Abstract

We present a theoretical investigation on controlling the transverse shift while most of the researches are on longitudinal Goos-Hänchen shift. A two-layer system is considered. The refractive index of the first layer is fixed. The second layer is an atomic system coupled by a strong laser field to realize the Λ-style electromagnetically induced transparency, and an additional microwave field drives the transition between the lower two levels to construct high refractive index with zero absorption. We use such phenomenon to modify the refractive index, and consequently the transverse shift in reflection. The properties of the atomic system and the transverse shift of reflected field are briefly studied. Our investigation shows that the shift can be tuned by the strength of the microwave field. And since the atomic system is quite sensitive to the phase of the light fields, through which the transverse shift can be manipulated effectively. More importantly, the absorption is limited due to the presence of the microwave field.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Control of the Goos–Hänchen shifts of a probe light beam using phase tunability of the intracavity medium

Arash Radmehr, M. Sahrai, and H. Sattari
Appl. Opt. 55(8) 1946-1952 (2016)

Enhancement of Goos–Hänchen shift due to a Rydberg state

Seyyed Hossein Asadpour, Hamid Reza Hamedi, and Mahmoud Jafari
Appl. Opt. 57(15) 4013-4019 (2018)

Coherent control of the Goos–Hänchen shift via an inhomogeneous cavity

Qingli Jing, Chunguang Du, Fuchuan Lei, Ming Gao, and Jiancun Gao
J. Opt. Soc. Am. B 32(8) 1532-1538 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. A. X. Born and E. Wolf, Principles of Optics (Seventh (Expanded) Edition) (Cambridge University, 1999).
  2. F. Goos and H. Hänchen, “Ein neuer und fundamentaler versuch zur totalreflexion,” Ann. Phys. 436, 333–346 (1947).
    [Crossref]
  3. F. I. Fedorov, “On the theory of total internal reflection,” Dokl. Akad. Nauk SSSR 105, 465 (1955).
  4. C.-F. Li, “Unified theory for Goos-Hänchen and Imbert-Fedorov effects,” Phys. Rev. A 76, 013811 (2007).
    [Crossref]
  5. A. Aiello, “Goos-Hänchen and Imbert-Fedorov shifts: a novel perspective,” New J. Phys. 14, 013058 (2012).
    [Crossref]
  6. A. Aiello, M. Merano, and J. P. Woerdman, “Duality between spatial and angular shift in optical reflection,” Phys Rev. A 80, 061801 (2009).
    [Crossref]
  7. T. Paul, C. Rockstuhl, C. Menzel, and F. Lederer, “Resonant Goos-Hänchen and Imbert-Fedorov shifts at photonic crystal slabs,” Phys. Rev. A 77, 053802 (2008).
    [Crossref]
  8. C. Imbert, “Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam,” Phys. Rev. D 5, 787–796 (1972).
    [Crossref]
  9. K. Y. Bliokh and Y. P. Bliokh, “Polarization, transverse shifts, and angular momentum conservation laws in partial reflection and refraction of an electromagnetic wave packet,” Phys. Rev. E 75, 066609 (2007).
    [Crossref]
  10. K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006).
    [Crossref] [PubMed]
  11. M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93, 083901 (2004).
    [Crossref] [PubMed]
  12. L.-G. Wang, M. Ikram, and M. S. Zubairy, “Control of the Goos-Hänchen shift of a light beam via a coherent driving field,” Phys. Rev. A 77, 023811 (2008).
    [Crossref]
  13. Ziauddin and S. Qamar, “Control of the Goos-Hänchen shift using a duplicated two-level atomic medium,” Phys. Rev. A 85, 055804 (2012).
    [Crossref]
  14. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36 (1997).
    [Crossref]
  15. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
    [Crossref] [PubMed]
  16. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
    [Crossref] [PubMed]
  17. B. S. Ham, P. R. Hemmer, and M. S. Shahriar, “Efficient electromagnetically induced transparency in a rare-earth doped crystal,” Opt. Commun. 144, 227–230 (1997).
    [Crossref]
  18. B. S. Ham, M. S. Shahriar, M. K. Kim, and P. R. Hemmer, “Frequency-selective time-domain optical data storage by electromagnetically induced transparency in a rare-earth-doped solid,” Opt. Lett. 22, 1849–1851 (1997).
    [Crossref]
  19. C. Wei and N. B. Manson, “Observation of the dynamic stark effect on electromagnetically induced transparency,” Phys. Rev. A 60, 2540–2546 (1999).
    [Crossref]
  20. C. Wei and N. B. Manson, “Observation of electromagnetically induced transparency within an electron spin resonance transition,” J. Opt. B: Quantum Semiclass. Opt. 1, 464 (1999).
    [Crossref]
  21. P. R. Hemmer, A. V. Turukhin, M. S. Shahriar, and J. A. Musser, “Raman-excited spin coherences in nitrogen-vacancy color centers in diamond,” Opt. Lett. 26, 361–363 (2001).
    [Crossref]
  22. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [Crossref]
  23. Ziauddin, S. Qamar, and M. S. Zubairy, “Coherent control of the Goos-Hänchen shift,” Phys. Rev. A 81, 023821 (2010).
    [Crossref]
  24. S. Asiri, J. Xu, M. Al-Amri, and M. S. Zubairy, “Controlling the Goos-Hänchen and Imbert-Fedorov shifts via pump and driving fields,” Phys. Rev. A 93, 013821 (2016).
    [Crossref]
  25. S. E. Harris, “Refractive-index control with strong fields,” Opt. Lett. 19, 2018–2020 (1994).
    [Crossref] [PubMed]
  26. A. S. Zibrov, M. D. Lukin, L. Hollberg, D. E. Nikonov, M. O. Scully, H. G. Robinson, and V. L. Velichansky, “Experimental demonstration of enhanced index of refraction via quantum coherence in Rb,” Phys. Rev. Lett. 76, 3935–3938 (1996).
    [Crossref] [PubMed]
  27. W.-H. Xu, J.-H. Wu, and J.-Y. Gao, “Effects of decay-induced coherence and microwave-induced coherence on the index of refraction in a three-level Λ-type atomic system,” Laser Phys. Lett. 1, 176–183 (2004).
    [Crossref]
  28. H.-F. Zhang, J.-H. Wu, X.-M. Su, and J.-Y. Gao, “Quantum-interference effects on the index of refraction in an Er3+-doped yttrium aluminum garnet crystal,” Phys. Rev. A 66, 053816 (2002).
    [Crossref]
  29. O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319, 787–790 (2008).
    [Crossref] [PubMed]
  30. X.-G. Wei, J.-H. Wu, G.-X. Sun, Z. Shao, Z.-H. Kang, Y. Jiang, and J.-Y. Gao, “Splitting of an electromagnetically induced transparency window of rubidium atoms in a static magnetic field,” Phys. Rev. A 72, 023806 (2005).
    [Crossref]
  31. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).
  32. K. Y. Bliokh and A. Aiello, “Goos-Hänchen and Imbert-Fedorov beam shifts: an overview,” J. Opt. 15, 014001 (2013).
    [Crossref]
  33. C. Koester, “Laser action by enhanced total internal reflection,” IEEE J. of Quantum Electron. 2, 580–584 (1966).
    [Crossref]
  34. K. J. Willis, J. B. Schneider, and S. C. Hagness, “Amplified total internal reflection: theory, analysis, and demonstration of existence via fdtd,” Opt. Express 16, 1903–1914 (2008).
    [Crossref] [PubMed]
  35. Y.-q. Li and M. Xiao, “Electromagnetically induced transparency in a three-level Λ-type system in rubidium atoms,” Phys. Rev. A 51, R2703–R2706 (1995).
    [Crossref]
  36. C. Santori, D. Fattal, S. M. Spillane, M. Fiorentino, R. G. Beausoleil, A. D. Greentree, P. Olivero, M. Draganski, J. R. Rabeau, P. Reichart, B. C. Gibson, S. Rubanov, D. N. Jamieson, and S. Prawer, “Coherent population trapping in diamond n-v centers at zero magnetic field,” Opt. Express 14, 7986–7994 (2006).
    [Crossref] [PubMed]
  37. J. B. Götte, W. Löffler, and M. R. Dennis, “Eigenpolarizations for giant transverse optical beam shifts,” Phys. Rev. Lett. 112, 233901 (2014).
    [Crossref] [PubMed]

