Abstract

We demonstrated real-time control of micro/nanofiber waist diameter during fiber pulling process with ultrahigh accuracy and precision. A 785 nm CW laser was coupled into SMF-28e fiber to excite high-order modes. During the fiber-pulling process, the cutoffs of high-order modes contributed to sudden transmission intensity drops. By accurately measuring the time interval between two drops, we could precisely determine the time to stop the pulling process based on a target diameter. Our experimental results showed that both the accuracy and precision of diameter control were within 5 nm for an expected taper diameter ranging from 800 nm to 1300 nm.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Monitoring techniques for the manufacture of tapered optical fibers

Kevin Mullaney, Ricardo Correia, Stephen E. Staines, Stephen W. James, and Ralph P. Tatam
Appl. Opt. 54(28) 8531-8536 (2015)

A generalized heat-brush approach for precise control of the waist profile in fiber tapers

Chams Baker and Martin Rochette
Opt. Mater. Express 1(6) 1065-1076 (2011)

Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes

G. A. Valaskovic, M. Holton, and G. H. Morrison
Appl. Opt. 34(7) 1215-1228 (1995)

References

  • View by:
  • |
  • |
  • |

  1. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [Crossref] [PubMed]
  2. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
    [Crossref] [PubMed]
  3. J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4(6), 067124 (2014).
    [Crossref]
  4. S. Pricking and H. Giessen, “Tapering fibers with complex shape,” Opt. Express 18(4), 3426–3437 (2010).
    [Crossref] [PubMed]
  5. A. Felipe, G. Espíndola, H. J. Kalinowski, J. A. S. Lima, and A. S. Paterno, “Stepwise fabrication of arbitrary fiber optic tapers,” Opt. Express 20(18), 19893–19904 (2012).
    [Crossref] [PubMed]
  6. R. P. Kenny, T. A. Birks, and K. P. Oakley, “Control of optical fibre taper shape,” Electron. Lett. 27(18), 1654–1656 (1991).
    [Crossref]
  7. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
    [Crossref]
  8. A. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modelling in CO 2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
    [Crossref]
  9. T. E. Dimmick, G. Kakarantzas, T. A. Birks, and P. S. J. Russell, “Carbon dioxide laser fabrication of fused-fiber couplers and tapers,” Appl. Opt. 38(33), 6845–6848 (1999).
    [Crossref] [PubMed]
  10. Y. Takeuchi and M. Horiguchi, “Microheater control of wavelength-flattened fiber coupler properties,” Appl. Opt. 33(6), 1029–1034 (1994).
    [Crossref] [PubMed]
  11. L. Shi, X. Chen, H. Liu, Y. Chen, Z. Ye, W. Liao, and Y. Xia, “Fabrication of submicron-diameter silica fibers using electric strip heater,” Opt. Express 14(12), 5055–5060 (2006).
    [Crossref] [PubMed]
  12. J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
    [Crossref] [PubMed]
  13. Z. Li, Y. Xu, W. Fang, L. Tong, and L. Zhang, “Ultra-sensitive nanofiber fluorescence detection in a microfluidic chip,” Sensors (Basel) 15(3), 4890–4898 (2015).
    [Crossref] [PubMed]
  14. S. Leon-Saval, T. Birks, W. Wadsworth, P. S. J. Russell, and M. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12(13), 2864–2869 (2004).
    [Crossref] [PubMed]
  15. V. Grubsky and J. Feinberg, “Phase-matched third-harmonic UV generation using low-order modes in a glass micro-fiber,” Opt. Commun. 274(2), 447–450 (2007).
    [Crossref]
  16. M. I. M. Abdul Khudus, F. De Lucia, C. Corbari, T. Lee, P. Horak, P. Sazio, and G. Brambilla, “Phase matched parametric amplification via four-wave mixing in optical microfibers,” Opt. Lett. 41(4), 761–764 (2016).
    [Crossref] [PubMed]
  17. G. Brambilla and F. Xu, “Adiabatic submicrometric tapers for optical tweezers,” Electron. Lett. 43(4), 204–205 (2007).
    [Crossref]
  18. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
    [Crossref] [PubMed]
  19. M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
    [Crossref] [PubMed]
  20. R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
    [Crossref] [PubMed]
  21. R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity,” Phys. Rev. Lett. 113(14), 143601 (2014).
    [Crossref] [PubMed]
  22. V. Klimov and M. Ducloy, “Spontaneous emission rate of an excited atom placed near a nanofiber,” Phys. Rev. A 69(1), 013812 (2004).
    [Crossref]
  23. F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72(3), 032509 (2005).
    [Crossref]
  24. G. Sagué, E. Vetsch, W. Alt, D. Meschede, and A. Rauschenbeutel, “Cold-atom physics using ultrathin optical fibers: light-induced dipole forces and surface interactions,” Phys. Rev. Lett. 99(16), 163602 (2007).
    [Crossref] [PubMed]
  25. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
    [Crossref] [PubMed]
  26. F. Le Kien and A. Rauschenbeutel, “Electromagnetically induced transparency for guided light in an atomic array outside an optical nanofiber,” Phys. Rev. A 91(5), 053847 (2015).
    [Crossref]
  27. F. Warken and H. Giessen, “Fast profile measurement of micrometer-sized tapered fibers with better than 50-nm accuracy,” Opt. Lett. 29(15), 1727–1729 (2004).
    [Crossref] [PubMed]
  28. D. J. Little and D. M. Kane, “Subdiffraction-limited radius measurements of microcylinders using conventional bright-field optical microscopy,” Opt. Lett. 39(17), 5196–5199 (2014).
    [Crossref] [PubMed]
  29. M. Sumetsky and Y. Dulashko, “Radius variation of optical fibers with angstrom accuracy,” Opt. Lett. 35(23), 4006–4008 (2010).
    [Crossref] [PubMed]
  30. J. Keloth, M. Sadgrove, R. Yalla, and K. Hakuta, “Diameter measurement of optical nanofibers using a composite photonic crystal cavity,” Opt. Lett. 40(17), 4122–4125 (2015).
    [Crossref] [PubMed]
  31. S. Ravets, J. E. Hoffman, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Intermodal energy transfer in a tapered optical fiber: optimizing transmission,” J. Opt. Soc. Am. A 30(11), 2361–2371 (2013).
    [Crossref] [PubMed]
  32. U. Wiedemann, K. Karapetyan, C. Dan, D. Pritzkau, W. Alt, S. Irsen, and D. Meschede, “Measurement of submicrometre diameters of tapered optical fibres using harmonic generation,” Opt. Express 18(8), 7693–7704 (2010).
    [Crossref] [PubMed]
  33. M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285(23), 4648–4654 (2012).
    [Crossref]
  34. A. W. Snyder and J. D. Love, Optical waveguide theory (Chapman and Hall, New York, NY 1983).

