Abstract

Two ∆Σ-modulated digital radio-over-fiber (DRoF) transmission systems that employ a multi-pulse Manchester encoder are proposed and experimentally evaluated. With a two-step modulation process comprised of ∆Σ modulation and multi-pulse Manchester encoding, a high frequency replica or image of a ∆Σ-digitized analog communication signal can be transmitted without significant power loss. This is achieved by exploiting the spectral characteristics of the modified Manchester code. For comparative analysis, a conventional ∆Σ-modulation-based DRoF system is also evaluated. Based on the evaluation results, the proposed DRoF systems more significantly improve the reliability and flexibility of the RoF system by providing higher power margins or by making the DRoF system implementation more cost-effective and easier to perform on account of the low-frequency requirement for electronics and optical transceivers.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental evaluation of a digitized fiber-wireless system employing sigma delta modulation

Luis M. Pessoa, Joana S. Tavares, Diogo Coelho, and Henrique M. Salgado
Opt. Express 22(14) 17508-17523 (2014)

Delta-sigma-modulated IFoF transmission system assisted by a correlative-level encoding technique

Seunghyun Jang, Bonghyuk Park, Songcheol Hong, Kwang-Seon Kim, and Kwang-Chun Lee
Opt. Express 26(23) 29916-29930 (2018)

Experimental investigation on multi-dimensional digital predistortion for multi-band radio-over-fiber systems

Hao Chen, Jianqiang Li, Kun Xu, Yinqing Pei, Yitang Dai, Feifei Yin, and Jintong Lin
Opt. Express 22(4) 4649-4661 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Y. Xu, X. Li, J. Yu, and G. K. Chang, “Simple and reconfigured single-sideband OFDM RoF system,” Opt. Express 24(20), 22830–22835 (2016).
    [Crossref] [PubMed]
  2. H. Y. Wang, Y. C. Chi, and G. R. Lin, “Remote beating of parallel or orthogonally polarized dual-wavelength optical carriers for 5G millimeter-wave radio-over-fiber link,” Opt. Express 24(16), 17654–17669 (2016).
    [Crossref] [PubMed]
  3. B. Wu, M. Zhu, J. Zhang, J. Wang, M. Xu, F. Yan, S. Jian, and G. K. Chang, “Multi-service RoF links with colorless upstream transmission based on orthogonal phase-correlated modulation,” Opt. Express 23(14), 18323–18329 (2015).
    [Crossref] [PubMed]
  4. R. Zhu, X. Zhang, D. Shen, and Y. Zhang, “Ultra broadband predistortion circuit for radio-over-fiber transmission systems,” J. Lightwave Technol. 34(22), 5137–5145 (2016).
    [Crossref]
  5. M. Sung, C. Han, S. H. Cho, H. S. Chung, and J. H. Lee, “Improvement of the transmission performance in multi-IF-over-fiber mobile fronthaul by using tone-reservation technique,” Opt. Express 23(23), 29615–29624 (2015).
    [Crossref] [PubMed]
  6. P. A. Gamage, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Design and analysis of digitized RF-over-fiber links,” J. Lightwave Technol. 27(12), 2052–2061 (2009).
    [Crossref]
  7. A. Nirmalathas, P. A. Gamage, C. Lim, D. Novak, and R. Waterhouse, “Digitized radio-over-fiber technologies for converged optical wireless access network,” J. Lightwave Technol. 28(16), 2366–2375 (2010).
    [Crossref]
  8. L. M. Pessoa, J. S. Tavares, D. Coelho, and H. M. Salgado, “Experimental evaluation of a digitized fiber-wireless system employing sigma delta modulation,” Opt. Express 22(14), 17508–17523 (2014).
    [Crossref] [PubMed]
  9. S. Jang, G. Jo, J. Jung, B. Park, and S. Hong, “A digitized IF-over-fiber transmission based on low-pass delta-sigma modulation,” IEEE Photonics Technol. Lett. 26(24), 2484–2487 (2014).
    [Crossref]
  10. J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, and G. K. Chang, “Delta-sigma modulation for digital mobile fronthaul enabling carrier aggregation of 32 4G-LTE/30 5G-FBMC signals in a single-λ 10-Gb/s IM-DD channel,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W1H–2.
    [Crossref]
  11. J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, L. Cheng, X. Ma, and G. K. Chang, “10-Gbaud OOK/PAM4 digital mobile fronthaul based on one-bit/two-bit Δ-Σ modulation supporting carrier aggregation of 32 LTE-A signals with up to 256 and 1024QAM,” in 42nd European Conference on Optical Communication (Optical Society of America, 2016), pp. 1–3.
  12. B. K. Thandri and J. Silva-Martinez, “A 63 dB SNR, 75-mW bandpass RF Σ∆ ADC at 950 MHz using 3.8-GHz clock in 0.25-μm SiGe BiCMOS technology,” IEEE J. Solid-State Circuits 42(2), 269–279 (2007).
    [Crossref]
  13. B. Park, S. Jang, P. Ostrovskyy, and J. Jung, “A high voltage swing dual-band bandpass modulator for mobile base-station,” IEEE Microw. Wirel. Compon. Lett. 23(4), 199–201 (2013).
    [Crossref]
  14. P. Ostrovskyy, H. Gustat, M. Ortmanns, and J. C. Scheytt, “A 5-Gb/s 2.1–2.2-GHz bandpass modulator for switch-mode power amplifier,” IEEE Trans. Microw. Theory Tech. 60(8), 2524–2531 (2012).
    [Crossref]
  15. T. Johnson, R. Sobot, and S. Stapleton, “Manchester encoded bandpass sigma-delta modulation for RF class D amplifiers,” IET Circuits Dev. Syst. 1(1), 21–26 (2007).
    [Crossref]
  16. G. Endoh, M. Ueda, O. Kawachi, and Y. Fujiwara, “High performance balanced type SAW filters in the range of 900 MHz and 1.9 GHz,” in IEEE Ultrasonics Symposium Proceedings (IEEE, 1997), pp. 41–44.
    [Crossref]
  17. M. K. Raja, D. L. Yan, and A. B. Ajjikuttira, “A 1.4-psec Jitter 2.5-Gb/s CDR with wide acquisition range in 0.18-μm CMOS,” in ESSCIRC (2007), pp. 524–527.
  18. Maxim Integrated, “Multirate Clock and Data Recovery with Limiting Amplifier,” MAX3872 datasheet, Rev 3, 2/07.