2016 (1)

S. Asiri, J. Xu, M. Al-Amri, and M. S. Zubairy, “Controlling the Goos-Hänchen and Imbert-Fedorov shifts via pump and driving fields,” Phys. Rev. A 93, 013821 (2016).
[Crossref]

2014 (1)

J. B. Götte, W. Löffler, and M. R. Dennis, “Eigenpolarizations for giant transverse optical beam shifts,” Phys. Rev. Lett. 112, 233901 (2014).
[Crossref] [PubMed]

2013 (1)

K. Y. Bliokh and A. Aiello, “Goos-Hänchen and Imbert-Fedorov beam shifts: an overview,” J. Opt. 15, 014001 (2013).
[Crossref]

2012 (2)

A. Aiello, “Goos-Hänchen and Imbert-Fedorov shifts: a novel perspective,” New J. Phys. 14, 013058 (2012).
[Crossref]

Ziauddin and S. Qamar, “Control of the Goos-Hänchen shift using a duplicated two-level atomic medium,” Phys. Rev. A 85, 055804 (2012).
[Crossref]

2010 (1)

Ziauddin, S. Qamar, and M. S. Zubairy, “Coherent control of the Goos-Hänchen shift,” Phys. Rev. A 81, 023821 (2010).
[Crossref]

2009 (1)

A. Aiello, M. Merano, and J. P. Woerdman, “Duality between spatial and angular shift in optical reflection,” Phys Rev. A 80, 061801 (2009).
[Crossref]

2008 (4)

T. Paul, C. Rockstuhl, C. Menzel, and F. Lederer, “Resonant Goos-Hänchen and Imbert-Fedorov shifts at photonic crystal slabs,” Phys. Rev. A 77, 053802 (2008).
[Crossref]

L.-G. Wang, M. Ikram, and M. S. Zubairy, “Control of the Goos-Hänchen shift of a light beam via a coherent driving field,” Phys. Rev. A 77, 023811 (2008).
[Crossref]

K. J. Willis, J. B. Schneider, and S. C. Hagness, “Amplified total internal reflection: theory, analysis, and demonstration of existence via fdtd,” Opt. Express 16, 1903–1914 (2008).
[Crossref] [PubMed]

