-processed random Si nanopyramids for excellent light trapping in ultrathin solar cells,” Adv. Funct. Mater. 26(26), 4768–4777 (2016).
[Crossref]

Hung, T.

H. Lin, H. Y. Cheung, F. Xiu, F. Wang, S. P. Yip, N. Han, T. Hung, J. Zhou, J. C. Ho, and C. Y. Wong, “Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping,” J. Mater. Chem. A Mater. Energy Sustain. 1(34), 9942–9946 (2013).
[Crossref]

Hylton, N. P.

X. Li, N. P. Hylton, V. Giannini, K. H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Multi-dimensional modeling of solar cells with electromagnetic and carrier transport calculations,” Prog. Photovolt. Res. Appl. 21(1), 109–120 (2013).
[Crossref]

X. Li, N. P. Hylton, V. Giannini, K. H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells,” Opt. Express 19(14), A888–A896 (2011).
[Crossref] [PubMed]

Ingenito, A.

A. Ingenito, O. Isabella, and M. Zeman, “Nano-cones on micro-pyramids: modulated surface textures for maximal spectral response and high-efficiency solar cells,” Prog. Photovolt. Res. Appl. 23(11), 1649–1659 (2015).
[Crossref]

Isabella, O.

A. Ingenito, O. Isabella, and M. Zeman, “Nano-cones on micro-pyramids: modulated surface textures for maximal spectral response and high-efficiency solar cells,” Prog. Photovolt. Res. Appl. 23(11), 1649–1659 (2015).
[Crossref]

Kanamori, Y.

Kang, G.

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
[Crossref] [PubMed]

Kavanagh, K. L.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Kim, K.

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
[Crossref] [PubMed]

Koh, M.

M. Koh, S. Sawara, T. Goto, Y. Ando, T. Shinada, and I. Ohdomari, “New process for Si nanopyramid array (NPA) fabrication by ion-beam irradiation and wet etching,” Jpn. J. Appl. Phys. 39(39), 2186–2188 (2000).
[Crossref]

Leathem, B.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Lee, K. H.

X. Li, N. P. Hylton, V. Giannini, K. H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Multi-dimensional modeling of solar cells with electromagnetic and carrier transport calculations,” Prog. Photovolt. Res. Appl. 21(1), 109–120 (2013).
[Crossref]

X. Li, N. P. Hylton, V. Giannini, K. H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells,” Opt. Express 19(14), A888–A896 (2011).
[Crossref] [PubMed]

Li, H.

L. Zhao, Y. Zuo, C. Zhou, H. Li, H. Diao, and W. Wang, “Theoretical investigation on the absorption enhancement of the crystalline silicon solar cells by pyramid texture coated with SiNx:H layer,” Sol. Energy 85(3), 530–537 (2011).
[Crossref]

Li, J.

Y. Li, P. Gao, Q. Chen, J. Yang, J. Li, and D. He, “Nanostructured semiconductor solar absorbers with near 100% absorption and related light management picture,” J. Phys. D Appl. Phys. 49(21), 215104 (2016).
[Crossref]

P. Gao, H. Wang, Z. Sun, W. Han, J. Li, and J. Ye, “Efficient light trapping in low aspect-ratio honeycomb nanobowl surface texturing for crystalline silicon solar cell applications,” Appl. Phys. Lett. 103(25), 253105 (2013).
[Crossref]

Li, M.

Li, N.

F. Teng, N. Li, L. Liu, D. Xu, D. Xiao, and N. Lu, “Fabrication of ordered Si nanopillar arrays for ultralow reflectivity,” RSC. Adv. 6(19), 15803–15807 (2016).

Li, S.

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15(7), 4591–4598 (2015).
[Crossref] [PubMed]

Li, X.

J. He, Z. Yang, P. Liu, S. Wu, P. Gao, M. Wang, S. Zhou, X. Li, H. Cao, and J. Ye, “Enhanced electro-optical properties of nanocone/nanopillar dual-structured arrays for ultrathin silicon/organic hybrid solar cell applications,” Adv. Energy Mater. 6(8), 1501793 (2016).
[Crossref]

Z. Yang, A. Shang, L. Qin, Y. Zhan, C. Zhang, P. Gao, J. Ye, and X. Li, “Broadband and wide-angle light harvesting by ultra-thin silicon solar cells with partially embedded dielectric spheres,” Opt. Lett. 41(7), 1329–1332 (2016).
[Crossref] [PubMed]

S. Zhou, Z. Yang, P. Gao, X. Li, X. Yang, D. Wang, J. He, Z. Ying, and J. Ye, “Wafer-scale integration of inverted nanopyramid arrays for advanced light trapping in crystalline silicon thin film solar cells,” Nanoscale Res. Lett. 11(1), 194 (2016).
[Crossref] [PubMed]

Z. Yang, X. Li, S. Wu, P. Gao, and J. Ye, “High-efficiency photon capturing in ultrathin silicon solar cells with front nanobowl texture and truncated-nanopyramid reflector,” Opt. Lett. 40(6), 1077–1080 (2015).
[Crossref] [PubMed]

X. Li, N. P. Hylton, V. Giannini, K. H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Multi-dimensional modeling of solar cells with electromagnetic and carrier transport calculations,” Prog. Photovolt. Res. Appl. 21(1), 109–120 (2013).
[Crossref]

X. Li, N. P. Hylton, V. Giannini, K. H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells,” Opt. Express 19(14), A888–A896 (2011).
[Crossref] [PubMed]

Li, Y.