2016 (3)

2015 (2)

2014 (2)

L. M. Pessoa, J. S. Tavares, D. Coelho, and H. M. Salgado, “Experimental evaluation of a digitized fiber-wireless system employing sigma delta modulation,” Opt. Express 22(14), 17508–17523 (2014).
[Crossref] [PubMed]

S. Jang, G. Jo, J. Jung, B. Park, and S. Hong, “A digitized IF-over-fiber transmission based on low-pass delta-sigma modulation,” IEEE Photonics Technol. Lett. 26(24), 2484–2487 (2014).
[Crossref]

2013 (1)

B. Park, S. Jang, P. Ostrovskyy, and J. Jung, “A high voltage swing dual-band bandpass modulator for mobile base-station,” IEEE Microw. Wirel. Compon. Lett. 23(4), 199–201 (2013).
[Crossref]

2012 (1)

P. Ostrovskyy, H. Gustat, M. Ortmanns, and J. C. Scheytt, “A 5-Gb/s 2.1–2.2-GHz bandpass modulator for switch-mode power amplifier,” IEEE Trans. Microw. Theory Tech. 60(8), 2524–2531 (2012).
[Crossref]

2010 (1)

2009 (1)

2007 (2)

T. Johnson, R. Sobot, and S. Stapleton, “Manchester encoded bandpass sigma-delta modulation for RF class D amplifiers,” IET Circuits Dev. Syst. 1(1), 21–26 (2007).
[Crossref]

B. K. Thandri and J. Silva-Martinez, “A 63 dB SNR, 75-mW bandpass RF Σ∆ ADC at 950 MHz using 3.8-GHz clock in 0.25-μm SiGe BiCMOS technology,” IEEE J. Solid-State Circuits 42(2), 269–279 (2007).
[Crossref]

Chang, G. K.