O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319, 787–790 (2008).
[Crossref] [PubMed]

2007 (2)

C.-F. Li, “Unified theory for Goos-Hänchen and Imbert-Fedorov effects,” Phys. Rev. A 76, 013811 (2007).
[Crossref]

K. Y. Bliokh and Y. P. Bliokh, “Polarization, transverse shifts, and angular momentum conservation laws in partial reflection and refraction of an electromagnetic wave packet,” Phys. Rev. E 75, 066609 (2007).
[Crossref]

2006 (2)

2005 (2)

X.-G. Wei, J.-H. Wu, G.-X. Sun, Z. Shao, Z.-H. Kang, Y. Jiang, and J.-Y. Gao, “Splitting of an electromagnetically induced transparency window of rubidium atoms in a static magnetic field,” Phys. Rev. A 72, 023806 (2005).
[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

2004 (2)

W.-H. Xu, J.-H. Wu, and J.-Y. Gao, “Effects of decay-induced coherence and microwave-induced coherence on the index of refraction in a three-level Λ-type atomic system,” Laser Phys. Lett. 1, 176–183 (2004).
[Crossref]

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93, 083901 (2004).
[Crossref] [PubMed]

2002 (1)

H.-F. Zhang, J.-H. Wu, X.-M. Su, and J.-Y. Gao, “Quantum-interference effects on the index of refraction in an Er3+-doped yttrium aluminum garnet crystal,” Phys. Rev. A 66, 053816 (2002).
[Crossref]

2001 (3)

P. R. Hemmer, A. V. Turukhin, M. S. Shahriar, and J. A. Musser, “Raman-excited spin coherences in nitrogen-vacancy color centers in diamond,” Opt. Lett. 26, 361–363 (2001).
[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref] [PubMed]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

1999 (2)

C. Wei and N. B. Manson, “Observation of the dynamic stark effect on electromagnetically induced transparency,” Phys. Rev. A 60, 2540–2546 (1999).
[Crossref]

C. Wei and N. B. Manson, “Observation of electromagnetically induced transparency within an electron spin resonance transition,” J. Opt. B: Quantum Semiclass. Opt. 1, 464 (1999).
[Crossref]

1997 (3)

B. S. Ham, P. R. Hemmer, and M. S. Shahriar, “Efficient electromagnetically induced transparency in a rare-earth doped crystal,” Opt. Commun. 144, 227–230 (1997).
[Crossref]

B. S. Ham, M. S. Shahriar, M. K. Kim, and P. R. Hemmer, “Frequency-selective time-domain optical data storage by electromagnetically induced transparency in a rare-earth-doped solid,” Opt. Lett. 22, 1849–1851 (1997).
[Crossref]

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36 (1997).
[Crossref]

1996 (1)

A. S. Zibrov, M. D. Lukin, L. Hollberg, D. E. Nikonov, M. O. Scully, H. G. Robinson, and V. L. Velichansky, “Experimental demonstration of enhanced index of refraction via quantum coherence in Rb,” Phys. Rev. Lett. 76, 3935–3938 (1996).
[Crossref] [PubMed]

1995 (1)

Y.-q. Li and M. Xiao, “Electromagnetically induced transparency in a three-level Λ-type system in rubidium atoms,” Phys. Rev. A 51, R2703–R2706 (1995).
[Crossref]

1994 (1)

1972 (1)

C. Imbert, “Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam,” Phys. Rev. D 5, 787–796 (1972).
[Crossref]

1966 (1)

C. Koester, “Laser action by enhanced total internal reflection,” IEEE J. of Quantum Electron. 2, 580–584 (1966).
[Crossref]

1955 (1)

F. I. Fedorov, “On the theory of total internal reflection,” Dokl. Akad. Nauk SSSR 105, 465 (1955).

1947 (1)

F. Goos and H. Hänchen, “Ein neuer und fundamentaler versuch zur totalreflexion,” Ann. Phys. 436, 333–346 (1947).
[Crossref]

Aiello, A.

K. Y. Bliokh and A. Aiello, “Goos-Hänchen and Imbert-Fedorov beam shifts: an overview,” J. Opt. 15, 014001 (2013).
[Crossref]

A. Aiello, “Goos-Hänchen and Imbert-Fedorov shifts: a novel perspective,” New J. Phys. 14, 013058 (2012).
[Crossref]

A. Aiello, M. Merano, and J. P. Woerdman, “Duality between spatial and angular shift in optical reflection,” Phys Rev. A 80, 061801 (2009).
[Crossref]

Al-Amri, M.

S. Asiri, J. Xu, M. Al-Amri, and M. S. Zubairy, “Controlling the Goos-Hänchen and Imbert-Fedorov shifts via pump and driving fields,” Phys. Rev. A 93, 013821 (2016).
[Crossref]

Asiri, S.

S. Asiri, J. Xu, M. Al-Amri, and M. S. Zubairy, “Controlling the Goos-Hänchen and Imbert-Fedorov shifts via pump and driving fields,” Phys. Rev. A 93, 013821 (2016).
[Crossref]

Beausoleil, R. G.

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

Bliokh, K. Y.

