Abstract

A new balanced-path homodyne I/Q-interferometer scheme using a specially designed polarizing beam displacer (PBD) is described. The PBD is designed for splitting the s- and p-polarization components of the input beam into two parallel output beams which can be used as two beams of a balanced-path interferometer. The interferometer has a very simple optical arrangement because all of seven optical components used for interfacing two arms of the interferometer into the I/Q-demodulator in the previous schemes are replaced by the single PBD. A simple optical arrangement makes the interferometer less susceptible to environmental perturbations. It will be shown that the RMS fluctuations during a long-term phase noise measurement for 24 hours is ~7 × 10−5 rad. in an open lab environment. In addition, the separation between two arms of the interferometer is adjustable which makes the interferometer very flexible for many sensor applications. Potential use of our new interferometer as an interferometric sensor will be demonstrated by employing a displacement sensor arrangement.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Scanning balanced-path homodyne I/Q-interferometer scheme and its applications

Seang Hor Eang, Seunghyun Yoon, Jun Gyu Park, and Kyuman Cho
Opt. Lett. 40(11) 2457-2460 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. C. Davis, “Building small, extremely sensitive practical laser interferometers for sensor applications,” Nucl. Phys. B 6, 290–297 (1989).
    [Crossref]
  2. M. J. Collet, R. Loudon, and C. W. Gardiner, “Quantum theory of optical homodyne and heterodyne detection,” J. Mod. Opt. 34(6-7), 881–902 (1987).
    [Crossref]
  3. H. P. Yuen and V. W. S. Chan, “Noise in homodyne and heterodyne detection,” Opt. Lett. 8(3), 177–179 (1983).
    [Crossref] [PubMed]
  4. Y. Hori, A. Hirai, and K. Minoshima, “Prism-pair interferometry by homodyne interferometers with a common light source for high-accuracy measurement of the absolute refractive index of glasses,” Appl. Opt. 50(8), 1190–1196 (2011).
    [Crossref] [PubMed]
  5. J. G. Park and K. Cho, “High-precision tilt sensor using a folded Mach-Zehnder geometry in-phase and quadrature interferometer,” Appl. Opt. 55(9), 2155–2159 (2016).
    [Crossref] [PubMed]
  6. K. Cho, D. L. Mazzoni, and C. C. Davis, “Measurement of the local slope of a surface by vibrating-sample heterodyne interferometry: a new method in scanning microscopy,” Opt. Lett. 18(3), 232–234 (1993).
    [Crossref] [PubMed]
  7. H. Jeong, J. H. Kim, and K. Cho, “Complete mapping of complex reflection coefficient of a surface using a scanning homodyne multiport interferometer,” Opt. Commun. 204(1-6), 45–52 (2002).
    [Crossref]
  8. K. H. Kwon, B. S. Kim, and K. Cho, “A new scanning heterodyne interferometer scheme for mapping both surface structure and effective local reflection coefficient,” Opt. Express 16(17), 13456–13464 (2008).
    [Crossref] [PubMed]
  9. Y. Park, K. E. Kim, S. J. Kim, J. G. Park, Y. H. Joo, B. H. Shin, S. Y. Lee, and K. Cho, “Wide measurement range scanning heterodyne interferometer utilizing astigmatic position sensing scheme,” Opt. Lett. 36(16), 3112–3114 (2011).
    [Crossref] [PubMed]
  10. S. Yoon, Y. Park, and K. Cho, “A new balanced-path heterodyne I/Q-interferometer scheme for low environmental noise, high sensitivity phase measurements for both reflection and transmission geometry,” Opt. Express 21(18), 20722–20729 (2013).
    [Crossref] [PubMed]
  11. S. H. Eang, S. Yoon, J. G. Park, and K. Cho, “Scanning balanced-path homodyne I/Q-interferometer scheme and its applications,” Opt. Lett. 40(11), 2457–2460 (2015).
    [Crossref] [PubMed]
  12. Y. Park and K. Cho, “Heterodyne interferometer scheme using a double pass in an acousto-optic modulator,” Opt. Lett. 36(3), 331–333 (2011).
    [Crossref] [PubMed]
  13. C. C. Chou, S. Y. Lu, T. Lin, S. H. Lu, and R. J. Jeng, “Environment-noise-free optical heterodyne retardation measurement using a double-pass acousto-optic frequency shifter,” Opt. Lett. 41(22), 5138–5141 (2016).
    [Crossref] [PubMed]
  14. R. C. Twu and J. S. Wang, “Reflection-induced linear polarization rotation and phase modulation between orthogonal waves for refractive index variation measurement,” Opt. Lett. 41(7), 1692–1695 (2016).
    [Crossref] [PubMed]