2016 (1)

2015 (3)

Z. Li, Y. Xu, W. Fang, L. Tong, and L. Zhang, “Ultra-sensitive nanofiber fluorescence detection in a microfluidic chip,” Sensors (Basel) 15(3), 4890–4898 (2015).
[Crossref] [PubMed]

F. Le Kien and A. Rauschenbeutel, “Electromagnetically induced transparency for guided light in an atomic array outside an optical nanofiber,” Phys. Rev. A 91(5), 053847 (2015).
[Crossref]

J. Keloth, M. Sadgrove, R. Yalla, and K. Hakuta, “Diameter measurement of optical nanofibers using a composite photonic crystal cavity,” Opt. Lett. 40(17), 4122–4125 (2015).
[Crossref] [PubMed]

2014 (4)

D. J. Little and D. M. Kane, “Subdiffraction-limited radius measurements of microcylinders using conventional bright-field optical microscopy,” Opt. Lett. 39(17), 5196–5199 (2014).
[Crossref] [PubMed]

R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity,” Phys. Rev. Lett. 113(14), 143601 (2014).
[Crossref] [PubMed]

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4(6), 067124 (2014).
[Crossref]

2013 (1)

2012 (3)

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285(23), 4648–4654 (2012).
[Crossref]

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref] [PubMed]

A. Felipe, G. Espíndola, H. J. Kalinowski, J. A. S. Lima, and A. S. Paterno, “Stepwise fabrication of arbitrary fiber optic tapers,” Opt. Express 20(18), 19893–19904 (2012).
[Crossref] [PubMed]

2011 (1)

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref] [PubMed]

2010 (4)

2007 (3)

G. Brambilla and F. Xu, “Adiabatic submicrometric tapers for optical tweezers,” Electron. Lett. 43(4), 204–205 (2007).
[Crossref]