K. Y. Bliokh and A. Aiello, “Goos-Hänchen and Imbert-Fedorov beam shifts: an overview,” J. Opt. 15, 014001 (2013).
[Crossref]

K. Y. Bliokh and Y. P. Bliokh, “Polarization, transverse shifts, and angular momentum conservation laws in partial reflection and refraction of an electromagnetic wave packet,” Phys. Rev. E 75, 066609 (2007).
[Crossref]

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006).
[Crossref] [PubMed]

Bliokh, Y. P.

K. Y. Bliokh and Y. P. Bliokh, “Polarization, transverse shifts, and angular momentum conservation laws in partial reflection and refraction of an electromagnetic wave packet,” Phys. Rev. E 75, 066609 (2007).
[Crossref]

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006).
[Crossref] [PubMed]

Born, M. A. X.

M. A. X. Born and E. Wolf, Principles of Optics (Seventh (Expanded) Edition) (Cambridge University, 1999).

Dennis, M. R.

J. B. Götte, W. Löffler, and M. R. Dennis, “Eigenpolarizations for giant transverse optical beam shifts,” Phys. Rev. Lett. 112, 233901 (2014).
[Crossref] [PubMed]

Draganski, M.

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

Fattal, D.

Fedorov, F. I.

F. I. Fedorov, “On the theory of total internal reflection,” Dokl. Akad. Nauk SSSR 105, 465 (1955).

Fiorentino, M.

Fleischhauer, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref] [PubMed]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Gao, J.-Y.

X.-G. Wei, J.-H. Wu, G.-X. Sun, Z. Shao, Z.-H. Kang, Y. Jiang, and J.-Y. Gao, “Splitting of an electromagnetically induced transparency window of rubidium atoms in a static magnetic field,” Phys. Rev. A 72, 023806 (2005).
[Crossref]

W.-H. Xu, J.-H. Wu, and J.-Y. Gao, “Effects of decay-induced coherence and microwave-induced coherence on the index of refraction in a three-level Λ-type atomic system,” Laser Phys. Lett. 1, 176–183 (2004).
[Crossref]

H.-F. Zhang, J.-H. Wu, X.-M. Su, and J.-Y. Gao, “Quantum-interference effects on the index of refraction in an Er3+-doped yttrium aluminum garnet crystal,” Phys. Rev. A 66, 053816 (2002).
[Crossref]

Gibson, B. C.

Goos, F.

F. Goos and H. Hänchen, “Ein neuer und fundamentaler versuch zur totalreflexion,” Ann. Phys. 436, 333–346 (1947).
[Crossref]

Götte, J. B.

J. B. Götte, W. Löffler, and M. R. Dennis, “Eigenpolarizations for giant transverse optical beam shifts,” Phys. Rev. Lett. 112, 233901 (2014).
[Crossref] [PubMed]

Greentree, A. D.

Hagness, S. C.

Ham, B. S.

B. S. Ham, M. S. Shahriar, M. K. Kim, and P. R. Hemmer, “Frequency-selective time-domain optical data storage by electromagnetically induced transparency in a rare-earth-doped solid,” Opt. Lett. 22, 1849–1851 (1997).
[Crossref]

B. S. Ham, P. R. Hemmer, and M. S. Shahriar, “Efficient electromagnetically induced transparency in a rare-earth doped crystal,” Opt. Commun. 144, 227–230 (1997).
[Crossref]

Hänchen, H.

F. Goos and H. Hänchen, “Ein neuer und fundamentaler versuch zur totalreflexion,” Ann. Phys. 436, 333–346 (1947).
[Crossref]

Harris, S. E.

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36 (1997).
[Crossref]

S. E. Harris, “Refractive-index control with strong fields,” Opt. Lett. 19, 2018–2020 (1994).
[Crossref] [PubMed]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

Hemmer, P. R.

Hollberg, L.

A. S. Zibrov, M. D. Lukin, L. Hollberg, D. E. Nikonov, M. O. Scully, H. G. Robinson, and V. L. Velichansky, “Experimental demonstration of enhanced index of refraction via quantum coherence in Rb,” Phys. Rev. Lett. 76, 3935–3938 (1996).
[Crossref] [PubMed]

Hosten, O.

O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319, 787–790 (2008).
[Crossref] [PubMed]

Ikram, M.

L.-G. Wang, M. Ikram, and M. S. Zubairy, “Control of the Goos-Hänchen shift of a light beam via a coherent driving field,” Phys. Rev. A 77, 023811 (2008).
[Crossref]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Imbert, C.

C. Imbert, “Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam,” Phys. Rev. D 5, 787–796 (1972).
[Crossref]

Jamieson, D. N.

Jiang, Y.

X.-G. Wei, J.-H. Wu, G.-X. Sun, Z. Shao, Z.-H. Kang, Y. Jiang, and J.-Y. Gao, “Splitting of an electromagnetically induced transparency window of rubidium atoms in a static magnetic field,” Phys. Rev. A 72, 023806 (2005).
[Crossref]

Kang, Z.-H.

X.-G. Wei, J.-H. Wu, G.-X. Sun, Z. Shao, Z.-H. Kang, Y. Jiang, and J.-Y. Gao, “Splitting of an electromagnetically induced transparency window of rubidium atoms in a static magnetic field,” Phys. Rev. A 72, 023806 (2005).
[Crossref]

Kim, M. K.

Koester, C.

C. Koester, “Laser action by enhanced total internal reflection,” IEEE J. of Quantum Electron. 2, 580–584 (1966).
[Crossref]

Kwiat, P.

