Abstract

Optical switches connect optical circuits, and route optical signals in networks. Nano-electromechanical systems can in principle enable compact and power-effective switches that can be integrated in photonic circuits. We proposed an optical switch based on four coupled waveguides arranged in three-dimensional configuration. The switching operation is controlled by a cantilever displacement of only 55 nm. Simulations show that our proposed device requires a low switching voltage down to 3V and can operate at frequencies in the MHz range. Our results also pave the way towards novel optical components that electromechanically manipulate light in both the horizontal and the vertical direction in photonic circuits.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compact InGaAsP/InP 3 × 3  multimode-interference coupler-based electro-optic switch

Sixuan Mu, Ke Liu, Shuang Wang, Chenglong Zhang, Baolu Guan, and Deshu Zou
Appl. Opt. 55(7) 1795-1802 (2016)

Large-scale silicon photonic switches with movable directional couplers

Sangyoon Han, Tae Joon Seok, Niels Quack, Byung-Wook Yoo, and Ming C. Wu
Optica 2(4) 370-375 (2015)

Phase-shifter using submicron silicon waveguide couplers with ultra-small electro-mechanical actuator

Taro Ikeda, Kazunori Takahashi, Yoshiaki Kanamori, and Kazuhiro Hane
Opt. Express 18(7) 7031-7037 (2010)

References

  • View by:
  • |
  • |
  • |

  1. R. F. Kalman, L. G. Kazovsky, and J. W. Goodman, “Space division switches based on semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 4(9), 1048–1051 (1992).
    [Crossref]
  2. M. Gustavsson, “Semiconductor amplifier design for wavelength conversion and switching,” in IEEE Conference on Optical Fiber Communication (1997).
    [Crossref]
  3. K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
    [Crossref]
  4. R. Stabile, A. Albores-Mejia, and K. A. Williams, “Monolithic active-passive 16 × 16 optoelectronic switch,” Opt. Lett. 37(22), 4666–4668 (2012).
    [Crossref] [PubMed]
  5. Q. Lai, W. Hunziker, and H. Melchior, “Low-power compact 2× 2 thermooptic silica-on-silicon waveguide switch with fast response,” IEEE Photonics Technol. Lett. 10(5), 681–683 (1998).
    [Crossref]
  6. J. Yang, Q. Zhou, and R. T. Chen, “Polyimide-waveguide-based thermal optical switch using total-internal-reflection effect,” Appl. Phys. Lett. 81(16), 2947–2949 (2002).
    [Crossref]
  7. F. Wang, J. Yang, L. Chen, X. Jiang, and M. Wang, “Optical switch based on multimode interference coupler,” IEEE Photonics Technol. Lett. 18(2), 421–423 (2006).
    [Crossref]
  8. S. K. Korotky, G. Eisenstein, R. S. Tucker, J. J. Veselka, and G. Raybon, “Optical intensity modulation to 40 GHz using a waveguide electro-optic switch,” Appl. Phys. Lett. 50(23), 1631–1633 (1987).
    [Crossref]
  9. J. Van Campenhout, W. M. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2 x 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express 17(26), 24020–24029 (2009).
    [Crossref] [PubMed]
  10. M. Yang, W. M. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4x4 electro-optic silicon switch for on-chip photonic networks,” Opt. Express 19(1), 47–54 (2011).
    [Crossref] [PubMed]
  11. D. O. Harris and A. Vanderlugt, “Acousto-optic photonic switch,” Opt. Lett. 14(21), 1177–1179 (1989).
    [Crossref] [PubMed]
  12. H. Toshiyoshi and H. Fujita, “Electrostatic micro torsion mirrors for an optical switch matrix,” J. Microelectromech. Syst. 5(4), 231–237 (1996).
    [Crossref]
  13. R. T. Chen, H. Nguyen, and M. C. Wu, “A high-speed low-voltage stress-induced micromachined 2 x 2 optical switch,” IEEE Photonics Technol. Lett. 11(11), 1396–1398 (1999).
    [Crossref]
  14. P. De Dobbelaere, K. Falta, S. Gloeckner, and S. Patra, “Digital MEMS for optical switching,” IEEE Commun. Mag. 40(3), 88–95 (2002).
    [Crossref]
  15. C. H. Ji, Y. Yee, J. Choi, S. H. Kim, and J. U. Bu, “Electromagnetic 2× 2 MEMS optical switch,” IEEE J. Sel. Top. Quantum Electron. 10(3), 545–550 (2004).
    [Crossref]
  16. T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3(1), 64–70 (2016).
    [Crossref]
  17. A. d’Alessandro, D. A. Smith, and J. E. Baran, “Multichannel operation of an integrated acoustooptic wavelength routing switch for WDM systems,” IEEE Photonics Technol. Lett. 6(3), 390–393 (1994).
    [Crossref]
  18. S. Han, T. J. Seok, N. Quack, B. W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2(4), 370–375 (2015).
    [Crossref]
  19. S. Abe and K. Hane, “Variable-gap silicon photonic waveguide coupler switch with a nanolatch mechanism,” IEEE Photonics Technol. Lett. 25(7), 675–677 (2013).
    [Crossref]
  20. Y. Akihama and K. Hane, “Single and multiple optical switches that use freestanding silicon nanowire waveguide couplers,” Light Sci. Appl. 1(6), e16 (2012).
    [Crossref]
  21. M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14(5), 1070–1081 (2005).
    [Crossref]
  22. E. Bulgan, Y. Kanamori, and K. Hane, “Submicron silicon waveguide optical switch driven by microelectromechanical actuator,” Appl. Phys. Lett. 92(10), 101110 (2008).
    [Crossref] [PubMed]
  23. L. Friedrich, P. Dannberg, C. Wächter, T. Hennig, A. Bräuer, and W. Karthe, “Directional coupler device using a three-dimensional waveguide structure,” Opt. Commun. 137(4), 239–243 (1997).
    [Crossref]
  24. J. van der Tol, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, H. Ambrosius, and M. Smit, “Photonic integration in indium-phosphide membranes on silicon (IMOS),” in SPIE OPTO (International Society for Optics and Photonics, 2014).
  25. H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
    [Crossref]
  26. L. Midolo and A. Fiore, “Design and optical properties of electromechanical double-membrane photonic crystal cavities,” IEEE J. Quantum Electron. 50(6), 404–414 (2014).
    [Crossref]
  27. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
    [Crossref]
  28. H. Nishi, K. Takeda, T. Tsuchizawa, T. Fujii, S. Matsuo, K. Yamada, and T. Yamamoto, “Monolithic Integration of InP Wire and Waveguides on Si Platform,” IEEE Photonics J. 7(5), 1–8 (2015).
    [Crossref]
  29. M. Petruzzella, F. La China, F. Intonti, N. Caselli, M. De Pas, F. W. M. van Otten, M. Gurioli, and A. Fiore, “Nanoscale mechanical actuation and near-field read-out of photonic crystal molecules,” Phys. Rev. B 94(11), 115413 (2016).
    [Crossref]
  30. M. Petruzzella, T. Xia, F. Pagliano, S. Birindelli, L. Midolo, Z. Zobenica, L. H. Li, E. H. Linfield, and A. Fiore, “Fully tuneable, Purcell-enhanced solid-state quantum emitters,” Appl. Phys. Lett. 107(14), 141109 (2015).
    [Crossref]
  31. W. M. Zhang, G. Meng, and D. I. Chen, “Stability, nonlinearity and reliability of electrostatically actuated MEMS devices,” Sensors (Basel) 7(5), 760–796 (2007).
    [Crossref]
  32. Z. Zobenica, R. W. van der Heijden, M. Petruzzella, F. Pagliano, R. Lijssen, T. Xia, L. Midolo, M. Cotrufo, Y. Cho, F. W. M. van Otten, and E. Verhagen, “Fully-integrated nanomechanical wavelength and displacement sensor,” in CLEO: Science and Innovations (2016), paper STu4H–6.
  33. N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture for modular data centers,” ACM SIGCOMM Comput. Commun. Rev. 40(4), 339–350 (2010).
    [Crossref]