Y. Li, L. Yue, Y. Luo, W. Liu, and M. Li, “Light harvesting of Silicon Nanostructure for Solar Cells Application,” Opt. Express 24(14), A1075–A1082 (2016).
[Crossref] [PubMed]

Y. Li, P. Gao, Q. Chen, J. Yang, J. Li, and D. He, “Nanostructured semiconductor solar absorbers with near 100% absorption and related light management picture,” J. Phys. D Appl. Phys. 49(21), 215104 (2016).
[Crossref]

Liao, M.

J. He, P. Gao, M. Liao, X. Yang, Z. Ying, S. Zhou, J. Ye, and Y. Cui, “Realization of 13.6% efficiency on 20 μm thick Si/organic hybrid heterojunction solar cells via advanced nanotexturing and surface recombination suppression,” ACS Nano 9(6), 6522–6531 (2015).
[Crossref] [PubMed]

Lin, H.

H. Lin, F. Xiu, M. Fang, S. Yip, H. Y. Cheung, F. Wang, N. Han, K. S. Chan, C. Y. Wong, and J. C. Ho, “Rational design of inverted nanopencil arrays for cost-effective, broadband, and omnidirectional light harvesting,” ACS Nano 8(4), 3752–3760 (2014).
[Crossref] [PubMed]

H. Lin, H. Y. Cheung, F. Xiu, F. Wang, S. P. Yip, N. Han, T. Hung, J. Zhou, J. C. Ho, and C. Y. Wong, “Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping,” J. Mater. Chem. A Mater. Energy Sustain. 1(34), 9942–9946 (2013).
[Crossref]

Liu, L.

F. Teng, N. Li, L. Liu, D. Xu, D. Xiao, and N. Lu, “Fabrication of ordered Si nanopillar arrays for ultralow reflectivity,” RSC. Adv. 6(19), 15803–15807 (2016).

Liu, P.

J. He, Z. Yang, P. Liu, S. Wu, P. Gao, M. Wang, S. Zhou, X. Li, H. Cao, and J. Ye, “Enhanced electro-optical properties of nanocone/nanopillar dual-structured arrays for ultrathin silicon/organic hybrid solar cell applications,” Adv. Energy Mater. 6(8), 1501793 (2016).
[Crossref]

Liu, W.

Loomis, J.

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, A. Ebong, and G. Chen, “Empirical comparison of random and periodic surface light-trapping structures for ultrathin silicon photovoltaics,” Adv. Opt. Mater. 4(6), 858–863 (2016).
[Crossref]

Lu, N.

F. Teng, N. Li, L. Liu, D. Xu, D. Xiao, and N. Lu, “Fabrication of ordered Si nanopillar arrays for ultralow reflectivity,” RSC. Adv. 6(19), 15803–15807 (2016).

Lu, Z.

M. Tang, L. Zhou, S. Gu, W. Zhu, Y. Wang, J. Xu, Z. Deng, T. Yu, Z. Lu, and J. Zhu, “Fine-tuning the metallic core-shell nanostructures for plasmonic perovskite solar cells,” Appl. Phys. Lett. 109(18), 183901 (2016).
[Crossref]

Luo, Y.

Maier, S. A.

X. Li, N. P. Hylton, V. Giannini, K. H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Multi-dimensional modeling of solar cells with electromagnetic and carrier transport calculations,” Prog. Photovolt. Res. Appl. 21(1), 109–120 (2013).
[Crossref]

X. Li, N. P. Hylton, V. Giannini, K. H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells,” Opt. Express 19(14), A888–A896 (2011).
[Crossref] [PubMed]

Mårtensson, T.

T. Mårtensson, P. Carlberg, M. Borgström, L. Montelius, A. W. Seifert, and L. Samuelson, “Nanowire arrays defined by nanoimprint lithography,” Nano Lett. 4(4), 699–702 (2004).
[Crossref]

Mavrokefalos, A.

A. Mavrokefalos, S. E. Han, S. Yerci, M. S. Branham, and G. Chen, “Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications,” Nano Lett. 12(6), 2792–2796 (2012).
[Crossref] [PubMed]

McKinnon, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Montelius, L.

T. Mårtensson, P. Carlberg, M. Borgström, L. Montelius, A. W. Seifert, and L. Samuelson, “Nanowire arrays defined by nanoimprint lithography,” Nano Lett. 4(4), 699–702 (2004).
[Crossref]

Morton, K. J.

K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, “Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching,” Nanotechnology 19(34), 345301 (2008).
[Crossref] [PubMed]

Narasimhan, V. K.

Y. Yao, J. Yao, V. K. Narasimhan, Z. Ruan, C. Xie, S. Fan, and Y. Cui, “Broadband light management using low-Q whispering gallery modes in spherical nanoshells,” Nat. Commun. 3(6), 664 (2012).
[Crossref] [PubMed]

Nieberg, G.

K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, “Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching,” Nanotechnology 19(34), 345301 (2008).
[Crossref] [PubMed]

Ohdomari, I.

M. Koh, S. Sawara, T. Goto, Y. Ando, T. Shinada, and I. Ohdomari, “New process for Si nanopyramid array (NPA) fabrication by ion-beam irradiation and wet etching,” Jpn. J. Appl. Phys. 39(39), 2186–2188 (2000).
[Crossref]

Okochi, M.

Padilla, W. J.

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
[Crossref] [PubMed]

Park, H.

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
[Crossref] [PubMed]

Qin, L.

Rajora, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Rech, B.

S. W. Schmitt, F. Schechtel, D. Amkreutz, M. Bashouti, S. K. Srivastava, B. Hoffmann, C. Dieker, E. Spiecker, B. Rech, and S. H. Christiansen, “Nanowire arrays in multicrystalline silicon thin films on glass: a promising material for research and applications in nanotechnology,” Nano Lett. 12(8), 4050–4054 (2012).
[Crossref] [PubMed]

Ruan, Z.