O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319, 787–790 (2008).
[Crossref] [PubMed]

Lederer, F.

T. Paul, C. Rockstuhl, C. Menzel, and F. Lederer, “Resonant Goos-Hänchen and Imbert-Fedorov shifts at photonic crystal slabs,” Phys. Rev. A 77, 053802 (2008).
[Crossref]

Li, C.-F.

C.-F. Li, “Unified theory for Goos-Hänchen and Imbert-Fedorov effects,” Phys. Rev. A 76, 013811 (2007).
[Crossref]

Li, Y.-q.

Y.-q. Li and M. Xiao, “Electromagnetically induced transparency in a three-level Λ-type system in rubidium atoms,” Phys. Rev. A 51, R2703–R2706 (1995).
[Crossref]

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

Löffler, W.

J. B. Götte, W. Löffler, and M. R. Dennis, “Eigenpolarizations for giant transverse optical beam shifts,” Phys. Rev. Lett. 112, 233901 (2014).
[Crossref] [PubMed]

Lukin, M. D.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref] [PubMed]

A. S. Zibrov, M. D. Lukin, L. Hollberg, D. E. Nikonov, M. O. Scully, H. G. Robinson, and V. L. Velichansky, “Experimental demonstration of enhanced index of refraction via quantum coherence in Rb,” Phys. Rev. Lett. 76, 3935–3938 (1996).
[Crossref] [PubMed]

Mair, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref] [PubMed]

Manson, N. B.

C. Wei and N. B. Manson, “Observation of electromagnetically induced transparency within an electron spin resonance transition,” J. Opt. B: Quantum Semiclass. Opt. 1, 464 (1999).
[Crossref]

C. Wei and N. B. Manson, “Observation of the dynamic stark effect on electromagnetically induced transparency,” Phys. Rev. A 60, 2540–2546 (1999).
[Crossref]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Menzel, C.

T. Paul, C. Rockstuhl, C. Menzel, and F. Lederer, “Resonant Goos-Hänchen and Imbert-Fedorov shifts at photonic crystal slabs,” Phys. Rev. A 77, 053802 (2008).
[Crossref]

Merano, M.

A. Aiello, M. Merano, and J. P. Woerdman, “Duality between spatial and angular shift in optical reflection,” Phys Rev. A 80, 061801 (2009).
[Crossref]

Murakami, S.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93, 083901 (2004).
[Crossref] [PubMed]

Musser, J. A.

Nagaosa, N.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93, 083901 (2004).
[Crossref] [PubMed]

Nikonov, D. E.

A. S. Zibrov, M. D. Lukin, L. Hollberg, D. E. Nikonov, M. O. Scully, H. G. Robinson, and V. L. Velichansky, “Experimental demonstration of enhanced index of refraction via quantum coherence in Rb,” Phys. Rev. Lett. 76, 3935–3938 (1996).
[Crossref] [PubMed]

Olivero, P.

Onoda, M.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93, 083901 (2004).
[Crossref] [PubMed]

Paul, T.

T. Paul, C. Rockstuhl, C. Menzel, and F. Lederer, “Resonant Goos-Hänchen and Imbert-Fedorov shifts at photonic crystal slabs,” Phys. Rev. A 77, 053802 (2008).
[Crossref]

Phillips, D. F.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref] [PubMed]

Prawer, S.

Qamar, S.

Ziauddin and S. Qamar, “Control of the Goos-Hänchen shift using a duplicated two-level atomic medium,” Phys. Rev. A 85, 055804 (2012).
[Crossref]

Ziauddin, S. Qamar, and M. S. Zubairy, “Coherent control of the Goos-Hänchen shift,” Phys. Rev. A 81, 023821 (2010).
[Crossref]

Rabeau, J. R.

Reichart, P.

Robinson, H. G.

A. S. Zibrov, M. D. Lukin, L. Hollberg, D. E. Nikonov, M. O. Scully, H. G. Robinson, and V. L. Velichansky, “Experimental demonstration of enhanced index of refraction via quantum coherence in Rb,” Phys. Rev. Lett. 76, 3935–3938 (1996).
[Crossref] [PubMed]

Rockstuhl, C.

T. Paul, C. Rockstuhl, C. Menzel, and F. Lederer, “Resonant Goos-Hänchen and Imbert-Fedorov shifts at photonic crystal slabs,” Phys. Rev. A 77, 053802 (2008).
[Crossref]

Rubanov, S.

Santori, C.

Schneider, J. B.

Scully, M. O.

A. S. Zibrov, M. D. Lukin, L. Hollberg, D. E. Nikonov, M. O. Scully, H. G. Robinson, and V. L. Velichansky, “Experimental demonstration of enhanced index of refraction via quantum coherence in Rb,” Phys. Rev. Lett. 76, 3935–3938 (1996).
[Crossref] [PubMed]

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

Shahriar, M. S.

Shao, Z.

X.-G. Wei, J.-H. Wu, G.-X. Sun, Z. Shao, Z.-H. Kang, Y. Jiang, and J.-Y. Gao, “Splitting of an electromagnetically induced transparency window of rubidium atoms in a static magnetic field,” Phys. Rev. A 72, 023806 (2005).
[Crossref]

Spillane, S. M.

Su, X.-M.