2016 (2)

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3(1), 64–70 (2016).
[Crossref]

M. Petruzzella, F. La China, F. Intonti, N. Caselli, M. De Pas, F. W. M. van Otten, M. Gurioli, and A. Fiore, “Nanoscale mechanical actuation and near-field read-out of photonic crystal molecules,” Phys. Rev. B 94(11), 115413 (2016).
[Crossref]

2015 (3)

M. Petruzzella, T. Xia, F. Pagliano, S. Birindelli, L. Midolo, Z. Zobenica, L. H. Li, E. H. Linfield, and A. Fiore, “Fully tuneable, Purcell-enhanced solid-state quantum emitters,” Appl. Phys. Lett. 107(14), 141109 (2015).
[Crossref]

H. Nishi, K. Takeda, T. Tsuchizawa, T. Fujii, S. Matsuo, K. Yamada, and T. Yamamoto, “Monolithic Integration of InP Wire and Waveguides on Si Platform,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

S. Han, T. J. Seok, N. Quack, B. W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2(4), 370–375 (2015).
[Crossref]

2014 (1)

L. Midolo and A. Fiore, “Design and optical properties of electromechanical double-membrane photonic crystal cavities,” IEEE J. Quantum Electron. 50(6), 404–414 (2014).
[Crossref]

2013 (1)

S. Abe and K. Hane, “Variable-gap silicon photonic waveguide coupler switch with a nanolatch mechanism,” IEEE Photonics Technol. Lett. 25(7), 675–677 (2013).
[Crossref]

2012 (2)

Y. Akihama and K. Hane, “Single and multiple optical switches that use freestanding silicon nanowire waveguide couplers,” Light Sci. Appl. 1(6), e16 (2012).
[Crossref]

R. Stabile, A. Albores-Mejia, and K. A. Williams, “Monolithic active-passive 16 × 16 optoelectronic switch,” Opt. Lett. 37(22), 4666–4668 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture for modular data centers,” ACM SIGCOMM Comput. Commun. Rev. 40(4), 339–350 (2010).
[Crossref]

2009 (1)

2008 (1)

E. Bulgan, Y. Kanamori, and K. Hane, “Submicron silicon waveguide optical switch driven by microelectromechanical actuator,” Appl. Phys. Lett. 92(10), 101110 (2008).
[Crossref] [PubMed]

2007 (1)

W. M. Zhang, G. Meng, and D. I. Chen, “Stability, nonlinearity and reliability of electrostatically actuated MEMS devices,” Sensors (Basel) 7(5), 760–796 (2007).
[Crossref]

2006 (1)

F. Wang, J. Yang, L. Chen, X. Jiang, and M. Wang, “Optical switch based on multimode interference coupler,” IEEE Photonics Technol. Lett. 18(2), 421–423 (2006).
[Crossref]

2005 (1)

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14(5), 1070–1081 (2005).
[Crossref]

2004 (1)

C. H. Ji, Y. Yee, J. Choi, S. H. Kim, and J. U. Bu, “Electromagnetic 2× 2 MEMS optical switch,” IEEE J. Sel. Top. Quantum Electron. 10(3), 545–550 (2004).
[Crossref]

2002 (2)

P. De Dobbelaere, K. Falta, S. Gloeckner, and S. Patra, “Digital MEMS for optical switching,” IEEE Commun. Mag. 40(3), 88–95 (2002).
[Crossref]

J. Yang, Q. Zhou, and R. T. Chen, “Polyimide-waveguide-based thermal optical switch using total-internal-reflection effect,” Appl. Phys. Lett. 81(16), 2947–2949 (2002).
[Crossref]