Y. Xu, X. Li, J. Yu, and G. K. Chang, “Simple and reconfigured single-sideband OFDM RoF system,” Opt. Express 24(20), 22830–22835 (2016).
[Crossref] [PubMed]

B. Wu, M. Zhu, J. Zhang, J. Wang, M. Xu, F. Yan, S. Jian, and G. K. Chang, “Multi-service RoF links with colorless upstream transmission based on orthogonal phase-correlated modulation,” Opt. Express 23(14), 18323–18329 (2015).
[Crossref] [PubMed]

J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, and G. K. Chang, “Delta-sigma modulation for digital mobile fronthaul enabling carrier aggregation of 32 4G-LTE/30 5G-FBMC signals in a single-λ 10-Gb/s IM-DD channel,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W1H–2.
[Crossref]

J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, L. Cheng, X. Ma, and G. K. Chang, “10-Gbaud OOK/PAM4 digital mobile fronthaul based on one-bit/two-bit Δ-Σ modulation supporting carrier aggregation of 32 LTE-A signals with up to 256 and 1024QAM,” in 42nd European Conference on Optical Communication (Optical Society of America, 2016), pp. 1–3.

Cheng, L.

J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, L. Cheng, X. Ma, and G. K. Chang, “10-Gbaud OOK/PAM4 digital mobile fronthaul based on one-bit/two-bit Δ-Σ modulation supporting carrier aggregation of 32 LTE-A signals with up to 256 and 1024QAM,” in 42nd European Conference on Optical Communication (Optical Society of America, 2016), pp. 1–3.

Chi, Y. C.

Cho, S. H.

Chung, H. S.

Coelho, D.

Endoh, G.

G. Endoh, M. Ueda, O. Kawachi, and Y. Fujiwara, “High performance balanced type SAW filters in the range of 900 MHz and 1.9 GHz,” in IEEE Ultrasonics Symposium Proceedings (IEEE, 1997), pp. 41–44.
[Crossref]

Fujiwara, Y.

G. Endoh, M. Ueda, O. Kawachi, and Y. Fujiwara, “High performance balanced type SAW filters in the range of 900 MHz and 1.9 GHz,” in IEEE Ultrasonics Symposium Proceedings (IEEE, 1997), pp. 41–44.
[Crossref]

Gamage, P. A.

Gustat, H.

P. Ostrovskyy, H. Gustat, M. Ortmanns, and J. C. Scheytt, “A 5-Gb/s 2.1–2.2-GHz bandpass modulator for switch-mode power amplifier,” IEEE Trans. Microw. Theory Tech. 60(8), 2524–2531 (2012).
[Crossref]

Han, C.

Hong, S.

S. Jang, G. Jo, J. Jung, B. Park, and S. Hong, “A digitized IF-over-fiber transmission based on low-pass delta-sigma modulation,” IEEE Photonics Technol. Lett. 26(24), 2484–2487 (2014).
[Crossref]

Jang, S.

S. Jang, G. Jo, J. Jung, B. Park, and S. Hong, “A digitized IF-over-fiber transmission based on low-pass delta-sigma modulation,” IEEE Photonics Technol. Lett. 26(24), 2484–2487 (2014).
[Crossref]

B. Park, S. Jang, P. Ostrovskyy, and J. Jung, “A high voltage swing dual-band bandpass modulator for mobile base-station,” IEEE Microw. Wirel. Compon. Lett. 23(4), 199–201 (2013).
[Crossref]

Jian, S.

Jo, G.