Y. Yao, J. Yao, V. K. Narasimhan, Z. Ruan, C. Xie, S. Fan, and Y. Cui, “Broadband light management using low-Q whispering gallery modes in spherical nanoshells,” Nat. Commun. 3(6), 664 (2012).
[Crossref] [PubMed]

Samuelson, L.

T. Mårtensson, P. Carlberg, M. Borgström, L. Montelius, A. W. Seifert, and L. Samuelson, “Nanowire arrays defined by nanoimprint lithography,” Nano Lett. 4(4), 699–702 (2004).
[Crossref]

Sawara, S.

M. Koh, S. Sawara, T. Goto, Y. Ando, T. Shinada, and I. Ohdomari, “New process for Si nanopyramid array (NPA) fabrication by ion-beam irradiation and wet etching,” Jpn. J. Appl. Phys. 39(39), 2186–2188 (2000).
[Crossref]

Schechtel, F.

S. W. Schmitt, F. Schechtel, D. Amkreutz, M. Bashouti, S. K. Srivastava, B. Hoffmann, C. Dieker, E. Spiecker, B. Rech, and S. H. Christiansen, “Nanowire arrays in multicrystalline silicon thin films on glass: a promising material for research and applications in nanotechnology,” Nano Lett. 12(8), 4050–4054 (2012).
[Crossref] [PubMed]

Schmitt, S. W.

S. W. Schmitt, F. Schechtel, D. Amkreutz, M. Bashouti, S. K. Srivastava, B. Hoffmann, C. Dieker, E. Spiecker, B. Rech, and S. H. Christiansen, “Nanowire arrays in multicrystalline silicon thin films on glass: a promising material for research and applications in nanotechnology,” Nano Lett. 12(8), 4050–4054 (2012).
[Crossref] [PubMed]

Seifert, A. W.

T. Mårtensson, P. Carlberg, M. Borgström, L. Montelius, A. W. Seifert, and L. Samuelson, “Nanowire arrays defined by nanoimprint lithography,” Nano Lett. 4(4), 699–702 (2004).
[Crossref]

Shang, A.

Shen, W.

S. Zhong, W. Wang, Y. Zhuang, Z. Huang, and W. Shen, “All-solution-processed random Si nanopyramids for excellent light trapping in ultrathin solar cells,” Adv. Funct. Mater. 26(26), 4768–4777 (2016).
[Crossref]

Sheng, J.

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15(7), 4591–4598 (2015).
[Crossref] [PubMed]

Shin, D.

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
[Crossref] [PubMed]

Shinada, T.

M. Koh, S. Sawara, T. Goto, Y. Ando, T. Shinada, and I. Ohdomari, “New process for Si nanopyramid array (NPA) fabrication by ion-beam irradiation and wet etching,” Jpn. J. Appl. Phys. 39(39), 2186–2188 (2000).
[Crossref]

Söderström, K.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Spiecker, E.

S. W. Schmitt, F. Schechtel, D. Amkreutz, M. Bashouti, S. K. Srivastava, B. Hoffmann, C. Dieker, E. Spiecker, B. Rech, and S. H. Christiansen, “Nanowire arrays in multicrystalline silicon thin films on glass: a promising material for research and applications in nanotechnology,” Nano Lett. 12(8), 4050–4054 (2012).
[Crossref] [PubMed]

Srivastava, S. K.

S. W. Schmitt, F. Schechtel, D. Amkreutz, M. Bashouti, S. K. Srivastava, B. Hoffmann, C. Dieker, E. Spiecker, B. Rech, and S. H. Christiansen, “Nanowire arrays in multicrystalline silicon thin films on glass: a promising material for research and applications in nanotechnology,” Nano Lett. 12(8), 4050–4054 (2012).
[Crossref] [PubMed]

Sun, Z.

P. Gao, H. Wang, Z. Sun, W. Han, J. Li, and J. Ye, “Efficient light trapping in low aspect-ratio honeycomb nanobowl surface texturing for crystalline silicon solar cell applications,” Appl. Phys. Lett. 103(25), 253105 (2013).
[Crossref]

Tang, M.

M. Tang, L. Zhou, S. Gu, W. Zhu, Y. Wang, J. Xu, Z. Deng, T. Yu, Z. Lu, and J. Zhu, “Fine-tuning the metallic core-shell nanostructures for plasmonic perovskite solar cells,” Appl. Phys. Lett. 109(18), 183901 (2016).
[Crossref]

Tang, M. X.

S. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 133109 (2008).
[Crossref]

Teng, F.

F. Teng, N. Li, L. Liu, D. Xu, D. Xiao, and N. Lu, “Fabrication of ordered Si nanopillar arrays for ultralow reflectivity,” RSC. Adv. 6(19), 15803–15807 (2016).

Wang, A.

J. Zhao, A. Wang, P. P. Altermatt, and M. A. Green, “Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss,” Appl. Phys. Lett. 66(26), 3636–3638 (1995).
[Crossref]

Wang, D.

S. Zhou, Z. Yang, P. Gao, X. Li, X. Yang, D. Wang, J. He, Z. Ying, and J. Ye, “Wafer-scale integration of inverted nanopyramid arrays for advanced light trapping in crystalline silicon thin film solar cells,” Nanoscale Res. Lett. 11(1), 194 (2016).
[Crossref] [PubMed]

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15(7), 4591–4598 (2015).
[Crossref] [PubMed]

Wang, F.