2000 (1)

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
[Crossref]

1999 (1)

R. T. Chen, H. Nguyen, and M. C. Wu, “A high-speed low-voltage stress-induced micromachined 2 x 2 optical switch,” IEEE Photonics Technol. Lett. 11(11), 1396–1398 (1999).
[Crossref]

1998 (1)

Q. Lai, W. Hunziker, and H. Melchior, “Low-power compact 2× 2 thermooptic silica-on-silicon waveguide switch with fast response,” IEEE Photonics Technol. Lett. 10(5), 681–683 (1998).
[Crossref]

1997 (1)

L. Friedrich, P. Dannberg, C. Wächter, T. Hennig, A. Bräuer, and W. Karthe, “Directional coupler device using a three-dimensional waveguide structure,” Opt. Commun. 137(4), 239–243 (1997).
[Crossref]

1996 (1)

H. Toshiyoshi and H. Fujita, “Electrostatic micro torsion mirrors for an optical switch matrix,” J. Microelectromech. Syst. 5(4), 231–237 (1996).
[Crossref]

1994 (1)

A. d’Alessandro, D. A. Smith, and J. E. Baran, “Multichannel operation of an integrated acoustooptic wavelength routing switch for WDM systems,” IEEE Photonics Technol. Lett. 6(3), 390–393 (1994).
[Crossref]

1992 (1)

R. F. Kalman, L. G. Kazovsky, and J. W. Goodman, “Space division switches based on semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 4(9), 1048–1051 (1992).
[Crossref]

1991 (1)

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[Crossref]

1989 (1)

1987 (1)

S. K. Korotky, G. Eisenstein, R. S. Tucker, J. J. Veselka, and G. Raybon, “Optical intensity modulation to 40 GHz using a waveguide electro-optic switch,” Appl. Phys. Lett. 50(23), 1631–1633 (1987).
[Crossref]

1966 (1)

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[Crossref]

Abe, S.

S. Abe and K. Hane, “Variable-gap silicon photonic waveguide coupler switch with a nanolatch mechanism,” IEEE Photonics Technol. Lett. 25(7), 675–677 (2013).
[Crossref]

Akihama, Y.

Y. Akihama and K. Hane, “Single and multiple optical switches that use freestanding silicon nanowire waveguide couplers,” Light Sci. Appl. 1(6), e16 (2012).
[Crossref]

Albores-Mejia, A.

Amarnath, K.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14(5), 1070–1081 (2005).
[Crossref]

Assefa, S.

Baran, J. E.

A. d’Alessandro, D. A. Smith, and J. E. Baran, “Multichannel operation of an integrated acoustooptic wavelength routing switch for WDM systems,” IEEE Photonics Technol. Lett. 6(3), 390–393 (1994).
[Crossref]

Bazzaz, H. H.

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture for modular data centers,” ACM SIGCOMM Comput. Commun. Rev. 40(4), 339–350 (2010).
[Crossref]

Birindelli, S.

M. Petruzzella, T. Xia, F. Pagliano, S. Birindelli, L. Midolo, Z. Zobenica, L. H. Li, E. H. Linfield, and A. Fiore, “Fully tuneable, Purcell-enhanced solid-state quantum emitters,” Appl. Phys. Lett. 107(14), 141109 (2015).
[Crossref]

Bräuer, A.

L. Friedrich, P. Dannberg, C. Wächter, T. Hennig, A. Bräuer, and W. Karthe, “Directional coupler device using a three-dimensional waveguide structure,” Opt. Commun. 137(4), 239–243 (1997).
[Crossref]

Bu, J. U.

C. H. Ji, Y. Yee, J. Choi, S. H. Kim, and J. U. Bu, “Electromagnetic 2× 2 MEMS optical switch,” IEEE J. Sel. Top. Quantum Electron. 10(3), 545–550 (2004).
[Crossref]

Bulgan, E.

E. Bulgan, Y. Kanamori, and K. Hane, “Submicron silicon waveguide optical switch driven by microelectromechanical actuator,” Appl. Phys. Lett. 92(10), 101110 (2008).
[Crossref] [PubMed]

Caselli, N.

M. Petruzzella, F. La China, F. Intonti, N. Caselli, M. De Pas, F. W. M. van Otten, M. Gurioli, and A. Fiore, “Nanoscale mechanical actuation and near-field read-out of photonic crystal molecules,” Phys. Rev. B 94(11), 115413 (2016).
[Crossref]

Chen, D. I.

W. M. Zhang, G. Meng, and D. I. Chen, “Stability, nonlinearity and reliability of electrostatically actuated MEMS devices,” Sensors (Basel) 7(5), 760–796 (2007).
[Crossref]

Chen, L.

F. Wang, J. Yang, L. Chen, X. Jiang, and M. Wang, “Optical switch based on multimode interference coupler,” IEEE Photonics Technol. Lett. 18(2), 421–423 (2006).
[Crossref]

Chen, R. T.

J. Yang, Q. Zhou, and R. T. Chen, “Polyimide-waveguide-based thermal optical switch using total-internal-reflection effect,” Appl. Phys. Lett. 81(16), 2947–2949 (2002).
[Crossref]

R. T. Chen, H. Nguyen, and M. C. Wu, “A high-speed low-voltage stress-induced micromachined 2 x 2 optical switch,” IEEE Photonics Technol. Lett. 11(11), 1396–1398 (1999).
[Crossref]

Choi, J.

C. H. Ji, Y. Yee, J. Choi, S. H. Kim, and J. U. Bu, “Electromagnetic 2× 2 MEMS optical switch,” IEEE J. Sel. Top. Quantum Electron. 10(3), 545–550 (2004).
[Crossref]

d’Alessandro, A.

A. d’Alessandro, D. A. Smith, and J. E. Baran, “Multichannel operation of an integrated acoustooptic wavelength routing switch for WDM systems,” IEEE Photonics Technol. Lett. 6(3), 390–393 (1994).
[Crossref]

Dannberg, P.

