Abstract

A near-field edge-coupled photoconductive free-space linear tapered slot antenna has been constructed as a planar alternative to the standard photoconductive switch coupled to a silicon substrate lens. The temporal response along the optical axis is investigated to ensure the structure itself does not introduce pulse distortion which would fundamentally limit the usefulness of the structure. Experimental results show that a 1.6 THz bandwidth with a ≈50dB dynamic range is achievable with the new structure which is comparable to our reference experiment with a standard silicon substrate lens. The investigated structure has the added benefit of a potential substantial physical size reduction and can also be used to excite waveguides in the near-field.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photoconductive generation and detection of THz-bandwidth pulses using near-field coupling to a free-space metallic slit waveguide

Robert Smith, Afshin Jooshesh, Jinye Zhang, and Thomas Darcie
Opt. Express 25(22) 26492-26499 (2017)

Sensitive detection of yeast using terahertz slot antennas

S. J. Park, B. H. Son, S. J. Choi, H. S. Kim, and Y. H. Ahn
Opt. Express 22(25) 30467-30472 (2014)

Transmitting and detecting THz pulses using graphene and metals-based photoconductive antennas

Ramin Emadi, Reza Safian, and Abolghasem Zeidaabadi Nezhad
J. Opt. Soc. Am. B 35(1) 113-121 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting hertzian dipoles,” Appl. Phys. Lett. 45, 284 (1984).
    [Crossref]
  2. A. P. DeFonzo, M. Jarwala, and C. Lutz, “Transient response of planar integrated optoelectronic antennas,” Appl. Phys. Lett. 50, 1155 (1987).
    [Crossref]
  3. A. P. DeFonzo and C. R. Lutz, “Optoelectronic transmission and reception of ultrashort electrical pulses,” Appl. Phys. Lett. 51, 212 (1987).
    [Crossref]
  4. Y. Pastol, G. Arjavalingam, J. Halbout, and G. Kopcsay, “Characterisation of an optoelectronically pulsed broadband microwave antenna,” Electron. Lett. 24, 1318–1319 (1988).
    [Crossref]
  5. S. Gearhart, H. Ekstrom, P. Acharya, E. Kollberg, S. Jacobsson, and G. Rebeiz, “Submillimeter-wave endfire slotline antennas,” in “Antennas and Propagation Society International Symposium” (1992), pp. 18–25.
  6. G. Rebeziz, “Millimeter-wave and terahertz integrated circuit antennas,” Proc. IEEE 80, 1748–1770 (1992).
    [Crossref]
  7. C. Fattinger and D. Grischkowsky, “Point source terahertz optics,” Appl. Phys. Lett. 53, 1480 (1988).
    [Crossref]
  8. C. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 490 (1989).
    [Crossref]
  9. M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95, 041112 (2009).
    [Crossref]
  10. M. Nagel, A. Michalski, and H. Kurz, “Contact-free fault location and imaging with on-chip terahertz time-domain reflectometry,” Opt. Express 19, 12509–12514 (2011).
    [Crossref] [PubMed]
  11. S. Sawallich, B. Globisch, C. Matheisen, M. Nagel, R. Dietz, and T. Göbel, “Photoconductive terahertz near-field detectors for operation with 1550-nm pulsed fiber lasers,” IEEE Trans. Terahertz Sci. Technol. 6, 365–370 (2016).
    [Crossref]
  12. K. Wang and D. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
    [Crossref] [PubMed]
  13. J. Deibel, K. Wang, M. Escarra, and D. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14, 279–290 (2006).
    [Crossref] [PubMed]
  14. J. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. Mittleman, “Finite-element method simulations of guided wave phenomena at terahertz frequencies,” Proc. IEEE 95, 1624–1640 (2007).
    [Crossref]
  15. D. Rutledge, “Integrated Circuit Antennas,” in Infrared and Millimeter Waves, vol. 10 (Academic, 1983).
  16. M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
    [Crossref]
  17. M. Wächter, M. Nagel, and H. Kurz, “Low-loss terahertz transmission through curved metallic slit waveguides fabricated by spark erosion,” Appl. Phys. Lett. 92, 161102 (2008).
    [Crossref]
  18. H. Zhan, R. Mendis, and D. M. Mittleman, “Thz energy confinement in finite-width parallel-plate waveguides,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference (2009).
    [Crossref]
  19. S. Pandey, G. Kumar, and A. Nahata, “Slot waveguide-based splitters for broadband terahertz radiation,” Opt. Express 18, 23466–23471 (2010).
    [Crossref] [PubMed]
  20. H. Zhan, R. Mendis, and D. M. Mittleman, “Characterization of the terahertz near-field output of parallel-plate waveguides,” J. Opt. Soc. Am. B 28, 558–566 (2011).
    [Crossref]
  21. R. Smith, F. Ahmed, A. Jooshesh, J. Zhang, M. Jun, and T. Darcie, “Thz field enhancement by antenna coupling to a tapered thick slot waveguide,” J. Lightwave Technol. 32, 15878 (2014).
    [Crossref]
  22. M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown gaas and semi-insulating gaas,” Appl. Opt. 36, 7853–7859 (1997).
    [Crossref]
  23. D. Schaubert, E. Kollberg, T. Korzeniowski, and T. Thungren, “Endfire tapered slot antennas on dielectric substrates,” IEEE Trans. Antennas Prop. 33, 1392–1400 (1985).
    [Crossref]
  24. M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microwave Theory Tech. 39, 910–916 (1991).
    [Crossref]
  25. “Batop, www.batop.com ,”.