S. Jang, G. Jo, J. Jung, B. Park, and S. Hong, “A digitized IF-over-fiber transmission based on low-pass delta-sigma modulation,” IEEE Photonics Technol. Lett. 26(24), 2484–2487 (2014).
[Crossref]

Johnson, T.

T. Johnson, R. Sobot, and S. Stapleton, “Manchester encoded bandpass sigma-delta modulation for RF class D amplifiers,” IET Circuits Dev. Syst. 1(1), 21–26 (2007).
[Crossref]

Jung, J.

S. Jang, G. Jo, J. Jung, B. Park, and S. Hong, “A digitized IF-over-fiber transmission based on low-pass delta-sigma modulation,” IEEE Photonics Technol. Lett. 26(24), 2484–2487 (2014).
[Crossref]

B. Park, S. Jang, P. Ostrovskyy, and J. Jung, “A high voltage swing dual-band bandpass modulator for mobile base-station,” IEEE Microw. Wirel. Compon. Lett. 23(4), 199–201 (2013).
[Crossref]

Kawachi, O.

G. Endoh, M. Ueda, O. Kawachi, and Y. Fujiwara, “High performance balanced type SAW filters in the range of 900 MHz and 1.9 GHz,” in IEEE Ultrasonics Symposium Proceedings (IEEE, 1997), pp. 41–44.
[Crossref]

Lee, J. H.

Li, X.

Lim, C.

Lin, G. R.

Lu, F.

J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, L. Cheng, X. Ma, and G. K. Chang, “10-Gbaud OOK/PAM4 digital mobile fronthaul based on one-bit/two-bit Δ-Σ modulation supporting carrier aggregation of 32 LTE-A signals with up to 256 and 1024QAM,” in 42nd European Conference on Optical Communication (Optical Society of America, 2016), pp. 1–3.

J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, and G. K. Chang, “Delta-sigma modulation for digital mobile fronthaul enabling carrier aggregation of 32 4G-LTE/30 5G-FBMC signals in a single-λ 10-Gb/s IM-DD channel,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W1H–2.
[Crossref]

Ma, X.

J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, L. Cheng, X. Ma, and G. K. Chang, “10-Gbaud OOK/PAM4 digital mobile fronthaul based on one-bit/two-bit Δ-Σ modulation supporting carrier aggregation of 32 LTE-A signals with up to 256 and 1024QAM,” in 42nd European Conference on Optical Communication (Optical Society of America, 2016), pp. 1–3.

Nirmalathas, A.

Novak, D.

Ortmanns, M.

P. Ostrovskyy, H. Gustat, M. Ortmanns, and J. C. Scheytt, “A 5-Gb/s 2.1–2.2-GHz bandpass modulator for switch-mode power amplifier,” IEEE Trans. Microw. Theory Tech. 60(8), 2524–2531 (2012).
[Crossref]

Ostrovskyy, P.

B. Park, S. Jang, P. Ostrovskyy, and J. Jung, “A high voltage swing dual-band bandpass modulator for mobile base-station,” IEEE Microw. Wirel. Compon. Lett. 23(4), 199–201 (2013).
[Crossref]

P. Ostrovskyy, H. Gustat, M. Ortmanns, and J. C. Scheytt, “A 5-Gb/s 2.1–2.2-GHz bandpass modulator for switch-mode power amplifier,” IEEE Trans. Microw. Theory Tech. 60(8), 2524–2531 (2012).
[Crossref]

Park, B.

S. Jang, G. Jo, J. Jung, B. Park, and S. Hong, “A digitized IF-over-fiber transmission based on low-pass delta-sigma modulation,” IEEE Photonics Technol. Lett. 26(24), 2484–2487 (2014).
[Crossref]

B. Park, S. Jang, P. Ostrovskyy, and J. Jung, “A high voltage swing dual-band bandpass modulator for mobile base-station,” IEEE Microw. Wirel. Compon. Lett. 23(4), 199–201 (2013).
[Crossref]

Pessoa, L. M.

Salgado, H. M.

Scheytt, J. C.