L. Friedrich, P. Dannberg, C. Wächter, T. Hennig, A. Bräuer, and W. Karthe, “Directional coupler device using a three-dimensional waveguide structure,” Opt. Commun. 137(4), 239–243 (1997).
[Crossref]

Datta, M.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14(5), 1070–1081 (2005).
[Crossref]

De Dobbelaere, P.

P. De Dobbelaere, K. Falta, S. Gloeckner, and S. Patra, “Digital MEMS for optical switching,” IEEE Commun. Mag. 40(3), 88–95 (2002).
[Crossref]

De Pas, M.

M. Petruzzella, F. La China, F. Intonti, N. Caselli, M. De Pas, F. W. M. van Otten, M. Gurioli, and A. Fiore, “Nanoscale mechanical actuation and near-field read-out of photonic crystal molecules,” Phys. Rev. B 94(11), 115413 (2016).
[Crossref]

Doany, F. E.

Eisenstein, G.

S. K. Korotky, G. Eisenstein, R. S. Tucker, J. J. Veselka, and G. Raybon, “Optical intensity modulation to 40 GHz using a waveguide electro-optic switch,” Appl. Phys. Lett. 50(23), 1631–1633 (1987).
[Crossref]

Fainman, Y.

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture for modular data centers,” ACM SIGCOMM Comput. Commun. Rev. 40(4), 339–350 (2010).
[Crossref]

Falta, K.

P. De Dobbelaere, K. Falta, S. Gloeckner, and S. Patra, “Digital MEMS for optical switching,” IEEE Commun. Mag. 40(3), 88–95 (2002).
[Crossref]

Farrington, N.

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture for modular data centers,” ACM SIGCOMM Comput. Commun. Rev. 40(4), 339–350 (2010).
[Crossref]

Fiore, A.

M. Petruzzella, F. La China, F. Intonti, N. Caselli, M. De Pas, F. W. M. van Otten, M. Gurioli, and A. Fiore, “Nanoscale mechanical actuation and near-field read-out of photonic crystal molecules,” Phys. Rev. B 94(11), 115413 (2016).
[Crossref]

M. Petruzzella, T. Xia, F. Pagliano, S. Birindelli, L. Midolo, Z. Zobenica, L. H. Li, E. H. Linfield, and A. Fiore, “Fully tuneable, Purcell-enhanced solid-state quantum emitters,” Appl. Phys. Lett. 107(14), 141109 (2015).
[Crossref]

L. Midolo and A. Fiore, “Design and optical properties of electromechanical double-membrane photonic crystal cavities,” IEEE J. Quantum Electron. 50(6), 404–414 (2014).
[Crossref]

Friedrich, L.

L. Friedrich, P. Dannberg, C. Wächter, T. Hennig, A. Bräuer, and W. Karthe, “Directional coupler device using a three-dimensional waveguide structure,” Opt. Commun. 137(4), 239–243 (1997).
[Crossref]

Fujii, T.

H. Nishi, K. Takeda, T. Tsuchizawa, T. Fujii, S. Matsuo, K. Yamada, and T. Yamamoto, “Monolithic Integration of InP Wire and Waveguides on Si Platform,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

Fujita, H.

H. Toshiyoshi and H. Fujita, “Electrostatic micro torsion mirrors for an optical switch matrix,” J. Microelectromech. Syst. 5(4), 231–237 (1996).
[Crossref]

Ghodssi, R.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14(5), 1070–1081 (2005).
[Crossref]

Gloeckner, S.

P. De Dobbelaere, K. Falta, S. Gloeckner, and S. Patra, “Digital MEMS for optical switching,” IEEE Commun. Mag. 40(3), 88–95 (2002).
[Crossref]

Goodman, J. W.

R. F. Kalman, L. G. Kazovsky, and J. W. Goodman, “Space division switches based on semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 4(9), 1048–1051 (1992).
[Crossref]

Green, W. M.

Gurioli, M.

M. Petruzzella, F. La China, F. Intonti, N. Caselli, M. De Pas, F. W. M. van Otten, M. Gurioli, and A. Fiore, “Nanoscale mechanical actuation and near-field read-out of photonic crystal molecules,” Phys. Rev. B 94(11), 115413 (2016).
[Crossref]

Gustavsson, M.

M. Gustavsson, “Semiconductor amplifier design for wavelength conversion and switching,” in IEEE Conference on Optical Fiber Communication (1997).
[Crossref]

Han, S.

Hane, K.

S. Abe and K. Hane, “Variable-gap silicon photonic waveguide coupler switch with a nanolatch mechanism,” IEEE Photonics Technol. Lett. 25(7), 675–677 (2013).
[Crossref]

Y. Akihama and K. Hane, “Single and multiple optical switches that use freestanding silicon nanowire waveguide couplers,” Light Sci. Appl. 1(6), e16 (2012).
[Crossref]

E. Bulgan, Y. Kanamori, and K. Hane, “Submicron silicon waveguide optical switch driven by microelectromechanical actuator,” Appl. Phys. Lett. 92(10), 101110 (2008).
[Crossref] [PubMed]

Harris, D. O.

Haus, H. A.

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[Crossref]

Hennig, T.

L. Friedrich, P. Dannberg, C. Wächter, T. Hennig, A. Bräuer, and W. Karthe, “Directional coupler device using a three-dimensional waveguide structure,” Opt. Commun. 137(4), 239–243 (1997).
[Crossref]

Ho, P. T.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14(5), 1070–1081 (2005).
[Crossref]

Huang, W.

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[Crossref]

Hunziker, W.

Q. Lai, W. Hunziker, and H. Melchior, “Low-power compact 2× 2 thermooptic silica-on-silicon waveguide switch with fast response,” IEEE Photonics Technol. Lett. 10(5), 681–683 (1998).
[Crossref]

Intonti, F.