H. Lin, F. Xiu, M. Fang, S. Yip, H. Y. Cheung, F. Wang, N. Han, K. S. Chan, C. Y. Wong, and J. C. Ho, “Rational design of inverted nanopencil arrays for cost-effective, broadband, and omnidirectional light harvesting,” ACS Nano 8(4), 3752–3760 (2014).
[Crossref] [PubMed]

H. Lin, H. Y. Cheung, F. Xiu, F. Wang, S. P. Yip, N. Han, T. Hung, J. Zhou, J. C. Ho, and C. Y. Wong, “Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping,” J. Mater. Chem. A Mater. Energy Sustain. 1(34), 9942–9946 (2013).
[Crossref]

Wang, H.

P. Gao, H. Wang, Z. Sun, W. Han, J. Li, and J. Ye, “Efficient light trapping in low aspect-ratio honeycomb nanobowl surface texturing for crystalline silicon solar cell applications,” Appl. Phys. Lett. 103(25), 253105 (2013).
[Crossref]

Wang, M.

J. He, Z. Yang, P. Liu, S. Wu, P. Gao, M. Wang, S. Zhou, X. Li, H. Cao, and J. Ye, “Enhanced electro-optical properties of nanocone/nanopillar dual-structured arrays for ultrathin silicon/organic hybrid solar cell applications,” Adv. Energy Mater. 6(8), 1501793 (2016).
[Crossref]

Wang, W.

S. Zhong, W. Wang, Y. Zhuang, Z. Huang, and W. Shen, “All-solution-processed random Si nanopyramids for excellent light trapping in ultrathin solar cells,” Adv. Funct. Mater. 26(26), 4768–4777 (2016).
[Crossref]

L. Zhao, Y. Zuo, C. Zhou, H. Li, H. Diao, and W. Wang, “Theoretical investigation on the absorption enhancement of the crystalline silicon solar cells by pyramid texture coated with SiNx:H layer,” Sol. Energy 85(3), 530–537 (2011).
[Crossref]

Wang, Y.

M. Tang, L. Zhou, S. Gu, W. Zhu, Y. Wang, J. Xu, Z. Deng, T. Yu, Z. Lu, and J. Zhu, “Fine-tuning the metallic core-shell nanostructures for plasmonic perovskite solar cells,” Appl. Phys. Lett. 109(18), 183901 (2016).
[Crossref]

Wong, C. Y.

H. Lin, F. Xiu, M. Fang, S. Yip, H. Y. Cheung, F. Wang, N. Han, K. S. Chan, C. Y. Wong, and J. C. Ho, “Rational design of inverted nanopencil arrays for cost-effective, broadband, and omnidirectional light harvesting,” ACS Nano 8(4), 3752–3760 (2014).
[Crossref] [PubMed]

H. Lin, H. Y. Cheung, F. Xiu, F. Wang, S. P. Yip, N. Han, T. Hung, J. Zhou, J. C. Ho, and C. Y. Wong, “Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping,” J. Mater. Chem. A Mater. Energy Sustain. 1(34), 9942–9946 (2013).
[Crossref]

Wu, S.

J. He, Z. Yang, P. Liu, S. Wu, P. Gao, M. Wang, S. Zhou, X. Li, H. Cao, and J. Ye, “Enhanced electro-optical properties of nanocone/nanopillar dual-structured arrays for ultrathin silicon/organic hybrid solar cell applications,” Adv. Energy Mater. 6(8), 1501793 (2016).
[Crossref]

Z. Yang, X. Li, S. Wu, P. Gao, and J. Ye, “High-efficiency photon capturing in ultrathin silicon solar cells with front nanobowl texture and truncated-nanopyramid reflector,” Opt. Lett. 40(6), 1077–1080 (2015).
[Crossref] [PubMed]

Xiao, D.

F. Teng, N. Li, L. Liu, D. Xu, D. Xiao, and N. Lu, “Fabrication of ordered Si nanopillar arrays for ultralow reflectivity,” RSC. Adv. 6(19), 15803–15807 (2016).

Xie, C.

Y. Yao, J. Yao, V. K. Narasimhan, Z. Ruan, C. Xie, S. Fan, and Y. Cui, “Broadband light management using low-Q whispering gallery modes in spherical nanoshells,” Nat. Commun. 3(6), 664 (2012).
[Crossref] [PubMed]

Xiu, F.

H. Lin, F. Xiu, M. Fang, S. Yip, H. Y. Cheung, F. Wang, N. Han, K. S. Chan, C. Y. Wong, and J. C. Ho, “Rational design of inverted nanopencil arrays for cost-effective, broadband, and omnidirectional light harvesting,” ACS Nano 8(4), 3752–3760 (2014).
[Crossref] [PubMed]

H. Lin, H. Y. Cheung, F. Xiu, F. Wang, S. P. Yip, N. Han, T. Hung, J. Zhou, J. C. Ho, and C. Y. Wong, “Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping,” J. Mater. Chem. A Mater. Energy Sustain. 1(34), 9942–9946 (2013).
[Crossref]

Xu, D.

F. Teng, N. Li, L. Liu, D. Xu, D. Xiao, and N. Lu, “Fabrication of ordered Si nanopillar arrays for ultralow reflectivity,” RSC. Adv. 6(19), 15803–15807 (2016).

Xu, J.

M. Tang, L. Zhou, S. Gu, W. Zhu, Y. Wang, J. Xu, Z. Deng, T. Yu, Z. Lu, and J. Zhu, “Fine-tuning the metallic core-shell nanostructures for plasmonic perovskite solar cells,” Appl. Phys. Lett. 109(18), 183901 (2016).
[Crossref]

Yang, J.