G. Sagué, E. Vetsch, W. Alt, D. Meschede, and A. Rauschenbeutel, “Cold-atom physics using ultrathin optical fibers: light-induced dipole forces and surface interactions,” Phys. Rev. Lett. 99(16), 163602 (2007).
[Crossref] [PubMed]

V. Grubsky and J. Feinberg, “Phase-matched third-harmonic UV generation using low-order modes in a glass micro-fiber,” Opt. Commun. 274(2), 447–450 (2007).
[Crossref]

2006 (1)

2005 (1)

F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72(3), 032509 (2005).
[Crossref]

2004 (4)

2003 (2)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

1999 (1)

1998 (1)

A. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modelling in CO 2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
[Crossref]

1994 (1)

1992 (1)

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
[Crossref]

1991 (1)

R. P. Kenny, T. A. Birks, and K. P. Oakley, “Control of optical fibre taper shape,” Electron. Lett. 27(18), 1654–1656 (1991).
[Crossref]

Abdul Khudus, M. I. M.

Alt, W.

U. Wiedemann, K. Karapetyan, C. Dan, D. Pritzkau, W. Alt, S. Irsen, and D. Meschede, “Measurement of submicrometre diameters of tapered optical fibres using harmonic generation,” Opt. Express 18(8), 7693–7704 (2010).
[Crossref] [PubMed]

G. Sagué, E. Vetsch, W. Alt, D. Meschede, and A. Rauschenbeutel, “Cold-atom physics using ultrathin optical fibers: light-induced dipole forces and surface interactions,” Phys. Rev. Lett. 99(16), 163602 (2007).
[Crossref] [PubMed]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Balykin, V. I.

F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72(3), 032509 (2005).
[Crossref]

Birks, T.

Birks, T. A.

T. E. Dimmick, G. Kakarantzas, T. A. Birks, and P. S. J. Russell, “Carbon dioxide laser fabrication of fused-fiber couplers and tapers,” Appl. Opt. 38(33), 6845–6848 (1999).
[Crossref] [PubMed]

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
[Crossref]

R. P. Kenny, T. A. Birks, and K. P. Oakley, “Control of optical fibre taper shape,” Electron. Lett. 27(18), 1654–1656 (1991).
[Crossref]

Brambilla, G.

Chen, X.

Chen, Y.

Chormaic, S. N.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285(23), 4648–4654 (2012).
[Crossref]

Corbari, C.

Dan, C.

Dawkins, S. T.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[Crossref] [PubMed]

De Lucia, F.

Dimmick, T. E.

Ducloy, M.

V. Klimov and M. Ducloy, “Spontaneous emission rate of an excited atom placed near a nanofiber,” Phys. Rev. A 69(1), 013812 (2004).
[Crossref]

Dulashko, Y.

Dutta Gupta, S.

F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72(3), 032509 (2005).
[Crossref]

Espíndola, G.

Fang, W.

Z. Li, Y. Xu, W. Fang, L. Tong, and L. Zhang, “Ultra-sensitive nanofiber fluorescence detection in a microfluidic chip,” Sensors (Basel) 15(3), 4890–4898 (2015).
[Crossref] [PubMed]

Feinberg, J.

V. Grubsky and J. Feinberg, “Phase-matched third-harmonic UV generation using low-order modes in a glass micro-fiber,” Opt. Commun. 274(2), 447–450 (2007).
[Crossref]

Felipe, A.

Frawley, M. C.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285(23), 4648–4654 (2012).
[Crossref]

Fujiwara, M.

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref] [PubMed]

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Giessen, H.

Grellier, A.

A. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modelling in CO 2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
[Crossref]

Grover, J. A.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4(6), 067124 (2014).
[Crossref]

Grubsky, V.

V. Grubsky and J. Feinberg, “Phase-matched third-harmonic UV generation using low-order modes in a glass micro-fiber,” Opt. Commun. 274(2), 447–450 (2007).
[Crossref]

Hakuta, K.

J. Keloth, M. Sadgrove, R. Yalla, and K. Hakuta, “Diameter measurement of optical nanofibers using a composite photonic crystal cavity,” Opt. Lett. 40(17), 4122–4125 (2015).
[Crossref] [PubMed]

R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity,” Phys. Rev. Lett. 113(14), 143601 (2014).
[Crossref] [PubMed]

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref] [PubMed]

F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72(3), 032509 (2005).
[Crossref]

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Hoffman, J. E.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4(6), 067124 (2014).
[Crossref]

S. Ravets, J. E. Hoffman, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Intermodal energy transfer in a tapered optical fiber: optimizing transmission,” J. Opt. Soc. Am. A 30(11), 2361–2371 (2013).
[Crossref] [PubMed]

Horak, P.