M. Petruzzella, F. La China, F. Intonti, N. Caselli, M. De Pas, F. W. M. van Otten, M. Gurioli, and A. Fiore, “Nanoscale mechanical actuation and near-field read-out of photonic crystal molecules,” Phys. Rev. B 94(11), 115413 (2016).
[Crossref]

Jahnes, C. V.

Ji, C. H.

C. H. Ji, Y. Yee, J. Choi, S. H. Kim, and J. U. Bu, “Electromagnetic 2× 2 MEMS optical switch,” IEEE J. Sel. Top. Quantum Electron. 10(3), 545–550 (2004).
[Crossref]

Jiang, X.

F. Wang, J. Yang, L. Chen, X. Jiang, and M. Wang, “Optical switch based on multimode interference coupler,” IEEE Photonics Technol. Lett. 18(2), 421–423 (2006).
[Crossref]

Kalman, R. F.

R. F. Kalman, L. G. Kazovsky, and J. W. Goodman, “Space division switches based on semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 4(9), 1048–1051 (1992).
[Crossref]

Kanakaraju, S.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14(5), 1070–1081 (2005).
[Crossref]

Kanamori, Y.

E. Bulgan, Y. Kanamori, and K. Hane, “Submicron silicon waveguide optical switch driven by microelectromechanical actuator,” Appl. Phys. Lett. 92(10), 101110 (2008).
[Crossref] [PubMed]

Karthe, W.

L. Friedrich, P. Dannberg, C. Wächter, T. Hennig, A. Bräuer, and W. Karthe, “Directional coupler device using a three-dimensional waveguide structure,” Opt. Commun. 137(4), 239–243 (1997).
[Crossref]

Kash, J. A.

Kazovsky, L. G.

R. F. Kalman, L. G. Kazovsky, and J. W. Goodman, “Space division switches based on semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 4(9), 1048–1051 (1992).
[Crossref]

Kelly, D. P.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14(5), 1070–1081 (2005).
[Crossref]

Kim, S. H.

C. H. Ji, Y. Yee, J. Choi, S. H. Kim, and J. U. Bu, “Electromagnetic 2× 2 MEMS optical switch,” IEEE J. Sel. Top. Quantum Electron. 10(3), 545–550 (2004).
[Crossref]

Korotky, S. K.

S. K. Korotky, G. Eisenstein, R. S. Tucker, J. J. Veselka, and G. Raybon, “Optical intensity modulation to 40 GHz using a waveguide electro-optic switch,” Appl. Phys. Lett. 50(23), 1631–1633 (1987).
[Crossref]

La China, F.

M. Petruzzella, F. La China, F. Intonti, N. Caselli, M. De Pas, F. W. M. van Otten, M. Gurioli, and A. Fiore, “Nanoscale mechanical actuation and near-field read-out of photonic crystal molecules,” Phys. Rev. B 94(11), 115413 (2016).
[Crossref]

Lai, Q.

Q. Lai, W. Hunziker, and H. Melchior, “Low-power compact 2× 2 thermooptic silica-on-silicon waveguide switch with fast response,” IEEE Photonics Technol. Lett. 10(5), 681–683 (1998).
[Crossref]

Lee, B. G.

Li, L. H.

M. Petruzzella, T. Xia, F. Pagliano, S. Birindelli, L. Midolo, Z. Zobenica, L. H. Li, E. H. Linfield, and A. Fiore, “Fully tuneable, Purcell-enhanced solid-state quantum emitters,” Appl. Phys. Lett. 107(14), 141109 (2015).
[Crossref]

Linfield, E. H.

M. Petruzzella, T. Xia, F. Pagliano, S. Birindelli, L. Midolo, Z. Zobenica, L. H. Li, E. H. Linfield, and A. Fiore, “Fully tuneable, Purcell-enhanced solid-state quantum emitters,” Appl. Phys. Lett. 107(14), 141109 (2015).
[Crossref]

Matsuo, S.

H. Nishi, K. Takeda, T. Tsuchizawa, T. Fujii, S. Matsuo, K. Yamada, and T. Yamamoto, “Monolithic Integration of InP Wire and Waveguides on Si Platform,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

Melchior, H.

Q. Lai, W. Hunziker, and H. Melchior, “Low-power compact 2× 2 thermooptic silica-on-silicon waveguide switch with fast response,” IEEE Photonics Technol. Lett. 10(5), 681–683 (1998).
[Crossref]

Meng, G.

W. M. Zhang, G. Meng, and D. I. Chen, “Stability, nonlinearity and reliability of electrostatically actuated MEMS devices,” Sensors (Basel) 7(5), 760–796 (2007).
[Crossref]

Midolo, L.

M. Petruzzella, T. Xia, F. Pagliano, S. Birindelli, L. Midolo, Z. Zobenica, L. H. Li, E. H. Linfield, and A. Fiore, “Fully tuneable, Purcell-enhanced solid-state quantum emitters,” Appl. Phys. Lett. 107(14), 141109 (2015).
[Crossref]

L. Midolo and A. Fiore, “Design and optical properties of electromechanical double-membrane photonic crystal cavities,” IEEE J. Quantum Electron. 50(6), 404–414 (2014).
[Crossref]

Muller, R. S.

Nguyen, H.

R. T. Chen, H. Nguyen, and M. C. Wu, “A high-speed low-voltage stress-induced micromachined 2 x 2 optical switch,” IEEE Photonics Technol. Lett. 11(11), 1396–1398 (1999).
[Crossref]

Nishi, H.

H. Nishi, K. Takeda, T. Tsuchizawa, T. Fujii, S. Matsuo, K. Yamada, and T. Yamamoto, “Monolithic Integration of InP Wire and Waveguides on Si Platform,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

Pagliano, F.