P. Ostrovskyy, H. Gustat, M. Ortmanns, and J. C. Scheytt, “A 5-Gb/s 2.1–2.2-GHz bandpass modulator for switch-mode power amplifier,” IEEE Trans. Microw. Theory Tech. 60(8), 2524–2531 (2012).
[Crossref]

Shen, D.

Silva-Martinez, J.

B. K. Thandri and J. Silva-Martinez, “A 63 dB SNR, 75-mW bandpass RF Σ∆ ADC at 950 MHz using 3.8-GHz clock in 0.25-μm SiGe BiCMOS technology,” IEEE J. Solid-State Circuits 42(2), 269–279 (2007).
[Crossref]

Sobot, R.

T. Johnson, R. Sobot, and S. Stapleton, “Manchester encoded bandpass sigma-delta modulation for RF class D amplifiers,” IET Circuits Dev. Syst. 1(1), 21–26 (2007).
[Crossref]

Stapleton, S.

T. Johnson, R. Sobot, and S. Stapleton, “Manchester encoded bandpass sigma-delta modulation for RF class D amplifiers,” IET Circuits Dev. Syst. 1(1), 21–26 (2007).
[Crossref]

Sung, M.

Tavares, J. S.

Thandri, B. K.

B. K. Thandri and J. Silva-Martinez, “A 63 dB SNR, 75-mW bandpass RF Σ∆ ADC at 950 MHz using 3.8-GHz clock in 0.25-μm SiGe BiCMOS technology,” IEEE J. Solid-State Circuits 42(2), 269–279 (2007).
[Crossref]

Ueda, M.

G. Endoh, M. Ueda, O. Kawachi, and Y. Fujiwara, “High performance balanced type SAW filters in the range of 900 MHz and 1.9 GHz,” in IEEE Ultrasonics Symposium Proceedings (IEEE, 1997), pp. 41–44.
[Crossref]

Wang, H. Y.

Wang, J.

B. Wu, M. Zhu, J. Zhang, J. Wang, M. Xu, F. Yan, S. Jian, and G. K. Chang, “Multi-service RoF links with colorless upstream transmission based on orthogonal phase-correlated modulation,” Opt. Express 23(14), 18323–18329 (2015).
[Crossref] [PubMed]

J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, and G. K. Chang, “Delta-sigma modulation for digital mobile fronthaul enabling carrier aggregation of 32 4G-LTE/30 5G-FBMC signals in a single-λ 10-Gb/s IM-DD channel,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W1H–2.
[Crossref]

J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, L. Cheng, X. Ma, and G. K. Chang, “10-Gbaud OOK/PAM4 digital mobile fronthaul based on one-bit/two-bit Δ-Σ modulation supporting carrier aggregation of 32 LTE-A signals with up to 256 and 1024QAM,” in 42nd European Conference on Optical Communication (Optical Society of America, 2016), pp. 1–3.

Waterhouse, R.

Wu, B.

Xu, M.

B. Wu, M. Zhu, J. Zhang, J. Wang, M. Xu, F. Yan, S. Jian, and G. K. Chang, “Multi-service RoF links with colorless upstream transmission based on orthogonal phase-correlated modulation,” Opt. Express 23(14), 18323–18329 (2015).
[Crossref] [PubMed]

J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, and G. K. Chang, “Delta-sigma modulation for digital mobile fronthaul enabling carrier aggregation of 32 4G-LTE/30 5G-FBMC signals in a single-λ 10-Gb/s IM-DD channel,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W1H–2.
[Crossref]

J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, L. Cheng, X. Ma, and G. K. Chang, “10-Gbaud OOK/PAM4 digital mobile fronthaul based on one-bit/two-bit Δ-Σ modulation supporting carrier aggregation of 32 LTE-A signals with up to 256 and 1024QAM,” in 42nd European Conference on Optical Communication (Optical Society of America, 2016), pp. 1–3.

Xu, Y.

Yan, F.

Ying, K.

