Abstract

We compare a femtosecond laser induced modification in silica matrices with three different degrees of porosity. In single pulse regime, the decrease of substrate density from fused silica to high-silica porous glass and to silica aerogel glass results in tenfold increase of laser affected region with the formation of a symmetric cavity surrounded by the compressed silica shell with pearl like structures. In multi-pulse regime, if the cavity produced by the first pulse is relatively large, the subsequent pulses do not cause further modifications. If not, the transition from void to the anisotropic structure with the optical axis oriented parallel to the incident polarization is observed. The maximum retardance value achieved in porous glass is twofold higher than in fused silica, and tenfold greater than in aerogel. The polarization sensitive structuring in porous glass by two pulses of ultrafast laser irradiation is demonstrated, as well as no observable stress is generated at any conditions.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Void-nanograting transition by ultrashort laser pulse irradiation in silica glass

Ye Dai, Aabid Patel, Juan Song, Martynas Beresna, and Peter G. Kazansky
Opt. Express 24(17) 19344-19353 (2016)

Stress induced birefringence tuning in femtosecond laser fabricated waveguides in fused silica

Luís A. Fernandes, Jason R. Grenier, Peter R. Herman, J. Stewart Aitchison, and Paulo V. S. Marques
Opt. Express 20(22) 24103-24114 (2012)

Laser induced nanogratings beyond fused silica - periodic nanostructures in borosilicate glasses and ULE™

Sören Richter, Christopher Miese, Sven Döring, Felix Zimmermann, Michael J. Withford, Andreas Tünnermann, and Stefan Nolte
Opt. Mater. Express 3(8) 1161-1166 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  2. M. Beresna, M. Gecevičius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1(4), 783–795 (2011).
    [Crossref]
  3. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref] [PubMed]
  4. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
    [Crossref] [PubMed]
  5. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12(10), 2120–2129 (2004).
    [Crossref] [PubMed]
  6. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21(24), 2023–2025 (1996).
    [Crossref] [PubMed]
  7. Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
    [Crossref] [PubMed]
  8. J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
    [Crossref] [PubMed]
  9. J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” in Laser-Based Micro- and Nanoprocessing X, U. Klotzbach, K. Washio, and C. B. Arnold, eds. (2016), p. 97360U.
  10. M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293 (2014).
    [Crossref]
  11. R. Drevinskas, M. Beresna, J. Zhang, A. G. Kazanskii, and P. G. Kazansky, “Ultrafast laser‐induced metasurfaces for geometric phase manipulation,” Adv. Opt. Mater. 5(1), 1600575 (2017).
    [Crossref]
  12. S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
    [Crossref] [PubMed]
  13. P. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
    [Crossref]
  14. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [Crossref] [PubMed]
  15. E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett. 29(1), 119–121 (2004).
    [Crossref] [PubMed]
  16. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
    [Crossref]
  17. J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [Invited],” Opt. Mater. Express 1(5), 998 (2011).
    [Crossref]
  18. M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
    [Crossref]
  19. S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica - periodic nanostructures in borosilicate glasses and ULETM,” Opt. Mater. Express 3(8), 1161 (2013).
    [Crossref]
  20. M. Lancry, J. Canning, K. Cook, M. Heili, D. R. Neuville, and B. Poumellec, “Nanoscale femtosecond laser milling and control of nanoporosity in the normal and anomalous regimes of GeO2-SiO2 glasses,” Opt. Mater. Express 6(2), 321 (2016).
    [Crossref]
  21. S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaite, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
    [Crossref]
  22. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
    [Crossref] [PubMed]
  23. M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101(5), 53120 (2012).
    [Crossref]
  24. F. Liang, R. Vallée, and S. Chin, “Physical evolution of nanograting inscription on the surface of fused silica,” Opt. Mater. Express 2(7), 1244–1250 (2012).
    [Crossref]
  25. Y. Liao, J. Ni, L. Qiao, M. Huang, Y. Bellouard, K. Sugioka, and Y. Cheng, “High-fidelity visualization of formation of volume nanogratings in porous glass by femtosecond laser irradiation,” Optica 2(4), 329 (2015).
    [Crossref]
  26. F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “The onset of ultrashort pulse-induced nanogratings,” Laser Photonics Rev. 8, 1–8 (2016).
  27. A. Rudenko, J.-P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 75427 (2016).
    [Crossref]
  28. Y. Liao, Y. Shen, L. Qiao, D. Chen, Y. Cheng, K. Sugioka, and K. Midorikawa, “Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes,” Opt. Lett. 38(2), 187–189 (2013).
    [Crossref] [PubMed]
  29. Y. Liao, W. Pan, Y. Cui, L. Qiao, Y. Bellouard, K. Sugioka, and Y. Cheng, “Formation of in-volume nanogratings with sub-100-nm periods in glass by femtosecond laser irradiation,” Opt. Lett. 40(15), 3623–3626 (2015).
    [Crossref] [PubMed]
  30. A. Soleimani Dorcheh and M. H. Abbasi, “Silica aerogel; synthesis, properties and characterization,” J. Mater. Process. Technol. 199(1-3), 10–26 (2008).
    [Crossref]
  31. J. Sun, J. P. Longtin, and P. M. Norris, “Ultrafast laser micromachining of silica aerogels,” J. Non-Cryst. Solids 281(1-3), 39–47 (2001).
    [Crossref]
  32. B. Yalizay, Y. Morova, K. Dincer, Y. Ozbakir, A. Jonas, C. Erkey, A. Kiraz, and S. Akturk, “Versatile liquid-core optofluidic waveguides fabricated in hydrophobic silica aerogels by femtosecond-laser ablation,” Opt. Mater. (Amst). (2015).
  33. E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882–884 (1997).
    [Crossref]
  34. S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett. 88(20), 38–41 (2006).
    [Crossref]
  35. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
    [Crossref] [PubMed]
  36. L. Rapp, B. Haberl, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Fundamentals of laser-assisted micro- and nanotechnologies,” 195, 3–27 (2014).
  37. A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 41911 (2009).
    [Crossref]
  38. R. Stoian, K. Mishchik, G. Cheng, C. Mauclair, C. D’Amico, J. P. Colombier, and M. Zamfirescu, “Investigation and control of ultrafast laser-induced isotropic and anisotropic nanoscale-modulated index patterns in bulk fused silica,” Opt. Mater. Express 3(10), 1755 (2013).
    [Crossref]
  39. G. Poelz and R. Riethmüller, “Preparation of silica aerogel for Cherenkov counters,” Nucl. Instrum. Methods Phys. Res. 195(3), 491–503 (1982).
    [Crossref]
  40. I. Hachisu, T. Matsuda, K. Nomoto, and T. Shigeyama, “Mixing in ejecta of supernovae. II. Mixing width of 2D Rayleigh-Taylor instabilities in the helium star models for type Ib/Ic supernovae,” Astron. Astrophys. Suppl. Ser. 104, 341–364 (1994).
  41. W. H. Cabot and A. W. Cook, “Reynolds number effects on Rayleigh-Taylor instability with possible implications for type Ia supernovae,” Nat. Phys. 2(8), 562–568 (2006).
    [Crossref]
  42. A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
    [Crossref] [PubMed]
  43. E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B – Condens. Matter Mater. Phys. 73(21), 1–15 (2006).
    [Crossref]
  44. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
    [Crossref] [PubMed]
  45. Y. Dai, A. Patel, J. Song, M. Beresna, and P. G. Kazansky, “Void-nanograting transition by ultrashort laser pulse irradiation in silica glass,” Opt. Express 24(17), 19344–19353 (2016).
    [Crossref] [PubMed]
  46. O. Dematteo Caulier, K. Mishchik, B. Chimier, S. Skupin, A. Bourgeade, C. Javaux Léger, R. Kling, C. Hönninger, J. Lopez, V. Tikhonchuk, and G. Duchateau, “Femtosecond laser pulse train interaction with dielectric materials,” Appl. Phys. Lett. 107(18), 181110 (2015).
    [Crossref]
  47. N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?” J. Appl. Phys. 118(23), 233108 (2015).
    [Crossref]
  48. C. Corbari, A. Champion, M. Gecevičius, M. Beresna, Y. Bellouard, and P. G. Kazansky, “Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass,” Opt. Express 21(4), 3946–3958 (2013).
    [Crossref] [PubMed]