Y. Li, P. Gao, Q. Chen, J. Yang, J. Li, and D. He, “Nanostructured semiconductor solar absorbers with near 100% absorption and related light management picture,” J. Phys. D Appl. Phys. 49(21), 215104 (2016).
[Crossref]

Yang, X.

S. Zhou, Z. Yang, P. Gao, X. Li, X. Yang, D. Wang, J. He, Z. Ying, and J. Ye, “Wafer-scale integration of inverted nanopyramid arrays for advanced light trapping in crystalline silicon thin film solar cells,” Nanoscale Res. Lett. 11(1), 194 (2016).
[Crossref] [PubMed]

J. He, P. Gao, M. Liao, X. Yang, Z. Ying, S. Zhou, J. Ye, and Y. Cui, “Realization of 13.6% efficiency on 20 μm thick Si/organic hybrid heterojunction solar cells via advanced nanotexturing and surface recombination suppression,” ACS Nano 9(6), 6522–6531 (2015).
[Crossref] [PubMed]

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15(7), 4591–4598 (2015).
[Crossref] [PubMed]

Yang, Z.

Z. Yang, A. Shang, L. Qin, Y. Zhan, C. Zhang, P. Gao, J. Ye, and X. Li, “Broadband and wide-angle light harvesting by ultra-thin silicon solar cells with partially embedded dielectric spheres,” Opt. Lett. 41(7), 1329–1332 (2016).
[Crossref] [PubMed]

J. He, Z. Yang, P. Liu, S. Wu, P. Gao, M. Wang, S. Zhou, X. Li, H. Cao, and J. Ye, “Enhanced electro-optical properties of nanocone/nanopillar dual-structured arrays for ultrathin silicon/organic hybrid solar cell applications,” Adv. Energy Mater. 6(8), 1501793 (2016).
[Crossref]

S. Zhou, Z. Yang, P. Gao, X. Li, X. Yang, D. Wang, J. He, Z. Ying, and J. Ye, “Wafer-scale integration of inverted nanopyramid arrays for advanced light trapping in crystalline silicon thin film solar cells,” Nanoscale Res. Lett. 11(1), 194 (2016).
[Crossref] [PubMed]

Z. Yang, X. Li, S. Wu, P. Gao, and J. Ye, “High-efficiency photon capturing in ultrathin silicon solar cells with front nanobowl texture and truncated-nanopyramid reflector,” Opt. Lett. 40(6), 1077–1080 (2015).
[Crossref] [PubMed]

Yao, J.

Y. Yao, J. Yao, V. K. Narasimhan, Z. Ruan, C. Xie, S. Fan, and Y. Cui, “Broadband light management using low-Q whispering gallery modes in spherical nanoshells,” Nat. Commun. 3(6), 664 (2012).
[Crossref] [PubMed]

Yao, Y.

Y. Yao, J. Yao, V. K. Narasimhan, Z. Ruan, C. Xie, S. Fan, and Y. Cui, “Broadband light management using low-Q whispering gallery modes in spherical nanoshells,” Nat. Commun. 3(6), 664 (2012).
[Crossref] [PubMed]

Ye, J.

S. Zhou, Z. Yang, P. Gao, X. Li, X. Yang, D. Wang, J. He, Z. Ying, and J. Ye, “Wafer-scale integration of inverted nanopyramid arrays for advanced light trapping in crystalline silicon thin film solar cells,” Nanoscale Res. Lett. 11(1), 194 (2016).
[Crossref] [PubMed]

J. He, Z. Yang, P. Liu, S. Wu, P. Gao, M. Wang, S. Zhou, X. Li, H. Cao, and J. Ye, “Enhanced electro-optical properties of nanocone/nanopillar dual-structured arrays for ultrathin silicon/organic hybrid solar cell applications,” Adv. Energy Mater. 6(8), 1501793 (2016).
[Crossref]

Z. Yang, A. Shang, L. Qin, Y. Zhan, C. Zhang, P. Gao, J. Ye, and X. Li, “Broadband and wide-angle light harvesting by ultra-thin silicon solar cells with partially embedded dielectric spheres,” Opt. Lett. 41(7), 1329–1332 (2016).
[Crossref] [PubMed]

Z. Yang, X. Li, S. Wu, P. Gao, and J. Ye, “High-efficiency photon capturing in ultrathin silicon solar cells with front nanobowl texture and truncated-nanopyramid reflector,” Opt. Lett. 40(6), 1077–1080 (2015).
[Crossref] [PubMed]

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15(7), 4591–4598 (2015).
[Crossref] [PubMed]

J. He, P. Gao, M. Liao, X. Yang, Z. Ying, S. Zhou, J. Ye, and Y. Cui, “Realization of 13.6% efficiency on 20 μm thick Si/organic hybrid heterojunction solar cells via advanced nanotexturing and surface recombination suppression,” ACS Nano 9(6), 6522–6531 (2015).
[Crossref] [PubMed]

P. Gao, H. Wang, Z. Sun, W. Han, J. Li, and J. Ye, “Efficient light trapping in low aspect-ratio honeycomb nanobowl surface texturing for crystalline silicon solar cell applications,” Appl. Phys. Lett. 103(25), 253105 (2013).
[Crossref]

Yerci, S.

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, A. Ebong, and G. Chen, “Empirical comparison of random and periodic surface light-trapping structures for ultrathin silicon photovoltaics,” Adv. Opt. Mater. 4(6), 858–863 (2016).
[Crossref]

A. Mavrokefalos, S. E. Han, S. Yerci, M. S. Branham, and G. Chen, “Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications,” Nano Lett. 12(6), 2792–2796 (2012).
[Crossref] [PubMed]

Ying, Z.