Horiguchi, M.

Irsen, S.

Kakarantzas, G.

Kalinowski, H. J.

Kane, D. M.

Karapetyan, K.

Keloth, J.

Kenny, R. P.

R. P. Kenny, T. A. Birks, and K. P. Oakley, “Control of optical fibre taper shape,” Electron. Lett. 27(18), 1654–1656 (1991).
[Crossref]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

Klimov, V.

V. Klimov and M. Ducloy, “Spontaneous emission rate of an excited atom placed near a nanofiber,” Phys. Rev. A 69(1), 013812 (2004).
[Crossref]

Kordell, P. R.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4(6), 067124 (2014).
[Crossref]

S. Ravets, J. E. Hoffman, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Intermodal energy transfer in a tapered optical fiber: optimizing transmission,” J. Opt. Soc. Am. A 30(11), 2361–2371 (2013).
[Crossref] [PubMed]

Le Kien, F.

F. Le Kien and A. Rauschenbeutel, “Electromagnetically induced transparency for guided light in an atomic array outside an optical nanofiber,” Phys. Rev. A 91(5), 053847 (2015).
[Crossref]

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref] [PubMed]

F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72(3), 032509 (2005).
[Crossref]

Lee, T.

Leon-Saval, S.

Li, Y. W.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
[Crossref]

Li, Z.

Z. Li, Y. Xu, W. Fang, L. Tong, and L. Zhang, “Ultra-sensitive nanofiber fluorescence detection in a microfluidic chip,” Sensors (Basel) 15(3), 4890–4898 (2015).
[Crossref] [PubMed]

Liao, W.

Lima, J. A. S.

Little, D. J.

Liu, H.

Lou, J.

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[Crossref] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Mason, M.

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Mazur, E.

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[Crossref] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Meschede, D.

U. Wiedemann, K. Karapetyan, C. Dan, D. Pritzkau, W. Alt, S. Irsen, and D. Meschede, “Measurement of submicrometre diameters of tapered optical fibres using harmonic generation,” Opt. Express 18(8), 7693–7704 (2010).
[Crossref] [PubMed]

G. Sagué, E. Vetsch, W. Alt, D. Meschede, and A. Rauschenbeutel, “Cold-atom physics using ultrathin optical fibers: light-induced dipole forces and surface interactions,” Phys. Rev. Lett. 99(16), 163602 (2007).
[Crossref] [PubMed]

Morinaga, M.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref] [PubMed]

Nayak, K. P.

R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity,” Phys. Rev. Lett. 113(14), 143601 (2014).
[Crossref] [PubMed]

Noda, T.

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref] [PubMed]

Oakley, K. P.

R. P. Kenny, T. A. Birks, and K. P. Oakley, “Control of optical fibre taper shape,” Electron. Lett. 27(18), 1654–1656 (1991).
[Crossref]

Orozco, L. A.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4(6), 067124 (2014).
[Crossref]

S. Ravets, J. E. Hoffman, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Intermodal energy transfer in a tapered optical fiber: optimizing transmission,” J. Opt. Soc. Am. A 30(11), 2361–2371 (2013).
[Crossref] [PubMed]

Painter, O. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

Pannell, C. N.

A. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modelling in CO 2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
[Crossref]

Paterno, A. S.

Petcu-Colan, A.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285(23), 4648–4654 (2012).
[Crossref]

Pricking, S.

Pritzkau, D.

Rauschenbeutel, A.