M. Petruzzella, T. Xia, F. Pagliano, S. Birindelli, L. Midolo, Z. Zobenica, L. H. Li, E. H. Linfield, and A. Fiore, “Fully tuneable, Purcell-enhanced solid-state quantum emitters,” Appl. Phys. Lett. 107(14), 141109 (2015).
[Crossref]

Papen, G.

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture for modular data centers,” ACM SIGCOMM Comput. Commun. Rev. 40(4), 339–350 (2010).
[Crossref]

Patra, S.

P. De Dobbelaere, K. Falta, S. Gloeckner, and S. Patra, “Digital MEMS for optical switching,” IEEE Commun. Mag. 40(3), 88–95 (2002).
[Crossref]

Petruzzella, M.

M. Petruzzella, F. La China, F. Intonti, N. Caselli, M. De Pas, F. W. M. van Otten, M. Gurioli, and A. Fiore, “Nanoscale mechanical actuation and near-field read-out of photonic crystal molecules,” Phys. Rev. B 94(11), 115413 (2016).
[Crossref]

M. Petruzzella, T. Xia, F. Pagliano, S. Birindelli, L. Midolo, Z. Zobenica, L. H. Li, E. H. Linfield, and A. Fiore, “Fully tuneable, Purcell-enhanced solid-state quantum emitters,” Appl. Phys. Lett. 107(14), 141109 (2015).
[Crossref]

Porter, G.

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture for modular data centers,” ACM SIGCOMM Comput. Commun. Rev. 40(4), 339–350 (2010).
[Crossref]

Pruessner, M. W.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14(5), 1070–1081 (2005).
[Crossref]

Quack, N.

Radhakrishnan, S.

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture for modular data centers,” ACM SIGCOMM Comput. Commun. Rev. 40(4), 339–350 (2010).
[Crossref]

Raybon, G.

S. K. Korotky, G. Eisenstein, R. S. Tucker, J. J. Veselka, and G. Raybon, “Optical intensity modulation to 40 GHz using a waveguide electro-optic switch,” Appl. Phys. Lett. 50(23), 1631–1633 (1987).
[Crossref]

Schow, C. L.

Seok, T. J.

Smith, D. A.

A. d’Alessandro, D. A. Smith, and J. E. Baran, “Multichannel operation of an integrated acoustooptic wavelength routing switch for WDM systems,” IEEE Photonics Technol. Lett. 6(3), 390–393 (1994).
[Crossref]

Stabile, R.

Stubkjaer, K. E.

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
[Crossref]

Subramanya, V.

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture for modular data centers,” ACM SIGCOMM Comput. Commun. Rev. 40(4), 339–350 (2010).
[Crossref]

Takeda, K.

H. Nishi, K. Takeda, T. Tsuchizawa, T. Fujii, S. Matsuo, K. Yamada, and T. Yamamoto, “Monolithic Integration of InP Wire and Waveguides on Si Platform,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

Toshiyoshi, H.

H. Toshiyoshi and H. Fujita, “Electrostatic micro torsion mirrors for an optical switch matrix,” J. Microelectromech. Syst. 5(4), 231–237 (1996).
[Crossref]

Tsuchizawa, T.

H. Nishi, K. Takeda, T. Tsuchizawa, T. Fujii, S. Matsuo, K. Yamada, and T. Yamamoto, “Monolithic Integration of InP Wire and Waveguides on Si Platform,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

Tucker, R. S.

S. K. Korotky, G. Eisenstein, R. S. Tucker, J. J. Veselka, and G. Raybon, “Optical intensity modulation to 40 GHz using a waveguide electro-optic switch,” Appl. Phys. Lett. 50(23), 1631–1633 (1987).
[Crossref]

Vahdat, A.

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture for modular data centers,” ACM SIGCOMM Comput. Commun. Rev. 40(4), 339–350 (2010).
[Crossref]

Van Campenhout, J.

van Otten, F. W. M.

M. Petruzzella, F. La China, F. Intonti, N. Caselli, M. De Pas, F. W. M. van Otten, M. Gurioli, and A. Fiore, “Nanoscale mechanical actuation and near-field read-out of photonic crystal molecules,” Phys. Rev. B 94(11), 115413 (2016).
[Crossref]

Vanderlugt, A.

Veselka, J. J.

S. K. Korotky, G. Eisenstein, R. S. Tucker, J. J. Veselka, and G. Raybon, “Optical intensity modulation to 40 GHz using a waveguide electro-optic switch,” Appl. Phys. Lett. 50(23), 1631–1633 (1987).
[Crossref]

Vlasov, Y. A.

Wächter, C.

L. Friedrich, P. Dannberg, C. Wächter, T. Hennig, A. Bräuer, and W. Karthe, “Directional coupler device using a three-dimensional waveguide structure,” Opt. Commun. 137(4), 239–243 (1997).
[Crossref]

Wang, F.

F. Wang, J. Yang, L. Chen, X. Jiang, and M. Wang, “Optical switch based on multimode interference coupler,” IEEE Photonics Technol. Lett. 18(2), 421–423 (2006).
[Crossref]

Wang, M.

F. Wang, J. Yang, L. Chen, X. Jiang, and M. Wang, “Optical switch based on multimode interference coupler,” IEEE Photonics Technol. Lett. 18(2), 421–423 (2006).
[Crossref]

Williams, K. A.

Wu, M. C.

Xia, T.

M. Petruzzella, T. Xia, F. Pagliano, S. Birindelli, L. Midolo, Z. Zobenica, L. H. Li, E. H. Linfield, and A. Fiore, “Fully tuneable, Purcell-enhanced solid-state quantum emitters,” Appl. Phys. Lett. 107(14), 141109 (2015).
[Crossref]

Yamada, K.

H. Nishi, K. Takeda, T. Tsuchizawa, T. Fujii, S. Matsuo, K. Yamada, and T. Yamamoto, “Monolithic Integration of InP Wire and Waveguides on Si Platform,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

Yamamoto, T.