S. Zhou, Z. Yang, P. Gao, X. Li, X. Yang, D. Wang, J. He, Z. Ying, and J. Ye, “Wafer-scale integration of inverted nanopyramid arrays for advanced light trapping in crystalline silicon thin film solar cells,” Nanoscale Res. Lett. 11(1), 194 (2016).
[Crossref] [PubMed]

J. He, P. Gao, M. Liao, X. Yang, Z. Ying, S. Zhou, J. Ye, and Y. Cui, “Realization of 13.6% efficiency on 20 μm thick Si/organic hybrid heterojunction solar cells via advanced nanotexturing and surface recombination suppression,” ACS Nano 9(6), 6522–6531 (2015).
[Crossref] [PubMed]

Yip, S.

H. Lin, F. Xiu, M. Fang, S. Yip, H. Y. Cheung, F. Wang, N. Han, K. S. Chan, C. Y. Wong, and J. C. Ho, “Rational design of inverted nanopencil arrays for cost-effective, broadband, and omnidirectional light harvesting,” ACS Nano 8(4), 3752–3760 (2014).
[Crossref] [PubMed]

Yip, S. P.

H. Lin, H. Y. Cheung, F. Xiu, F. Wang, S. P. Yip, N. Han, T. Hung, J. Zhou, J. C. Ho, and C. Y. Wong, “Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping,” J. Mater. Chem. A Mater. Energy Sustain. 1(34), 9942–9946 (2013).
[Crossref]

Yu, T.

M. Tang, L. Zhou, S. Gu, W. Zhu, Y. Wang, J. Xu, Z. Deng, T. Yu, Z. Lu, and J. Zhu, “Fine-tuning the metallic core-shell nanostructures for plasmonic perovskite solar cells,” Appl. Phys. Lett. 109(18), 183901 (2016).
[Crossref]

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15(7), 4591–4598 (2015).
[Crossref] [PubMed]

Yu, X.

L. Zhou, X. Yu, and J. Zhu, “Metal-core/semiconductor-shell nanocones for broadband solar absorption enhancement,” Nano Lett. 14(2), 1093–1098 (2014).
[Crossref] [PubMed]

Yu, Z.

J. Zhu, Z. Yu, S. Fan, and Y. Cui, “Nanostructured photon management for high performance solar cells,” Mater. Sci. Eng. A 70(3-6), 330–340 (2010).
[Crossref]

Yue, L.

Zeman, M.

A. Ingenito, O. Isabella, and M. Zeman, “Nano-cones on micro-pyramids: modulated surface textures for maximal spectral response and high-efficiency solar cells,” Prog. Photovolt. Res. Appl. 23(11), 1649–1659 (2015).
[Crossref]

Zhan, Y.

Zhang, C.

Zhao, J.

J. Zhao, A. Wang, P. P. Altermatt, and M. A. Green, “Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss,” Appl. Phys. Lett. 66(26), 3636–3638 (1995).
[Crossref]

Zhao, L.

L. Zhao, Y. Zuo, C. Zhou, H. Li, H. Diao, and W. Wang, “Theoretical investigation on the absorption enhancement of the crystalline silicon solar cells by pyramid texture coated with SiNx:H layer,” Sol. Energy 85(3), 530–537 (2011).
[Crossref]

Zhong, S.

S. Zhong, W. Wang, Y. Zhuang, Z. Huang, and W. Shen, “All-solution-processed random Si nanopyramids for excellent light trapping in ultrathin solar cells,” Adv. Funct. Mater. 26(26), 4768–4777 (2016).
[Crossref]

Zhou, C.

L. Zhao, Y. Zuo, C. Zhou, H. Li, H. Diao, and W. Wang, “Theoretical investigation on the absorption enhancement of the crystalline silicon solar cells by pyramid texture coated with SiNx:H layer,” Sol. Energy 85(3), 530–537 (2011).
[Crossref]

Zhou, J.

H. Lin, H. Y. Cheung, F. Xiu, F. Wang, S. P. Yip, N. Han, T. Hung, J. Zhou, J. C. Ho, and C. Y. Wong, “Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping,” J. Mater. Chem. A Mater. Energy Sustain. 1(34), 9942–9946 (2013).
[Crossref]

Zhou, L.

M. Tang, L. Zhou, S. Gu, W. Zhu, Y. Wang, J. Xu, Z. Deng, T. Yu, Z. Lu, and J. Zhu, “Fine-tuning the metallic core-shell nanostructures for plasmonic perovskite solar cells,” Appl. Phys. Lett. 109(18), 183901 (2016).
[Crossref]

L. Zhou, X. Yu, and J. Zhu, “Metal-core/semiconductor-shell nanocones for broadband solar absorption enhancement,” Nano Lett. 14(2), 1093–1098 (2014).
[Crossref] [PubMed]

Zhou, S.

S. Zhou, Z. Yang, P. Gao, X. Li, X. Yang, D. Wang, J. He, Z. Ying, and J. Ye, “Wafer-scale integration of inverted nanopyramid arrays for advanced light trapping in crystalline silicon thin film solar cells,” Nanoscale Res. Lett. 11(1), 194 (2016).
[Crossref] [PubMed]

J. He, Z. Yang, P. Liu, S. Wu, P. Gao, M. Wang, S. Zhou, X. Li, H. Cao, and J. Ye, “Enhanced electro-optical properties of nanocone/nanopillar dual-structured arrays for ultrathin silicon/organic hybrid solar cell applications,” Adv. Energy Mater. 6(8), 1501793 (2016).
[Crossref]

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15(7), 4591–4598 (2015).
[Crossref] [PubMed]

J. He, P. Gao, M. Liao, X. Yang, Z. Ying, S. Zhou, J. Ye, and Y. Cui, “Realization of 13.6% efficiency on 20 μm thick Si/organic hybrid heterojunction solar cells via advanced nanotexturing and surface recombination suppression,” ACS Nano 9(6), 6522–6531 (2015).
[Crossref] [PubMed]

Zhu, J.