2016 (3)

2015 (1)

2013 (1)

2011 (3)

2008 (1)

2002 (1)

H. Jeong, J. H. Kim, and K. Cho, “Complete mapping of complex reflection coefficient of a surface using a scanning homodyne multiport interferometer,” Opt. Commun. 204(1-6), 45–52 (2002).
[Crossref]

1993 (1)

1989 (1)

C. C. Davis, “Building small, extremely sensitive practical laser interferometers for sensor applications,” Nucl. Phys. B 6, 290–297 (1989).
[Crossref]

1987 (1)

M. J. Collet, R. Loudon, and C. W. Gardiner, “Quantum theory of optical homodyne and heterodyne detection,” J. Mod. Opt. 34(6-7), 881–902 (1987).
[Crossref]

1983 (1)

Chan, V. W. S.

Cho, K.

J. G. Park and K. Cho, “High-precision tilt sensor using a folded Mach-Zehnder geometry in-phase and quadrature interferometer,” Appl. Opt. 55(9), 2155–2159 (2016).
[Crossref] [PubMed]

S. H. Eang, S. Yoon, J. G. Park, and K. Cho, “Scanning balanced-path homodyne I/Q-interferometer scheme and its applications,” Opt. Lett. 40(11), 2457–2460 (2015).
[Crossref] [PubMed]

S. Yoon, Y. Park, and K. Cho, “A new balanced-path heterodyne I/Q-interferometer scheme for low environmental noise, high sensitivity phase measurements for both reflection and transmission geometry,” Opt. Express 21(18), 20722–20729 (2013).
[Crossref] [PubMed]

Y. Park and K. Cho, “Heterodyne interferometer scheme using a double pass in an acousto-optic modulator,” Opt. Lett. 36(3), 331–333 (2011).
[Crossref] [PubMed]

Y. Park, K. E. Kim, S. J. Kim, J. G. Park, Y. H. Joo, B. H. Shin, S. Y. Lee, and K. Cho, “Wide measurement range scanning heterodyne interferometer utilizing astigmatic position sensing scheme,” Opt. Lett. 36(16), 3112–3114 (2011).
[Crossref] [PubMed]

K. H. Kwon, B. S. Kim, and K. Cho, “A new scanning heterodyne interferometer scheme for mapping both surface structure and effective local reflection coefficient,” Opt. Express 16(17), 13456–13464 (2008).
[Crossref] [PubMed]

H. Jeong, J. H. Kim, and K. Cho, “Complete mapping of complex reflection coefficient of a surface using a scanning homodyne multiport interferometer,” Opt. Commun. 204(1-6), 45–52 (2002).
[Crossref]

K. Cho, D. L. Mazzoni, and C. C. Davis, “Measurement of the local slope of a surface by vibrating-sample heterodyne interferometry: a new method in scanning microscopy,” Opt. Lett. 18(3), 232–234 (1993).
[Crossref] [PubMed]

Chou, C. C.

Collet, M. J.

M. J. Collet, R. Loudon, and C. W. Gardiner, “Quantum theory of optical homodyne and heterodyne detection,” J. Mod. Opt. 34(6-7), 881–902 (1987).
[Crossref]

Davis, C. C.