F. Le Kien and A. Rauschenbeutel, “Electromagnetically induced transparency for guided light in an atomic array outside an optical nanofiber,” Phys. Rev. A 91(5), 053847 (2015).
[Crossref]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[Crossref] [PubMed]

G. Sagué, E. Vetsch, W. Alt, D. Meschede, and A. Rauschenbeutel, “Cold-atom physics using ultrathin optical fibers: light-induced dipole forces and surface interactions,” Phys. Rev. Lett. 99(16), 163602 (2007).
[Crossref] [PubMed]

Ravets, S.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4(6), 067124 (2014).
[Crossref]

S. Ravets, J. E. Hoffman, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Intermodal energy transfer in a tapered optical fiber: optimizing transmission,” J. Opt. Soc. Am. A 30(11), 2361–2371 (2013).
[Crossref] [PubMed]

Reitz, D.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[Crossref] [PubMed]

Rolston, S. L.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4(6), 067124 (2014).
[Crossref]

S. Ravets, J. E. Hoffman, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Intermodal energy transfer in a tapered optical fiber: optimizing transmission,” J. Opt. Soc. Am. A 30(11), 2361–2371 (2013).
[Crossref] [PubMed]

Russell, P. S. J.

Sadgrove, M.

J. Keloth, M. Sadgrove, R. Yalla, and K. Hakuta, “Diameter measurement of optical nanofibers using a composite photonic crystal cavity,” Opt. Lett. 40(17), 4122–4125 (2015).
[Crossref] [PubMed]

R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity,” Phys. Rev. Lett. 113(14), 143601 (2014).
[Crossref] [PubMed]

Sagué, G.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[Crossref] [PubMed]

G. Sagué, E. Vetsch, W. Alt, D. Meschede, and A. Rauschenbeutel, “Cold-atom physics using ultrathin optical fibers: light-induced dipole forces and surface interactions,” Phys. Rev. Lett. 99(16), 163602 (2007).
[Crossref] [PubMed]

Sazio, P.

Schmidt, R.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[Crossref] [PubMed]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Shi, L.

Solano, P.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4(6), 067124 (2014).
[Crossref]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

Sumetsky, M.

Takeuchi, S.

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref] [PubMed]

Takeuchi, Y.

Tong, L.

Z. Li, Y. Xu, W. Fang, L. Tong, and L. Zhang, “Ultra-sensitive nanofiber fluorescence detection in a microfluidic chip,” Sensors (Basel) 15(3), 4890–4898 (2015).
[Crossref] [PubMed]

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[Crossref] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Toubaru, K.

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref] [PubMed]

Truong, V. G.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285(23), 4648–4654 (2012).
[Crossref]

Vahala, K. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

Vetsch, E.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[Crossref] [PubMed]

G. Sagué, E. Vetsch, W. Alt, D. Meschede, and A. Rauschenbeutel, “Cold-atom physics using ultrathin optical fibers: light-induced dipole forces and surface interactions,” Phys. Rev. Lett. 99(16), 163602 (2007).
[Crossref] [PubMed]

Wadsworth, W.

Wang, Y.

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

Warken, F.

Wiedemann, U.

Wong-Campos, J. D.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4(6), 067124 (2014).
[Crossref]

S. Ravets, J. E. Hoffman, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Intermodal energy transfer in a tapered optical fiber: optimizing transmission,” J. Opt. Soc. Am. A 30(11), 2361–2371 (2013).
[Crossref] [PubMed]

Xia, Y.

Xu, F.

G. Brambilla and F. Xu, “Adiabatic submicrometric tapers for optical tweezers,” Electron. Lett. 43(4), 204–205 (2007).
[Crossref]

Xu, Y.

Z. Li, Y. Xu, W. Fang, L. Tong, and L. Zhang, “Ultra-sensitive nanofiber fluorescence detection in a microfluidic chip,” Sensors (Basel) 15(3), 4890–4898 (2015).
[Crossref] [PubMed]

Yalla, R.

J. Keloth, M. Sadgrove, R. Yalla, and K. Hakuta, “Diameter measurement of optical nanofibers using a composite photonic crystal cavity,” Opt. Lett. 40(17), 4122–4125 (2015).
[Crossref] [PubMed]

R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity,” Phys. Rev. Lett. 113(14), 143601 (2014).
[Crossref] [PubMed]

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref] [PubMed]

Ye, Z.

Zayer, N. K.

A. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modelling in CO 2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
[Crossref]

Zhang, L.

Z. Li, Y. Xu, W. Fang, L. Tong, and L. Zhang, “Ultra-sensitive nanofiber fluorescence detection in a microfluidic chip,” Sensors (Basel) 15(3), 4890–4898 (2015).
[Crossref] [PubMed]

Zhao, H.-Q.