M. Tang, L. Zhou, S. Gu, W. Zhu, Y. Wang, J. Xu, Z. Deng, T. Yu, Z. Lu, and J. Zhu, “Fine-tuning the metallic core-shell nanostructures for plasmonic perovskite solar cells,” Appl. Phys. Lett. 109(18), 183901 (2016).
[Crossref]

L. Zhou, X. Yu, and J. Zhu, “Metal-core/semiconductor-shell nanocones for broadband solar absorption enhancement,” Nano Lett. 14(2), 1093–1098 (2014).
[Crossref] [PubMed]

J. Zhu, Z. Yu, S. Fan, and Y. Cui, “Nanostructured photon management for high performance solar cells,” Mater. Sci. Eng. A 70(3-6), 330–340 (2010).
[Crossref]

Zhu, W.

M. Tang, L. Zhou, S. Gu, W. Zhu, Y. Wang, J. Xu, Z. Deng, T. Yu, Z. Lu, and J. Zhu, “Fine-tuning the metallic core-shell nanostructures for plasmonic perovskite solar cells,” Appl. Phys. Lett. 109(18), 183901 (2016).
[Crossref]

Zhuang, Y.

S. Zhong, W. Wang, Y. Zhuang, Z. Huang, and W. Shen, “All-solution-processed random Si nanopyramids for excellent light trapping in ultrathin solar cells,” Adv. Funct. Mater. 26(26), 4768–4777 (2016).
[Crossref]

Zuo, Y.

L. Zhao, Y. Zuo, C. Zhou, H. Li, H. Diao, and W. Wang, “Theoretical investigation on the absorption enhancement of the crystalline silicon solar cells by pyramid texture coated with SiNx:H layer,” Sol. Energy 85(3), 530–537 (2011).
[Crossref]

ACS Nano (3)

J. He, P. Gao, M. Liao, X. Yang, Z. Ying, S. Zhou, J. Ye, and Y. Cui, “Realization of 13.6% efficiency on 20 μm thick Si/organic hybrid heterojunction solar cells via advanced nanotexturing and surface recombination suppression,” ACS Nano 9(6), 6522–6531 (2015).
[Crossref] [PubMed]

H. Lin, F. Xiu, M. Fang, S. Yip, H. Y. Cheung, F. Wang, N. Han, K. S. Chan, C. Y. Wong, and J. C. Ho, “Rational design of inverted nanopencil arrays for cost-effective, broadband, and omnidirectional light harvesting,” ACS Nano 8(4), 3752–3760 (2014).
[Crossref] [PubMed]

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Adv. Energy Mater. (1)

J. He, Z. Yang, P. Liu, S. Wu, P. Gao, M. Wang, S. Zhou, X. Li, H. Cao, and J. Ye, “Enhanced electro-optical properties of nanocone/nanopillar dual-structured arrays for ultrathin silicon/organic hybrid solar cell applications,” Adv. Energy Mater. 6(8), 1501793 (2016).
[Crossref]

Adv. Funct. Mater. (1)

S. Zhong, W. Wang, Y. Zhuang, Z. Huang, and W. Shen, “All-solution-processed random Si nanopyramids for excellent light trapping in ultrathin solar cells,” Adv. Funct. Mater. 26(26), 4768–4777 (2016).
[Crossref]

Adv. Mater. (1)

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, A. Ebong, and G. Chen, “Empirical comparison of random and periodic surface light-trapping structures for ultrathin silicon photovoltaics,” Adv. Opt. Mater. 4(6), 858–863 (2016).
[Crossref]

Appl. Phys. Lett. (5)

J. Zhao, A. Wang, P. P. Altermatt, and M. A. Green, “Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss,” Appl. Phys. Lett. 66(26), 3636–3638 (1995).
[Crossref]

M. Tang, L. Zhou, S. Gu, W. Zhu, Y. Wang, J. Xu, Z. Deng, T. Yu, Z. Lu, and J. Zhu, “Fine-tuning the metallic core-shell nanostructures for plasmonic perovskite solar cells,” Appl. Phys. Lett. 109(18), 183901 (2016).
[Crossref]

S. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 133109 (2008).
[Crossref]

P. Gao, H. Wang, Z. Sun, W. Han, J. Li, and J. Ye, “Efficient light trapping in low aspect-ratio honeycomb nanobowl surface texturing for crystalline silicon solar cell applications,” Appl. Phys. Lett. 103(25), 253105 (2013).
[Crossref]

P. B. Fischer and S. Y. Chou, “Sub-50 nm high aspect-ratio silicon pillars, ridges and trenches fabricated using ultra-high e-beam lithography and RIE,” Appl. Phys. Lett. 62, 1414–1416 (1993).
[Crossref]

J. Appl. Phys. (1)

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

H. Lin, H. Y. Cheung, F. Xiu, F. Wang, S. P. Yip, N. Han, T. Hung, J. Zhou, J. C. Ho, and C. Y. Wong, “Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping,” J. Mater. Chem. A Mater. Energy Sustain. 1(34), 9942–9946 (2013).
[Crossref]