H. Nishi, K. Takeda, T. Tsuchizawa, T. Fujii, S. Matsuo, K. Yamada, and T. Yamamoto, “Monolithic Integration of InP Wire and Waveguides on Si Platform,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

Yang, J.

F. Wang, J. Yang, L. Chen, X. Jiang, and M. Wang, “Optical switch based on multimode interference coupler,” IEEE Photonics Technol. Lett. 18(2), 421–423 (2006).
[Crossref]

J. Yang, Q. Zhou, and R. T. Chen, “Polyimide-waveguide-based thermal optical switch using total-internal-reflection effect,” Appl. Phys. Lett. 81(16), 2947–2949 (2002).
[Crossref]

Yang, M.

Yee, K.

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[Crossref]

Yee, Y.

C. H. Ji, Y. Yee, J. Choi, S. H. Kim, and J. U. Bu, “Electromagnetic 2× 2 MEMS optical switch,” IEEE J. Sel. Top. Quantum Electron. 10(3), 545–550 (2004).
[Crossref]

Yoo, B. W.

Zhang, W. M.

W. M. Zhang, G. Meng, and D. I. Chen, “Stability, nonlinearity and reliability of electrostatically actuated MEMS devices,” Sensors (Basel) 7(5), 760–796 (2007).
[Crossref]

Zhou, Q.

J. Yang, Q. Zhou, and R. T. Chen, “Polyimide-waveguide-based thermal optical switch using total-internal-reflection effect,” Appl. Phys. Lett. 81(16), 2947–2949 (2002).
[Crossref]

Zobenica, Z.

M. Petruzzella, T. Xia, F. Pagliano, S. Birindelli, L. Midolo, Z. Zobenica, L. H. Li, E. H. Linfield, and A. Fiore, “Fully tuneable, Purcell-enhanced solid-state quantum emitters,” Appl. Phys. Lett. 107(14), 141109 (2015).
[Crossref]

ACM SIGCOMM Comput. Commun. Rev. (1)

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture for modular data centers,” ACM SIGCOMM Comput. Commun. Rev. 40(4), 339–350 (2010).
[Crossref]

Appl. Phys. Lett. (4)

M. Petruzzella, T. Xia, F. Pagliano, S. Birindelli, L. Midolo, Z. Zobenica, L. H. Li, E. H. Linfield, and A. Fiore, “Fully tuneable, Purcell-enhanced solid-state quantum emitters,” Appl. Phys. Lett. 107(14), 141109 (2015).
[Crossref]

J. Yang, Q. Zhou, and R. T. Chen, “Polyimide-waveguide-based thermal optical switch using total-internal-reflection effect,” Appl. Phys. Lett. 81(16), 2947–2949 (2002).
[Crossref]

S. K. Korotky, G. Eisenstein, R. S. Tucker, J. J. Veselka, and G. Raybon, “Optical intensity modulation to 40 GHz using a waveguide electro-optic switch,” Appl. Phys. Lett. 50(23), 1631–1633 (1987).
[Crossref]

E. Bulgan, Y. Kanamori, and K. Hane, “Submicron silicon waveguide optical switch driven by microelectromechanical actuator,” Appl. Phys. Lett. 92(10), 101110 (2008).
[Crossref] [PubMed]

IEEE Commun. Mag. (1)

P. De Dobbelaere, K. Falta, S. Gloeckner, and S. Patra, “Digital MEMS for optical switching,” IEEE Commun. Mag. 40(3), 88–95 (2002).
[Crossref]

IEEE J. Quantum Electron. (1)

L. Midolo and A. Fiore, “Design and optical properties of electromechanical double-membrane photonic crystal cavities,” IEEE J. Quantum Electron. 50(6), 404–414 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
[Crossref]

C. H. Ji, Y. Yee, J. Choi, S. H. Kim, and J. U. Bu, “Electromagnetic 2× 2 MEMS optical switch,” IEEE J. Sel. Top. Quantum Electron. 10(3), 545–550 (2004).
[Crossref]

IEEE Photonics J. (1)

H. Nishi, K. Takeda, T. Tsuchizawa, T. Fujii, S. Matsuo, K. Yamada, and T. Yamamoto, “Monolithic Integration of InP Wire and Waveguides on Si Platform,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (6)

Q. Lai, W. Hunziker, and H. Melchior, “Low-power compact 2× 2 thermooptic silica-on-silicon waveguide switch with fast response,” IEEE Photonics Technol. Lett. 10(5), 681–683 (1998).
[Crossref]

R. F. Kalman, L. G. Kazovsky, and J. W. Goodman, “Space division switches based on semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 4(9), 1048–1051 (1992).
[Crossref]

S. Abe and K. Hane, “Variable-gap silicon photonic waveguide coupler switch with a nanolatch mechanism,” IEEE Photonics Technol. Lett. 25(7), 675–677 (2013).
[Crossref]

F. Wang, J. Yang, L. Chen, X. Jiang, and M. Wang, “Optical switch based on multimode interference coupler,” IEEE Photonics Technol. Lett. 18(2), 421–423 (2006).
[Crossref]

A. d’Alessandro, D. A. Smith, and J. E. Baran, “Multichannel operation of an integrated acoustooptic wavelength routing switch for WDM systems,” IEEE Photonics Technol. Lett. 6(3), 390–393 (1994).
[Crossref]

R. T. Chen, H. Nguyen, and M. C. Wu, “A high-speed low-voltage stress-induced micromachined 2 x 2 optical switch,” IEEE Photonics Technol. Lett. 11(11), 1396–1398 (1999).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[Crossref]

J. Microelectromech. Syst. (2)

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14(5), 1070–1081 (2005).
[Crossref]

H. Toshiyoshi and H. Fujita, “Electrostatic micro torsion mirrors for an optical switch matrix,” J. Microelectromech. Syst. 5(4), 231–237 (1996).
[Crossref]