2016 (1)

S. Sawallich, B. Globisch, C. Matheisen, M. Nagel, R. Dietz, and T. Göbel, “Photoconductive terahertz near-field detectors for operation with 1550-nm pulsed fiber lasers,” IEEE Trans. Terahertz Sci. Technol. 6, 365–370 (2016).
[Crossref]

2014 (1)

R. Smith, F. Ahmed, A. Jooshesh, J. Zhang, M. Jun, and T. Darcie, “Thz field enhancement by antenna coupling to a tapered thick slot waveguide,” J. Lightwave Technol. 32, 15878 (2014).
[Crossref]

2011 (2)

2010 (1)

2009 (1)

M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95, 041112 (2009).
[Crossref]

2008 (1)

M. Wächter, M. Nagel, and H. Kurz, “Low-loss terahertz transmission through curved metallic slit waveguides fabricated by spark erosion,” Appl. Phys. Lett. 92, 161102 (2008).
[Crossref]

2007 (2)

J. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. Mittleman, “Finite-element method simulations of guided wave phenomena at terahertz frequencies,” Proc. IEEE 95, 1624–1640 (2007).
[Crossref]

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
[Crossref]

2006 (1)

2004 (1)

K. Wang and D. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[Crossref] [PubMed]

1997 (1)

1992 (1)

G. Rebeziz, “Millimeter-wave and terahertz integrated circuit antennas,” Proc. IEEE 80, 1748–1770 (1992).
[Crossref]

1991 (1)

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microwave Theory Tech. 39, 910–916 (1991).
[Crossref]

1989 (1)

C. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 490 (1989).
[Crossref]

1988 (2)

C. Fattinger and D. Grischkowsky, “Point source terahertz optics,” Appl. Phys. Lett. 53, 1480 (1988).
[Crossref]

Y. Pastol, G. Arjavalingam, J. Halbout, and G. Kopcsay, “Characterisation of an optoelectronically pulsed broadband microwave antenna,” Electron. Lett. 24, 1318–1319 (1988).
[Crossref]

1987 (2)

A. P. DeFonzo, M. Jarwala, and C. Lutz, “Transient response of planar integrated optoelectronic antennas,” Appl. Phys. Lett. 50, 1155 (1987).
[Crossref]

A. P. DeFonzo and C. R. Lutz, “Optoelectronic transmission and reception of ultrashort electrical pulses,” Appl. Phys. Lett. 51, 212 (1987).
[Crossref]

1985 (1)

D. Schaubert, E. Kollberg, T. Korzeniowski, and T. Thungren, “Endfire tapered slot antennas on dielectric substrates,” IEEE Trans. Antennas Prop. 33, 1392–1400 (1985).
[Crossref]

1984 (1)

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting hertzian dipoles,” Appl. Phys. Lett. 45, 284 (1984).
[Crossref]

Acharya, P.