H.-F. Zhang, J.-H. Wu, X.-M. Su, and J.-Y. Gao, “Quantum-interference effects on the index of refraction in an Er3+-doped yttrium aluminum garnet crystal,” Phys. Rev. A 66, 053816 (2002).
[Crossref]

Sun, G.-X.

X.-G. Wei, J.-H. Wu, G.-X. Sun, Z. Shao, Z.-H. Kang, Y. Jiang, and J.-Y. Gao, “Splitting of an electromagnetically induced transparency window of rubidium atoms in a static magnetic field,” Phys. Rev. A 72, 023806 (2005).
[Crossref]

Turukhin, A. V.

Velichansky, V. L.

A. S. Zibrov, M. D. Lukin, L. Hollberg, D. E. Nikonov, M. O. Scully, H. G. Robinson, and V. L. Velichansky, “Experimental demonstration of enhanced index of refraction via quantum coherence in Rb,” Phys. Rev. Lett. 76, 3935–3938 (1996).
[Crossref] [PubMed]

Walsworth, R. L.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref] [PubMed]

Wang, L.-G.

L.-G. Wang, M. Ikram, and M. S. Zubairy, “Control of the Goos-Hänchen shift of a light beam via a coherent driving field,” Phys. Rev. A 77, 023811 (2008).
[Crossref]

Wei, C.

C. Wei and N. B. Manson, “Observation of electromagnetically induced transparency within an electron spin resonance transition,” J. Opt. B: Quantum Semiclass. Opt. 1, 464 (1999).
[Crossref]

C. Wei and N. B. Manson, “Observation of the dynamic stark effect on electromagnetically induced transparency,” Phys. Rev. A 60, 2540–2546 (1999).
[Crossref]

Wei, X.-G.

X.-G. Wei, J.-H. Wu, G.-X. Sun, Z. Shao, Z.-H. Kang, Y. Jiang, and J.-Y. Gao, “Splitting of an electromagnetically induced transparency window of rubidium atoms in a static magnetic field,” Phys. Rev. A 72, 023806 (2005).
[Crossref]

Willis, K. J.

Woerdman, J. P.

A. Aiello, M. Merano, and J. P. Woerdman, “Duality between spatial and angular shift in optical reflection,” Phys Rev. A 80, 061801 (2009).
[Crossref]

Wolf, E.

M. A. X. Born and E. Wolf, Principles of Optics (Seventh (Expanded) Edition) (Cambridge University, 1999).

Wu, J.-H.

X.-G. Wei, J.-H. Wu, G.-X. Sun, Z. Shao, Z.-H. Kang, Y. Jiang, and J.-Y. Gao, “Splitting of an electromagnetically induced transparency window of rubidium atoms in a static magnetic field,” Phys. Rev. A 72, 023806 (2005).
[Crossref]

W.-H. Xu, J.-H. Wu, and J.-Y. Gao, “Effects of decay-induced coherence and microwave-induced coherence on the index of refraction in a three-level Λ-type atomic system,” Laser Phys. Lett. 1, 176–183 (2004).
[Crossref]

H.-F. Zhang, J.-H. Wu, X.-M. Su, and J.-Y. Gao, “Quantum-interference effects on the index of refraction in an Er3+-doped yttrium aluminum garnet crystal,” Phys. Rev. A 66, 053816 (2002).
[Crossref]

Xiao, M.

Y.-q. Li and M. Xiao, “Electromagnetically induced transparency in a three-level Λ-type system in rubidium atoms,” Phys. Rev. A 51, R2703–R2706 (1995).
[Crossref]

Xu, J.

S. Asiri, J. Xu, M. Al-Amri, and M. S. Zubairy, “Controlling the Goos-Hänchen and Imbert-Fedorov shifts via pump and driving fields,” Phys. Rev. A 93, 013821 (2016).
[Crossref]

Xu, W.-H.

W.-H. Xu, J.-H. Wu, and J.-Y. Gao, “Effects of decay-induced coherence and microwave-induced coherence on the index of refraction in a three-level Λ-type atomic system,” Laser Phys. Lett. 1, 176–183 (2004).
[Crossref]

Zhang, H.-F.

H.-F. Zhang, J.-H. Wu, X.-M. Su, and J.-Y. Gao, “Quantum-interference effects on the index of refraction in an Er3+-doped yttrium aluminum garnet crystal,” Phys. Rev. A 66, 053816 (2002).
[Crossref]

Ziauddin,

Ziauddin and S. Qamar, “Control of the Goos-Hänchen shift using a duplicated two-level atomic medium,” Phys. Rev. A 85, 055804 (2012).
[Crossref]

Ziauddin, S. Qamar, and M. S. Zubairy, “Coherent control of the Goos-Hänchen shift,” Phys. Rev. A 81, 023821 (2010).
[Crossref]

Zibrov, A. S.

A. S. Zibrov, M. D. Lukin, L. Hollberg, D. E. Nikonov, M. O. Scully, H. G. Robinson, and V. L. Velichansky, “Experimental demonstration of enhanced index of refraction via quantum coherence in Rb,” Phys. Rev. Lett. 76, 3935–3938 (1996).
[Crossref] [PubMed]

Zubairy, M. S.