Eang, S. H.

Gardiner, C. W.

M. J. Collet, R. Loudon, and C. W. Gardiner, “Quantum theory of optical homodyne and heterodyne detection,” J. Mod. Opt. 34(6-7), 881–902 (1987).
[Crossref]

Hirai, A.

Hori, Y.

Jeng, R. J.

Jeong, H.

H. Jeong, J. H. Kim, and K. Cho, “Complete mapping of complex reflection coefficient of a surface using a scanning homodyne multiport interferometer,” Opt. Commun. 204(1-6), 45–52 (2002).
[Crossref]

Joo, Y. H.

Kim, B. S.

Kim, J. H.

H. Jeong, J. H. Kim, and K. Cho, “Complete mapping of complex reflection coefficient of a surface using a scanning homodyne multiport interferometer,” Opt. Commun. 204(1-6), 45–52 (2002).
[Crossref]

Kim, K. E.

Kim, S. J.

Kwon, K. H.

Lee, S. Y.

Lin, T.

Loudon, R.

M. J. Collet, R. Loudon, and C. W. Gardiner, “Quantum theory of optical homodyne and heterodyne detection,” J. Mod. Opt. 34(6-7), 881–902 (1987).
[Crossref]

Lu, S. H.

Lu, S. Y.

Mazzoni, D. L.

Minoshima, K.

Park, J. G.

Park, Y.

Shin, B. H.

Twu, R. C.

Wang, J. S.

Yoon, S.

Yuen, H. P.

Appl. Opt. (2)

J. Mod. Opt. (1)

M. J. Collet, R. Loudon, and C. W. Gardiner, “Quantum theory of optical homodyne and heterodyne detection,” J. Mod. Opt. 34(6-7), 881–902 (1987).
[Crossref]

Nucl. Phys. B (1)

C. C. Davis, “Building small, extremely sensitive practical laser interferometers for sensor applications,” Nucl. Phys. B 6, 290–297 (1989).
[Crossref]

Opt. Commun. (1)

H. Jeong, J. H. Kim, and K. Cho, “Complete mapping of complex reflection coefficient of a surface using a scanning homodyne multiport interferometer,” Opt. Commun. 204(1-6), 45–52 (2002).
[Crossref]

Opt. Express (2)

Opt. Lett. (7)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The optical layout of the designed PBD (a), and a commercial beam displacer (b).
Fig. 2
Fig. 2 Experimental arrangement. The TMA for a displacement sensor arrangement and OMA for noise evaluation are shown in the dotted rectangle (a) and (b), respectively. A schematic of optical arrangement of the homodyne I/Q-demodulator is shown in (c).
Fig. 3
Fig. 3 Measured signal for a small amplitude vibration of the TM mounted on the PZT stage.
Fig. 4
Fig. 4 Frequency spectra representing the common vibration rejection at 40 Hz: the gray (red online) and black traces represent the frequency spectra by using the TMA shown in Fig. 2.(a) and OMA shown in Fig. 2.(b), respectively.
Fig. 5
Fig. 5 Spectral noise measurements: the gray (red online) and black trace represent the frequency spectra represent the frequency spectra for TMA and OMA, respectively, when all moving parts are locked.
Fig. 6
Fig. 6 A long-term stability measurement results for 24 hours.
Fig. 7
Fig. 7 A long stroke displacement measurement result.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

θ= 45 o tan 1 ( 2 2n 2 ).
υ DA1 = R 2 P S P R cosΔϕ.
υ DA2 = R 2 P S P R sinΔϕ.
Δϕ= tan 1 υ DA2 υ DA1 .
( υ DA1 ) 2 + ( υ DA2 ) 2 = R 2 P S P R .
Δ l i = λ 4π ( Δ ϕ i Δ ϕ i1 )= λ 4π ( ϕ Pi ϕ P( i1 ) ),

Metrics