S. Gearhart, H. Ekstrom, P. Acharya, E. Kollberg, S. Jacobsson, and G. Rebeiz, “Submillimeter-wave endfire slotline antennas,” in “Antennas and Propagation Society International Symposium” (1992), pp. 18–25.

Ahmed, F.

R. Smith, F. Ahmed, A. Jooshesh, J. Zhang, M. Jun, and T. Darcie, “Thz field enhancement by antenna coupling to a tapered thick slot waveguide,” J. Lightwave Technol. 32, 15878 (2014).
[Crossref]

Arjavalingam, G.

Y. Pastol, G. Arjavalingam, J. Halbout, and G. Kopcsay, “Characterisation of an optoelectronically pulsed broadband microwave antenna,” Electron. Lett. 24, 1318–1319 (1988).
[Crossref]

Auston, D. H.

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting hertzian dipoles,” Appl. Phys. Lett. 45, 284 (1984).
[Crossref]

Berndsen, N.

J. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. Mittleman, “Finite-element method simulations of guided wave phenomena at terahertz frequencies,” Proc. IEEE 95, 1624–1640 (2007).
[Crossref]

Cheung, K. P.

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting hertzian dipoles,” Appl. Phys. Lett. 45, 284 (1984).
[Crossref]

Darcie, T.

R. Smith, F. Ahmed, A. Jooshesh, J. Zhang, M. Jun, and T. Darcie, “Thz field enhancement by antenna coupling to a tapered thick slot waveguide,” J. Lightwave Technol. 32, 15878 (2014).
[Crossref]

DeFonzo, A. P.

A. P. DeFonzo, M. Jarwala, and C. Lutz, “Transient response of planar integrated optoelectronic antennas,” Appl. Phys. Lett. 50, 1155 (1987).
[Crossref]

A. P. DeFonzo and C. R. Lutz, “Optoelectronic transmission and reception of ultrashort electrical pulses,” Appl. Phys. Lett. 51, 212 (1987).
[Crossref]

Deibel, J.

J. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. Mittleman, “Finite-element method simulations of guided wave phenomena at terahertz frequencies,” Proc. IEEE 95, 1624–1640 (2007).
[Crossref]

J. Deibel, K. Wang, M. Escarra, and D. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14, 279–290 (2006).
[Crossref] [PubMed]

Dietz, R.

S. Sawallich, B. Globisch, C. Matheisen, M. Nagel, R. Dietz, and T. Göbel, “Photoconductive terahertz near-field detectors for operation with 1550-nm pulsed fiber lasers,” IEEE Trans. Terahertz Sci. Technol. 6, 365–370 (2016).
[Crossref]

Ekstrom, H.

S. Gearhart, H. Ekstrom, P. Acharya, E. Kollberg, S. Jacobsson, and G. Rebeiz, “Submillimeter-wave endfire slotline antennas,” in “Antennas and Propagation Society International Symposium” (1992), pp. 18–25.

Escarra, M.

J. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. Mittleman, “Finite-element method simulations of guided wave phenomena at terahertz frequencies,” Proc. IEEE 95, 1624–1640 (2007).
[Crossref]

J. Deibel, K. Wang, M. Escarra, and D. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14, 279–290 (2006).
[Crossref] [PubMed]

Fattinger, C.

C. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 490 (1989).
[Crossref]

C. Fattinger and D. Grischkowsky, “Point source terahertz optics,” Appl. Phys. Lett. 53, 1480 (1988).
[Crossref]

Frankel, M. Y.