S. Asiri, J. Xu, M. Al-Amri, and M. S. Zubairy, “Controlling the Goos-Hänchen and Imbert-Fedorov shifts via pump and driving fields,” Phys. Rev. A 93, 013821 (2016).
[Crossref]

Ziauddin, S. Qamar, and M. S. Zubairy, “Coherent control of the Goos-Hänchen shift,” Phys. Rev. A 81, 023821 (2010).
[Crossref]

L.-G. Wang, M. Ikram, and M. S. Zubairy, “Control of the Goos-Hänchen shift of a light beam via a coherent driving field,” Phys. Rev. A 77, 023811 (2008).
[Crossref]

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

Ann. Phys. (1)

F. Goos and H. Hänchen, “Ein neuer und fundamentaler versuch zur totalreflexion,” Ann. Phys. 436, 333–346 (1947).
[Crossref]

Dokl. Akad. Nauk SSSR (1)

F. I. Fedorov, “On the theory of total internal reflection,” Dokl. Akad. Nauk SSSR 105, 465 (1955).

IEEE J. of Quantum Electron. (1)

C. Koester, “Laser action by enhanced total internal reflection,” IEEE J. of Quantum Electron. 2, 580–584 (1966).
[Crossref]

J. Opt. (1)

K. Y. Bliokh and A. Aiello, “Goos-Hänchen and Imbert-Fedorov beam shifts: an overview,” J. Opt. 15, 014001 (2013).
[Crossref]

J. Opt. B: Quantum Semiclass. Opt. (1)

C. Wei and N. B. Manson, “Observation of electromagnetically induced transparency within an electron spin resonance transition,” J. Opt. B: Quantum Semiclass. Opt. 1, 464 (1999).
[Crossref]

Laser Phys. Lett. (1)

W.-H. Xu, J.-H. Wu, and J.-Y. Gao, “Effects of decay-induced coherence and microwave-induced coherence on the index of refraction in a three-level Λ-type atomic system,” Laser Phys. Lett. 1, 176–183 (2004).
[Crossref]

Nature (1)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

New J. Phys. (1)

A. Aiello, “Goos-Hänchen and Imbert-Fedorov shifts: a novel perspective,” New J. Phys. 14, 013058 (2012).
[Crossref]

Opt. Commun. (1)

B. S. Ham, P. R. Hemmer, and M. S. Shahriar, “Efficient electromagnetically induced transparency in a rare-earth doped crystal,” Opt. Commun. 144, 227–230 (1997).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phys Rev. A (1)

A. Aiello, M. Merano, and J. P. Woerdman, “Duality between spatial and angular shift in optical reflection,” Phys Rev. A 80, 061801 (2009).
[Crossref]

Phys. Rev. A (10)

T. Paul, C. Rockstuhl, C. Menzel, and F. Lederer, “Resonant Goos-Hänchen and Imbert-Fedorov shifts at photonic crystal slabs,” Phys. Rev. A 77, 053802 (2008).
[Crossref]

C.-F. Li, “Unified theory for Goos-Hänchen and Imbert-Fedorov effects,” Phys. Rev. A 76, 013811 (2007).
[Crossref]

L.-G. Wang, M. Ikram, and M. S. Zubairy, “Control of the Goos-Hänchen shift of a light beam via a coherent driving field,” Phys. Rev. A 77, 023811 (2008).
[Crossref]

Ziauddin and S. Qamar, “Control of the Goos-Hänchen shift using a duplicated two-level atomic medium,” Phys. Rev. A 85, 055804 (2012).
[Crossref]

C. Wei and N. B. Manson, “Observation of the dynamic stark effect on electromagnetically induced transparency,” Phys. Rev. A 60, 2540–2546 (1999).
[Crossref]

Ziauddin, S. Qamar, and M. S. Zubairy, “Coherent control of the Goos-Hänchen shift,” Phys. Rev. A 81, 023821 (2010).
[Crossref]

S. Asiri, J. Xu, M. Al-Amri, and M. S. Zubairy, “Controlling the Goos-Hänchen and Imbert-Fedorov shifts via pump and driving fields,” Phys. Rev. A 93, 013821 (2016).
[Crossref]

Y.-q. Li and M. Xiao, “Electromagnetically induced transparency in a three-level Λ-type system in rubidium atoms,” Phys. Rev. A 51, R2703–R2706 (1995).
[Crossref]

H.-F. Zhang, J.-H. Wu, X.-M. Su, and J.-Y. Gao, “Quantum-interference effects on the index of refraction in an Er3+-doped yttrium aluminum garnet crystal,” Phys. Rev. A 66, 053816 (2002).
[Crossref]

X.-G. Wei, J.-H. Wu, G.-X. Sun, Z. Shao, Z.-H. Kang, Y. Jiang, and J.-Y. Gao, “Splitting of an electromagnetically induced transparency window of rubidium atoms in a static magnetic field,” Phys. Rev. A 72, 023806 (2005).
[Crossref]

Phys. Rev. D (1)

C. Imbert, “Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam,” Phys. Rev. D 5, 787–796 (1972).
[Crossref]

Phys. Rev. E (1)

K. Y. Bliokh and Y. P. Bliokh, “Polarization, transverse shifts, and angular momentum conservation laws in partial reflection and refraction of an electromagnetic wave packet,” Phys. Rev. E 75, 066609 (2007).
[Crossref]

Phys. Rev. Lett. (5)

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006).
[Crossref] [PubMed]

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93, 083901 (2004).
[Crossref] [PubMed]