J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, and G. K. Chang, “Delta-sigma modulation for digital mobile fronthaul enabling carrier aggregation of 32 4G-LTE/30 5G-FBMC signals in a single-λ 10-Gb/s IM-DD channel,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W1H–2.
[Crossref]

J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, L. Cheng, X. Ma, and G. K. Chang, “10-Gbaud OOK/PAM4 digital mobile fronthaul based on one-bit/two-bit Δ-Σ modulation supporting carrier aggregation of 32 LTE-A signals with up to 256 and 1024QAM,” in 42nd European Conference on Optical Communication (Optical Society of America, 2016), pp. 1–3.

Yu, J.

Yu, Z.

J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, L. Cheng, X. Ma, and G. K. Chang, “10-Gbaud OOK/PAM4 digital mobile fronthaul based on one-bit/two-bit Δ-Σ modulation supporting carrier aggregation of 32 LTE-A signals with up to 256 and 1024QAM,” in 42nd European Conference on Optical Communication (Optical Society of America, 2016), pp. 1–3.

J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, and G. K. Chang, “Delta-sigma modulation for digital mobile fronthaul enabling carrier aggregation of 32 4G-LTE/30 5G-FBMC signals in a single-λ 10-Gb/s IM-DD channel,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W1H–2.
[Crossref]

Zhang, J.

B. Wu, M. Zhu, J. Zhang, J. Wang, M. Xu, F. Yan, S. Jian, and G. K. Chang, “Multi-service RoF links with colorless upstream transmission based on orthogonal phase-correlated modulation,” Opt. Express 23(14), 18323–18329 (2015).
[Crossref] [PubMed]

J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, L. Cheng, X. Ma, and G. K. Chang, “10-Gbaud OOK/PAM4 digital mobile fronthaul based on one-bit/two-bit Δ-Σ modulation supporting carrier aggregation of 32 LTE-A signals with up to 256 and 1024QAM,” in 42nd European Conference on Optical Communication (Optical Society of America, 2016), pp. 1–3.

J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, and G. K. Chang, “Delta-sigma modulation for digital mobile fronthaul enabling carrier aggregation of 32 4G-LTE/30 5G-FBMC signals in a single-λ 10-Gb/s IM-DD channel,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W1H–2.
[Crossref]

Zhang, X.

Zhang, Y.

Zhu, M.

Zhu, R.

IEEE J. Solid-State Circuits (1)

B. K. Thandri and J. Silva-Martinez, “A 63 dB SNR, 75-mW bandpass RF Σ∆ ADC at 950 MHz using 3.8-GHz clock in 0.25-μm SiGe BiCMOS technology,” IEEE J. Solid-State Circuits 42(2), 269–279 (2007).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

B. Park, S. Jang, P. Ostrovskyy, and J. Jung, “A high voltage swing dual-band bandpass modulator for mobile base-station,” IEEE Microw. Wirel. Compon. Lett. 23(4), 199–201 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Jang, G. Jo, J. Jung, B. Park, and S. Hong, “A digitized IF-over-fiber transmission based on low-pass delta-sigma modulation,” IEEE Photonics Technol. Lett. 26(24), 2484–2487 (2014).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

P. Ostrovskyy, H. Gustat, M. Ortmanns, and J. C. Scheytt, “A 5-Gb/s 2.1–2.2-GHz bandpass modulator for switch-mode power amplifier,” IEEE Trans. Microw. Theory Tech. 60(8), 2524–2531 (2012).
[Crossref]

IET Circuits Dev. Syst. (1)

T. Johnson, R. Sobot, and S. Stapleton, “Manchester encoded bandpass sigma-delta modulation for RF class D amplifiers,” IET Circuits Dev. Syst. 1(1), 21–26 (2007).
[Crossref]

J. Lightwave Technol. (3)

Opt. Express (5)

Other (5)

G. Endoh, M. Ueda, O. Kawachi, and Y. Fujiwara, “High performance balanced type SAW filters in the range of 900 MHz and 1.9 GHz,” in IEEE Ultrasonics Symposium Proceedings (IEEE, 1997), pp. 41–44.
[Crossref]

M. K. Raja, D. L. Yan, and A. B. Ajjikuttira, “A 1.4-psec Jitter 2.5-Gb/s CDR with wide acquisition range in 0.18-μm CMOS,” in ESSCIRC (2007), pp. 524–527.