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microwave Theory Tech. 39, 910–916 (1991).
[Crossref]

Gearhart, S.

S. Gearhart, H. Ekstrom, P. Acharya, E. Kollberg, S. Jacobsson, and G. Rebeiz, “Submillimeter-wave endfire slotline antennas,” in “Antennas and Propagation Society International Symposium” (1992), pp. 18–25.

Globisch, B.

S. Sawallich, B. Globisch, C. Matheisen, M. Nagel, R. Dietz, and T. Göbel, “Photoconductive terahertz near-field detectors for operation with 1550-nm pulsed fiber lasers,” IEEE Trans. Terahertz Sci. Technol. 6, 365–370 (2016).
[Crossref]

Göbel, T.

S. Sawallich, B. Globisch, C. Matheisen, M. Nagel, R. Dietz, and T. Göbel, “Photoconductive terahertz near-field detectors for operation with 1550-nm pulsed fiber lasers,” IEEE Trans. Terahertz Sci. Technol. 6, 365–370 (2016).
[Crossref]

Grischkowsky, D.

C. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 490 (1989).
[Crossref]

C. Fattinger and D. Grischkowsky, “Point source terahertz optics,” Appl. Phys. Lett. 53, 1480 (1988).
[Crossref]

Gupta, S.

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microwave Theory Tech. 39, 910–916 (1991).
[Crossref]

Halbout, J.

Y. Pastol, G. Arjavalingam, J. Halbout, and G. Kopcsay, “Characterisation of an optoelectronically pulsed broadband microwave antenna,” Electron. Lett. 24, 1318–1319 (1988).
[Crossref]

Jacobsson, S.

S. Gearhart, H. Ekstrom, P. Acharya, E. Kollberg, S. Jacobsson, and G. Rebeiz, “Submillimeter-wave endfire slotline antennas,” in “Antennas and Propagation Society International Symposium” (1992), pp. 18–25.

Jarwala, M.

A. P. DeFonzo, M. Jarwala, and C. Lutz, “Transient response of planar integrated optoelectronic antennas,” Appl. Phys. Lett. 50, 1155 (1987).
[Crossref]

Jooshesh, A.

R. Smith, F. Ahmed, A. Jooshesh, J. Zhang, M. Jun, and T. Darcie, “Thz field enhancement by antenna coupling to a tapered thick slot waveguide,” J. Lightwave Technol. 32, 15878 (2014).
[Crossref]

Jun, M.

R. Smith, F. Ahmed, A. Jooshesh, J. Zhang, M. Jun, and T. Darcie, “Thz field enhancement by antenna coupling to a tapered thick slot waveguide,” J. Lightwave Technol. 32, 15878 (2014).
[Crossref]

Kollberg, E.

D. Schaubert, E. Kollberg, T. Korzeniowski, and T. Thungren, “Endfire tapered slot antennas on dielectric substrates,” IEEE Trans. Antennas Prop. 33, 1392–1400 (1985).
[Crossref]

S. Gearhart, H. Ekstrom, P. Acharya, E. Kollberg, S. Jacobsson, and G. Rebeiz, “Submillimeter-wave endfire slotline antennas,” in “Antennas and Propagation Society International Symposium” (1992), pp. 18–25.

Kopcsay, G.

Y. Pastol, G. Arjavalingam, J. Halbout, and G. Kopcsay, “Characterisation of an optoelectronically pulsed broadband microwave antenna,” Electron. Lett. 24, 1318–1319 (1988).
[Crossref]

Korzeniowski, T.

D. Schaubert, E. Kollberg, T. Korzeniowski, and T. Thungren, “Endfire tapered slot antennas on dielectric substrates,” IEEE Trans. Antennas Prop. 33, 1392–1400 (1985).
[Crossref]

Kumar, G.

Kurz, H.