Light Sci. Appl. (1)

Y. Akihama and K. Hane, “Single and multiple optical switches that use freestanding silicon nanowire waveguide couplers,” Light Sci. Appl. 1(6), e16 (2012).
[Crossref]

Opt. Commun. (1)

L. Friedrich, P. Dannberg, C. Wächter, T. Hennig, A. Bräuer, and W. Karthe, “Directional coupler device using a three-dimensional waveguide structure,” Opt. Commun. 137(4), 239–243 (1997).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Optica (2)

Phys. Rev. B (1)

M. Petruzzella, F. La China, F. Intonti, N. Caselli, M. De Pas, F. W. M. van Otten, M. Gurioli, and A. Fiore, “Nanoscale mechanical actuation and near-field read-out of photonic crystal molecules,” Phys. Rev. B 94(11), 115413 (2016).
[Crossref]

Proc. IEEE (1)

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[Crossref]

Sensors (Basel) (1)

W. M. Zhang, G. Meng, and D. I. Chen, “Stability, nonlinearity and reliability of electrostatically actuated MEMS devices,” Sensors (Basel) 7(5), 760–796 (2007).
[Crossref]

Other (3)

Z. Zobenica, R. W. van der Heijden, M. Petruzzella, F. Pagliano, R. Lijssen, T. Xia, L. Midolo, M. Cotrufo, Y. Cho, F. W. M. van Otten, and E. Verhagen, “Fully-integrated nanomechanical wavelength and displacement sensor,” in CLEO: Science and Innovations (2016), paper STu4H–6.

J. van der Tol, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, H. Ambrosius, and M. Smit, “Photonic integration in indium-phosphide membranes on silicon (IMOS),” in SPIE OPTO (International Society for Optics and Photonics, 2014).

M. Gustavsson, “Semiconductor amplifier design for wavelength conversion and switching,” in IEEE Conference on Optical Fiber Communication (1997).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 A simplified illustration of NOEMS switch based on double-membrane waveguide. Bus (ON) and Cross (OFF) states are indicated by the blue and the red arrow respectively. (a) 3-D view. The layers indicated in yellow are the metallic contacts. (b) Switch in cross-state (c) Switch in bus-state(cantilevers are omitted in b and c)
Fig. 2
Fig. 2 (a) Diagram of a four-waveguide model, the field distribution of the symmetric and anti-symmetric modes in the horizontal and vertical directions are schematically depicted. (b) The simulated Ex field distribution of the four supermodes in non-displaced and displaced structure.
Fig. 3
Fig. 3 Normalized power in each waveguide for the cross-state(a) and bus-state(b)as predicted by the coupled-mode model.
Fig. 4
Fig. 4 (a) The electric field magnitude distribution (|E|) of cross-state and bus-state. The plot surface is through the mid-plane of bottom waveguides. The input is the fundamental TE mode. (b) Simulated transmission characteristics as a function of the displacement of right suspended waveguide, with the displacement of left one fixed at 5 nm. Inset is the range where the crosstalk is below −20 dB for the bus-state. (c) Simulated spectral response of bus and cross waveguide (WG) in the cross-state. (d) Simulated spectral response in the bus-state.
Fig. 5
Fig. 5 Simulated performance with different lengths of actuator. The black line indicates the natural mechanical resonant frequency of the actuator, the red line indicates the actuation oltage needed for a switch operation. The inset shows the structure of one cantilever and its displacement distribution (indicated by the colors, red for larger displacement, blue for smaller one) under actuation voltage.

Tables (2)

Tables Icon

Table 1 The simulated performance under geometry parameters variations

Tables Icon

Table 2 The performance of reported micro/nano electromechanical optical switches. When available, the theoretical values (t) have been used to provide a fair comparison with our proposal, in other cases experimental values (e) are shown.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

d dx [ b 1 (x) b 2 (x) a 1 (x) a 2 (x) ]=i[ β κ h κ v1 0 κ h β 0 κ v2 κ v1 0 β κ h 0 κ v2 κ h β ][ b 1 (x) b 2 (x) a 1 (x) a 2 (x) ]
b 1 (0)=1, b 2 (0)=0, a 1 (0)=0, a 2 (0)=0
[ b 1 (x) b 1 (x) b 1 (x) b 1 (x) ]= e iβx [ cos( s v x)cos( s h x)+ κ v1 κ v2 2 s h sin( s v x)sin( s h x) i κ h s h cos( s v x)sin( s h x) isin( s v x)cos( s h x)+i κ v1 κ v2 2 s h cos( s v x)sin( s h x) κ h s h sin( s v x)sin( s h x) ]
s h = κ h 2 + ( κ v1 κ v2 ) 2 4
s v = κ v1 + κ v2 2
[ b 1 (x) b 1 (x) b 1 (x) b 1 (x) ]= e iβx [ cos( κ v x)cos( κ h x) icos( κ v x)sin( κ h x) isin( κ v x)cos( κ h x) sin( κ v x)sin( κ h x) ]
| b 2 (L) | 2 =1, | a 2 (L) | 2 = | a 2 (L) | 2 = | b 1 (L) | 2 =0
{ κ v1 = κ v1 =2l κ h L=(2m+1) π 2 κ h l=1,2,3... m=0,1,2...
| b 1 (L) | 2 =1, | a 1 (L) | 2 = | a 1 (L) | 2 = | b 2 (L) | 2 =0
{ κ v1 =( 2p± 4 ( 2n1 ) 2 1 ) κ h κ v2 =( 2p 4 ( 2n1 ) 2 1 ) κ h p=2,3,4...;n=1,2,3...
{ κ v1 =( 2p± 16 n 2 1 ) κ h κ v2 =( 2p 16 n 2 1 ) κ h p=3,4,5...;n=1,2,3...

Metrics