Maxim Integrated, “Multirate Clock and Data Recovery with Limiting Amplifier,” MAX3872 datasheet, Rev 3, 2/07.

J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, and G. K. Chang, “Delta-sigma modulation for digital mobile fronthaul enabling carrier aggregation of 32 4G-LTE/30 5G-FBMC signals in a single-λ 10-Gb/s IM-DD channel,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W1H–2.
[Crossref]

J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, L. Cheng, X. Ma, and G. K. Chang, “10-Gbaud OOK/PAM4 digital mobile fronthaul based on one-bit/two-bit Δ-Σ modulation supporting carrier aggregation of 32 LTE-A signals with up to 256 and 1024QAM,” in 42nd European Conference on Optical Communication (Optical Society of America, 2016), pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Block diagram of a conventional analog radio-over-fiber system.
Fig. 2
Fig. 2 Block diagram of a band-pass ∆Σ-modulated DRoF system.
Fig. 3
Fig. 3 Examples of N -pulse Manchester encoding.
Fig. 4
Fig. 4 Normalized power spectral densities of N-pulse Manchester encoding with N values of 1, 2, and 3.
Fig. 5
Fig. 5 Proposed DRoF system with N-pulse Manchester encoder at CU (type-I).
Fig. 6
Fig. 6 Proposed DRoF system with N-pulse Manchester encoder at RU (type-II).
Fig. 7
Fig. 7 Experimental setup for the conventional band-pass ∆Σ-based DRoF system and type-I/II DRoF systems.
Fig. 8
Fig. 8 LTE signal waveforms applied to ∆Σ modulators and their corresponding ∆Σ-digitized bit streams at CU in the conventional ∆Σ modulation-based DRoF and proposed type-I and II DRoF systems (N = 1, 2, and 3).
Fig. 9
Fig. 9 Measured BER curves and EVM values of the proposed type-I/II DRoF systems and the conventional ∆Σ modulation-based DRoF link.
Fig. 10
Fig. 10 Signal spectra at the O/E converter and the hybrid CDR outputs (PPG #2) at RU in the conventional ∆Σ-based DRoF system and the proposed type-I DRoF systems (N = 1, 2, and 3).
Fig. 11
Fig. 11 Signal spectra at the O/E converter and the hybrid CDR outputs (PPG #2) at RU in the proposed type-II DRoF systems (N = 1, 2, and 3).
Fig. 12
Fig. 12 Measured SNRs of LTE signals at 879 MHz at the O/E converter and the hybrid CDR/N-pulse Manchester encoder outputs with respect to received optical power levels.
Fig. 13
Fig. 13 Experimental setup for the evaluation of the jitter effects on the proposed type-I and II DRoF systems.
Fig. 14
Fig. 14 Measured SNRs with respect to the RMS jitter and the measured spectra for the proposed DRoF systems with N of 1 to 3.

Tables (2)

Tables Icon

Table 1 Pros and cons of the conventional DRoF and the proposed type-I/II DRoF systems.

Tables Icon

Table 2 Important parameters of the conventional band-pass ∆Σ-based DRoF and type-I/II DRoF transmission systems in the experimental setup.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S Npulse_Manchester (f)= | T N e jπ( fT0.5 ) sin( πfT 2N ) πfT 2N k=1 N sin( 2πfT a k ) | 2
f RF = 1 2 N f MAN + f IF =N f DSM + f IF
f RF = 1 2 N f MAN f IF =N f DSM f IF .
OSR= f DSM 2B ,
N MAX f RF f IF OS R req 2B
N MAX f RF + f IF OS R req 2B

Metrics