M. Nagel, A. Michalski, and H. Kurz, “Contact-free fault location and imaging with on-chip terahertz time-domain reflectometry,” Opt. Express 19, 12509–12514 (2011).
[Crossref] [PubMed]

M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95, 041112 (2009).
[Crossref]

M. Wächter, M. Nagel, and H. Kurz, “Low-loss terahertz transmission through curved metallic slit waveguides fabricated by spark erosion,” Appl. Phys. Lett. 92, 161102 (2008).
[Crossref]

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
[Crossref]

Lutz, C.

A. P. DeFonzo, M. Jarwala, and C. Lutz, “Transient response of planar integrated optoelectronic antennas,” Appl. Phys. Lett. 50, 1155 (1987).
[Crossref]

Lutz, C. R.

A. P. DeFonzo and C. R. Lutz, “Optoelectronic transmission and reception of ultrashort electrical pulses,” Appl. Phys. Lett. 51, 212 (1987).
[Crossref]

Matheisen, C.

S. Sawallich, B. Globisch, C. Matheisen, M. Nagel, R. Dietz, and T. Göbel, “Photoconductive terahertz near-field detectors for operation with 1550-nm pulsed fiber lasers,” IEEE Trans. Terahertz Sci. Technol. 6, 365–370 (2016).
[Crossref]

Matsuura, S.

Mendis, R.

H. Zhan, R. Mendis, and D. M. Mittleman, “Characterization of the terahertz near-field output of parallel-plate waveguides,” J. Opt. Soc. Am. B 28, 558–566 (2011).
[Crossref]

H. Zhan, R. Mendis, and D. M. Mittleman, “Thz energy confinement in finite-width parallel-plate waveguides,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference (2009).
[Crossref]

Michalski, A.

Mittleman, D.

J. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. Mittleman, “Finite-element method simulations of guided wave phenomena at terahertz frequencies,” Proc. IEEE 95, 1624–1640 (2007).
[Crossref]

J. Deibel, K. Wang, M. Escarra, and D. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14, 279–290 (2006).
[Crossref] [PubMed]

K. Wang and D. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[Crossref] [PubMed]

Mittleman, D. M.

H. Zhan, R. Mendis, and D. M. Mittleman, “Characterization of the terahertz near-field output of parallel-plate waveguides,” J. Opt. Soc. Am. B 28, 558–566 (2011).
[Crossref]

H. Zhan, R. Mendis, and D. M. Mittleman, “Thz energy confinement in finite-width parallel-plate waveguides,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference (2009).
[Crossref]

Mourou, G. A.

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microwave Theory Tech. 39, 910–916 (1991).
[Crossref]

Nagel, M.

S. Sawallich, B. Globisch, C. Matheisen, M. Nagel, R. Dietz, and T. Göbel, “Photoconductive terahertz near-field detectors for operation with 1550-nm pulsed fiber lasers,” IEEE Trans. Terahertz Sci. Technol. 6, 365–370 (2016).
[Crossref]

M. Nagel, A. Michalski, and H. Kurz, “Contact-free fault location and imaging with on-chip terahertz time-domain reflectometry,” Opt. Express 19, 12509–12514 (2011).
[Crossref] [PubMed]

M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95, 041112 (2009).
[Crossref]

M. Wächter, M. Nagel, and H. Kurz, “Low-loss terahertz transmission through curved metallic slit waveguides fabricated by spark erosion,” Appl. Phys. Lett. 92, 161102 (2008).
[Crossref]

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
[Crossref]

Nahata, A.

Nakashima, S.

Pandey, S.

Pastol, Y.

Y. Pastol, G. Arjavalingam, J. Halbout, and G. Kopcsay, “Characterisation of an optoelectronically pulsed broadband microwave antenna,” Electron. Lett. 24, 1318–1319 (1988).
[Crossref]

Rebeiz, G.

S. Gearhart, H. Ekstrom, P. Acharya, E. Kollberg, S. Jacobsson, and G. Rebeiz, “Submillimeter-wave endfire slotline antennas,” in “Antennas and Propagation Society International Symposium” (1992), pp. 18–25.