A. S. Zibrov, M. D. Lukin, L. Hollberg, D. E. Nikonov, M. O. Scully, H. G. Robinson, and V. L. Velichansky, “Experimental demonstration of enhanced index of refraction via quantum coherence in Rb,” Phys. Rev. Lett. 76, 3935–3938 (1996).
[Crossref] [PubMed]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref] [PubMed]

J. B. Götte, W. Löffler, and M. R. Dennis, “Eigenpolarizations for giant transverse optical beam shifts,” Phys. Rev. Lett. 112, 233901 (2014).
[Crossref] [PubMed]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36 (1997).
[Crossref]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Science (1)

O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319, 787–790 (2008).
[Crossref] [PubMed]

Other (2)

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

M. A. X. Born and E. Wolf, Principles of Optics (Seventh (Expanded) Edition) (Cambridge University, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of the transverse shift and the Goos-Hänchen shift of the reflected field on the surface of EIT media. (b) The three-level Λ system of 87Rb with a microwave field coupling the lower levels.
Fig. 2
Fig. 2 Reσ31 (red solid line) and Imσ31 (dark-blue dashed line) plotted as the function of Δp. The data is calculated from Eqs. (2) under the condition of σ ˙ i j = 0. The parameters are Ωc = 3γ, Ωd = 0.5γ, Ωp = 0.01γ, γ = 2π × 6MHz, Δc = 0, γm = 0, ϕ = π/2, The horizontal magenta dashed line indicates σ31 = 0. And the vertical lines denote Δp = −2.9γ and Δp = 2.9γ at which Imσ31 = 0. P1 and P2 are the intersection points.
Fig. 3
Fig. 3 The dimensionless transverse shift s/λ with different probe detunings, Δp = 2.9γ (red solid line) and Δp = −2.9γ (dark-blue dashed line). The incident angles for the maximum shift (θ = 0.056π, and 0.212π rad) are marked by the magenta dashed line. ε1 = 2.22, and N 31 2 / ε 0 = 0.05 γ. Other parameters are identical with that in Fig. 2.
Fig. 4
Fig. 4 (a) The value of Reσ31 for P1 (dark-blue dashed line) and P2 (red solid line) plotted as the function of Ωd. The relations between Δp and Ωd at points P1 and P2 are given in (b). And (c) shows the largest TS of the reflected light when HRIOA is achieved. The incident angle is the critical angle for total reflection. Other parameters are Ωc = 3γ, Ωp = 0.01γ, γ = 2π × 6MHz, ϕ = π/2, ε1 = 2.22, and N 31 2 / ε 0 = 0.05 γ.
Fig. 5
Fig. 5 (a) Re σ31 (red solid lines) and Im σ31 (dark-blue dashed lines) versus the probe detuning Δp with ϕ = −π/2, (b) Transverse shifts with ϕ = π/2 (dark-blue dashed line) and ϕ = π/2 plotted as the incident angle. Δp = 2.9γ. The other parameters are identical with Fig. 2.
Fig. 6
Fig. 6 (a) Re σ31 (red solid line) and Im σ31 (dark-blue dashed line) plotted as the function of ϕ. (b) The reflection coefficient of the circularly polarized light (m = −i). The parameters are Ωc = 3γ, Ωp = 0.01γ, Ωd = 0.5Ωc, Δp = −Ωc, γ = 2π × 6MHz, ε1 = 2.22.
Fig. 7
Fig. 7 (a) The TS of the reflected light versus the relative phase ϕ and the incident angle θ. The detailed behavior of the TS in the yellow rectangle is presented in (b). N 31 2 / ε 0 = 0.05 γ. The other parameters are identical with that in Fig. 6.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

σ ˙ 22 = i Ω d ( σ 12 e i ϕ σ 21 e i ϕ ) + i Ω c ( σ 32 σ 23 ) + Γ 32 σ 33 .
σ ˙ 33 = i Ω p ( σ 13 σ 31 ) + i Ω c ( σ 23 σ 32 ) ( Γ 31 + Γ 32 ) σ 33 .
σ ˙ 23 = i Ω d e i ϕ σ 13 i Ω p σ 21 i Ω c ( σ 22 σ 33 ) + ( i Δ c γ ) σ 23 .
σ ˙ 13 = i Ω d e i ϕ σ 23 i Ω c σ 12 + i Ω p ( σ 22 2 σ 33 1 ) + ( i Δ p γ ) σ 13 .
σ ˙ 12 = i Ω d e i ϕ ( 2 σ 22 + σ 33 1 ) + i Ω p σ 32 i Ω c σ 13 + ( i δ γ m ) σ 12 .
σ 31 ( 1 ) = σ 13 ( 1 ) * = Ω c Ω d e i ϕ Ω p ( i γ m δ ) ( i γ m δ ) ( i γ Δ p ) Ω c 2 .
s t = cot θ k ( 1 + | β | 2 + 2 R e β ) I m m + 2 R e m I m β 1 + | β m | 2
s a = cot θ k 1 | β | 2 1 + | β m | 2 R e m I m D R e D
R = ε 1 cos θ ξ ε 1 cos θ + ξ .
R = ε 2 cos θ ε 1 ξ ε 2 cos θ + ε 1 ξ .
s p m = λ r ( 4 r 2 ) 3 / 2 2 π ( 8 + 2 ( n 2 3 ) r 2 + r 4 ) .
s t m = λ 1 n 2 π n ,

Metrics