J. Phys. D Appl. Phys. (1)

Y. Li, P. Gao, Q. Chen, J. Yang, J. Li, and D. He, “Nanostructured semiconductor solar absorbers with near 100% absorption and related light management picture,” J. Phys. D Appl. Phys. 49(21), 215104 (2016).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Koh, S. Sawara, T. Goto, Y. Ando, T. Shinada, and I. Ohdomari, “New process for Si nanopyramid array (NPA) fabrication by ion-beam irradiation and wet etching,” Jpn. J. Appl. Phys. 39(39), 2186–2188 (2000).
[Crossref]

Mater. Sci. Eng. A (1)

J. Zhu, Z. Yu, S. Fan, and Y. Cui, “Nanostructured photon management for high performance solar cells,” Mater. Sci. Eng. A 70(3-6), 330–340 (2010).
[Crossref]

Nano Lett. (7)

L. Zhou, X. Yu, and J. Zhu, “Metal-core/semiconductor-shell nanocones for broadband solar absorption enhancement,” Nano Lett. 14(2), 1093–1098 (2014).
[Crossref] [PubMed]

A. Mavrokefalos, S. E. Han, S. Yerci, M. S. Branham, and G. Chen, “Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications,” Nano Lett. 12(6), 2792–2796 (2012).
[Crossref] [PubMed]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref] [PubMed]

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15(7), 4591–4598 (2015).
[Crossref] [PubMed]

S. W. Schmitt, F. Schechtel, D. Amkreutz, M. Bashouti, S. K. Srivastava, B. Hoffmann, C. Dieker, E. Spiecker, B. Rech, and S. H. Christiansen, “Nanowire arrays in multicrystalline silicon thin films on glass: a promising material for research and applications in nanotechnology,” Nano Lett. 12(8), 4050–4054 (2012).
[Crossref] [PubMed]

T. Mårtensson, P. Carlberg, M. Borgström, L. Montelius, A. W. Seifert, and L. Samuelson, “Nanowire arrays defined by nanoimprint lithography,” Nano Lett. 4(4), 699–702 (2004).
[Crossref]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

S. Zhou, Z. Yang, P. Gao, X. Li, X. Yang, D. Wang, J. He, Z. Ying, and J. Ye, “Wafer-scale integration of inverted nanopyramid arrays for advanced light trapping in crystalline silicon thin film solar cells,” Nanoscale Res. Lett. 11(1), 194 (2016).
[Crossref] [PubMed]

Nanotechnology (1)

K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, “Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching,” Nanotechnology 19(34), 345301 (2008).
[Crossref] [PubMed]

Nat. Commun. (1)

Y. Yao, J. Yao, V. K. Narasimhan, Z. Ruan, C. Xie, S. Fan, and Y. Cui, “Broadband light management using low-Q whispering gallery modes in spherical nanoshells,” Nat. Commun. 3(6), 664 (2012).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Prog. Photovolt. Res. Appl. (2)

X. Li, N. P. Hylton, V. Giannini, K. H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Multi-dimensional modeling of solar cells with electromagnetic and carrier transport calculations,” Prog. Photovolt. Res. Appl. 21(1), 109–120 (2013).
[Crossref]

A. Ingenito, O. Isabella, and M. Zeman, “Nano-cones on micro-pyramids: modulated surface textures for maximal spectral response and high-efficiency solar cells,” Prog. Photovolt. Res. Appl. 23(11), 1649–1659 (2015).
[Crossref]

RSC. Adv. (1)

F. Teng, N. Li, L. Liu, D. Xu, D. Xiao, and N. Lu, “Fabrication of ordered Si nanopillar arrays for ultralow reflectivity,” RSC. Adv. 6(19), 15803–15807 (2016).

Sol. Energy (1)

L. Zhao, Y. Zuo, C. Zhou, H. Li, H. Diao, and W. Wang, “Theoretical investigation on the absorption enhancement of the crystalline silicon solar cells by pyramid texture coated with SiNx:H layer,” Sol. Energy 85(3), 530–537 (2011).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

P. Campbell and M. A. Green, “High performance light trapping textures for monocrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 65(1), 369–375 (2001).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the fabrication flow for periodic UNP arrays.
Fig. 2
Fig. 2 Top-viewed SEM image for (a) random pyramids and (b) hexagonal UNP arrays, (c) an overview image with a large area of UNP arrays, (d) the optical image of 4-in. c-Si wafer textured with UNP arrays, the SEM images of time-to-time wet etched UNP arrays formation for (e) 5 min, (f) 9 min, (g) 12 min, and (h) 16 min.
Fig. 3
Fig. 3 Comparison of the reflection curves of the periodic UNP arrays with etching time from 5 to 12 min (a) and column diagram of the average reflectance of periodic UNPs in the range of 375~1100 nm compared with random pyramids marked with blue dashed line (b). The best reflectance spectra of periodic UNP arrays and random pyramids before (c) and after (d) coating with 85 nm SiNx film.
Fig. 4
Fig. 4 Normalized electric field profiles at λ = 600/1000 nm for (a)/(c) P = 1.2 μm and (b)/(d) P = 2μm.
Fig. 5
Fig. 5 The minority carrier lifetime of random pyramids (a) and periodic pyramids (b).
Fig. 6
Fig. 6 (a) The simulation of external quantum efficiency (EQE) curves of traditional c-Si SCs with periodic UNP arrays (red) and random pyramids (blue), respectively. (b) Simulated curves of current density vs wavelength for both SCs. A normalized AM1.5G solar spectrum is overlaid in black for reference.

Metrics