Rebeziz, G.

G. Rebeziz, “Millimeter-wave and terahertz integrated circuit antennas,” Proc. IEEE 80, 1748–1770 (1992).
[Crossref]

Rutledge, D.

D. Rutledge, “Integrated Circuit Antennas,” in Infrared and Millimeter Waves, vol. 10 (Academic, 1983).

Sakai, K.

Sawallich, S.

S. Sawallich, B. Globisch, C. Matheisen, M. Nagel, R. Dietz, and T. Göbel, “Photoconductive terahertz near-field detectors for operation with 1550-nm pulsed fiber lasers,” IEEE Trans. Terahertz Sci. Technol. 6, 365–370 (2016).
[Crossref]

Schaubert, D.

D. Schaubert, E. Kollberg, T. Korzeniowski, and T. Thungren, “Endfire tapered slot antennas on dielectric substrates,” IEEE Trans. Antennas Prop. 33, 1392–1400 (1985).
[Crossref]

Smith, P. R.

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting hertzian dipoles,” Appl. Phys. Lett. 45, 284 (1984).
[Crossref]

Smith, R.

R. Smith, F. Ahmed, A. Jooshesh, J. Zhang, M. Jun, and T. Darcie, “Thz field enhancement by antenna coupling to a tapered thick slot waveguide,” J. Lightwave Technol. 32, 15878 (2014).
[Crossref]

Tani, M.

Thungren, T.

D. Schaubert, E. Kollberg, T. Korzeniowski, and T. Thungren, “Endfire tapered slot antennas on dielectric substrates,” IEEE Trans. Antennas Prop. 33, 1392–1400 (1985).
[Crossref]

Valdmanis, J. A.

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microwave Theory Tech. 39, 910–916 (1991).
[Crossref]

Wächter, M.

M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95, 041112 (2009).
[Crossref]

M. Wächter, M. Nagel, and H. Kurz, “Low-loss terahertz transmission through curved metallic slit waveguides fabricated by spark erosion,” Appl. Phys. Lett. 92, 161102 (2008).
[Crossref]

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
[Crossref]

Wang, K.

J. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. Mittleman, “Finite-element method simulations of guided wave phenomena at terahertz frequencies,” Proc. IEEE 95, 1624–1640 (2007).
[Crossref]

J. Deibel, K. Wang, M. Escarra, and D. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14, 279–290 (2006).
[Crossref] [PubMed]

K. Wang and D. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[Crossref] [PubMed]

Zhan, H.

H. Zhan, R. Mendis, and D. M. Mittleman, “Characterization of the terahertz near-field output of parallel-plate waveguides,” J. Opt. Soc. Am. B 28, 558–566 (2011).
[Crossref]

H. Zhan, R. Mendis, and D. M. Mittleman, “Thz energy confinement in finite-width parallel-plate waveguides,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference (2009).
[Crossref]

Zhang, J.

R. Smith, F. Ahmed, A. Jooshesh, J. Zhang, M. Jun, and T. Darcie, “Thz field enhancement by antenna coupling to a tapered thick slot waveguide,” J. Lightwave Technol. 32, 15878 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (8)

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting hertzian dipoles,” Appl. Phys. Lett. 45, 284 (1984).
[Crossref]

A. P. DeFonzo, M. Jarwala, and C. Lutz, “Transient response of planar integrated optoelectronic antennas,” Appl. Phys. Lett. 50, 1155 (1987).
[Crossref]

A. P. DeFonzo and C. R. Lutz, “Optoelectronic transmission and reception of ultrashort electrical pulses,” Appl. Phys. Lett. 51, 212 (1987).
[Crossref]

C. Fattinger and D. Grischkowsky, “Point source terahertz optics,” Appl. Phys. Lett. 53, 1480 (1988).
[Crossref]

C. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 490 (1989).
[Crossref]