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref] [PubMed]

AIP Adv. (1)

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4(6), 067124 (2014).
[Crossref]

Appl. Opt. (2)

Electron. Lett. (2)

R. P. Kenny, T. A. Birks, and K. P. Oakley, “Control of optical fibre taper shape,” Electron. Lett. 27(18), 1654–1656 (1991).
[Crossref]

G. Brambilla and F. Xu, “Adiabatic submicrometric tapers for optical tweezers,” Electron. Lett. 43(4), 204–205 (2007).
[Crossref]

J. Lightwave Technol. (1)

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
[Crossref]

J. Opt. Soc. Am. A (1)

Nano Lett. (1)

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref] [PubMed]

Nature (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Opt. Commun. (3)

V. Grubsky and J. Feinberg, “Phase-matched third-harmonic UV generation using low-order modes in a glass micro-fiber,” Opt. Commun. 274(2), 447–450 (2007).
[Crossref]

A. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modelling in CO 2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
[Crossref]

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285(23), 4648–4654 (2012).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Phys. Rev. A (3)

V. Klimov and M. Ducloy, “Spontaneous emission rate of an excited atom placed near a nanofiber,” Phys. Rev. A 69(1), 013812 (2004).
[Crossref]

F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72(3), 032509 (2005).
[Crossref]

F. Le Kien and A. Rauschenbeutel, “Electromagnetically induced transparency for guided light in an atomic array outside an optical nanofiber,” Phys. Rev. A 91(5), 053847 (2015).
[Crossref]

Phys. Rev. Lett. (5)

G. Sagué, E. Vetsch, W. Alt, D. Meschede, and A. Rauschenbeutel, “Cold-atom physics using ultrathin optical fibers: light-induced dipole forces and surface interactions,” Phys. Rev. Lett. 99(16), 163602 (2007).
[Crossref] [PubMed]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[Crossref] [PubMed]

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref] [PubMed]

R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity,” Phys. Rev. Lett. 113(14), 143601 (2014).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

Sensors (Basel) (2)

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

Z. Li, Y. Xu, W. Fang, L. Tong, and L. Zhang, “Ultra-sensitive nanofiber fluorescence detection in a microfluidic chip,” Sensors (Basel) 15(3), 4890–4898 (2015).
[Crossref] [PubMed]

Other (1)

A. W. Snyder and J. D. Love, Optical waveguide theory (Chapman and Hall, New York, NY 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Schematic of the experimental setup. (b)The effective indices of the lowest supported modes as functions of fiber diameter for optical wavelength at 785 nm. For clarity, the high-order HE3n/EH3n/HE4n/EH4n modes are not plotted here. (c) The normalized transmission curve of 785 nm laser as a function of time during the tapering process. Inset shows the transmission curve when a 1550 nm laser was used for comparison, where only fundamental mode was excited. (d) Magnified intensity curve (black solid line) and its derivative (blue dotted line) as functions of time. The red dashed line is the threshold to delimit the cutoff of certain mode.
Fig. 2
Fig. 2 (a)The SEM image of a section of MNF stopped at the second intensity drop. The labeled numbers are the diameters measured at those particular positions. (b) Magnified SEM image used to measure diameter. (c) Diameters measured from six different samples stopped at the first intensity drop (black open circles) and at the second intensity drop (red solid diamonds). The error bars were estimated based on experimental data as well as SEM resolution.
Fig. 3
Fig. 3 (a)-(d):The measured waist diameters (red squares) for MNFs fabricated based on Eq. (2) with expected diameters (solid black lines) as (a) 1200 ± 3.1 nm, (b) 1005 ± 4.1 nm, (c) 792 ± 4.8 nm, and (d) 412 ± 4.8 nm, respectively. The dashed blue lines indicate the extrapolated diameters based on Eq. (3) as (a) 1199 ± 4.9 nm, (b) 997 ± 5 nm, (c) 779 ± 5.4 nm, and (d) 395 ± 4.4 nm, respectively. (e)-(f): The measured waist diameters (red squares) for MNFs fabricated based on Eq. (3) with expected diameters as (e) 1107 ± 4.6 nm, (f) 910 ± 5.2 nm. The errors for expected diameters were inherited from the error of D0 measurement.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

D ( z ) = D 0 e z / L 0
D = 1293.8 e ln ( 2006 / 1293.8 ) * Δ t / Δ T = 1293.8 e 0.4386 Δ t / Δ T
D = 1296 .26 e 0 .4553 Δ t / Δ T

Metrics