M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95, 041112 (2009).
[Crossref]

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
[Crossref]

M. Wächter, M. Nagel, and H. Kurz, “Low-loss terahertz transmission through curved metallic slit waveguides fabricated by spark erosion,” Appl. Phys. Lett. 92, 161102 (2008).
[Crossref]

Electron. Lett. (1)

Y. Pastol, G. Arjavalingam, J. Halbout, and G. Kopcsay, “Characterisation of an optoelectronically pulsed broadband microwave antenna,” Electron. Lett. 24, 1318–1319 (1988).
[Crossref]

IEEE Trans. Antennas Prop. (1)

D. Schaubert, E. Kollberg, T. Korzeniowski, and T. Thungren, “Endfire tapered slot antennas on dielectric substrates,” IEEE Trans. Antennas Prop. 33, 1392–1400 (1985).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microwave Theory Tech. 39, 910–916 (1991).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

S. Sawallich, B. Globisch, C. Matheisen, M. Nagel, R. Dietz, and T. Göbel, “Photoconductive terahertz near-field detectors for operation with 1550-nm pulsed fiber lasers,” IEEE Trans. Terahertz Sci. Technol. 6, 365–370 (2016).
[Crossref]

J. Lightwave Technol. (1)

R. Smith, F. Ahmed, A. Jooshesh, J. Zhang, M. Jun, and T. Darcie, “Thz field enhancement by antenna coupling to a tapered thick slot waveguide,” J. Lightwave Technol. 32, 15878 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

Nature (1)

K. Wang and D. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[Crossref] [PubMed]

Opt. Express (3)

Proc. IEEE (2)

G. Rebeziz, “Millimeter-wave and terahertz integrated circuit antennas,” Proc. IEEE 80, 1748–1770 (1992).
[Crossref]

J. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. Mittleman, “Finite-element method simulations of guided wave phenomena at terahertz frequencies,” Proc. IEEE 95, 1624–1640 (2007).
[Crossref]

Other (4)

D. Rutledge, “Integrated Circuit Antennas,” in Infrared and Millimeter Waves, vol. 10 (Academic, 1983).

S. Gearhart, H. Ekstrom, P. Acharya, E. Kollberg, S. Jacobsson, and G. Rebeiz, “Submillimeter-wave endfire slotline antennas,” in “Antennas and Propagation Society International Symposium” (1992), pp. 18–25.

“Batop, www.batop.com ,”.

H. Zhan, R. Mendis, and D. M. Mittleman, “Thz energy confinement in finite-width parallel-plate waveguides,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Design of the PC-FS-LTSA. a) Overall structure b) Active-area to FS-LSTA c) Image of experimental structure where T≈127μm, S≈45μm, D≈85μm, L≈15mm, and θ ≈28°
Fig. 2
Fig. 2 Transient simulation with Ansys HFSS which illustrates the E-field
Fig. 3
Fig. 3 a) Experimental setup for testing the PC-FS-LTSA. The active-area consisted of a 5×5μm area biased by 20Vdc. The average optical power focused onto the transmitter and receiver were 6mW and 7mW, respectively. The iris (opening = 5mm diameter) was placed midway between the transmitter and receiver which were separated by 10cm. The optical chopper was set at 1.1kHz. The receiver was connected to the current input of a lock-in amplifier. b) Experimental and simulated response obtained from the setup
Fig. 4
Fig. 4 Transient E-field plot illustrating the Fabry-Pérot resonance. a) Thick waveguide, field profile around the source location just after excitation (t=1ps) b)Thick waveguide, field profile of guided-wave after 6ps, note that the field profile is dispersed by reflections. c) Thin waveguide, field profile around the source location just after excitation (t=1ps) d) Thin waveguide, field profile of guided-wave after 6ps, note that the field profile is relatively undispersed and confined to the waveguide.
Fig. 5
Fig. 5 The radiated temporal response sampled along the optical axis for a selection of LTSA lengths and the associated spectral response.

Metrics