2017 (1)

R. Drevinskas, M. Beresna, J. Zhang, A. G. Kazanskii, and P. G. Kazansky, “Ultrafast laser‐induced metasurfaces for geometric phase manipulation,” Adv. Opt. Mater. 5(1), 1600575 (2017).
[Crossref]

2016 (5)

M. Lancry, J. Canning, K. Cook, M. Heili, D. R. Neuville, and B. Poumellec, “Nanoscale femtosecond laser milling and control of nanoporosity in the normal and anomalous regimes of GeO2-SiO2 glasses,” Opt. Mater. Express 6(2), 321 (2016).
[Crossref]

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaite, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “The onset of ultrashort pulse-induced nanogratings,” Laser Photonics Rev. 8, 1–8 (2016).

A. Rudenko, J.-P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 75427 (2016).
[Crossref]

Y. Dai, A. Patel, J. Song, M. Beresna, and P. G. Kazansky, “Void-nanograting transition by ultrashort laser pulse irradiation in silica glass,” Opt. Express 24(17), 19344–19353 (2016).
[Crossref] [PubMed]

2015 (4)

O. Dematteo Caulier, K. Mishchik, B. Chimier, S. Skupin, A. Bourgeade, C. Javaux Léger, R. Kling, C. Hönninger, J. Lopez, V. Tikhonchuk, and G. Duchateau, “Femtosecond laser pulse train interaction with dielectric materials,” Appl. Phys. Lett. 107(18), 181110 (2015).
[Crossref]

N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?” J. Appl. Phys. 118(23), 233108 (2015).
[Crossref]

Y. Liao, J. Ni, L. Qiao, M. Huang, Y. Bellouard, K. Sugioka, and Y. Cheng, “High-fidelity visualization of formation of volume nanogratings in porous glass by femtosecond laser irradiation,” Optica 2(4), 329 (2015).
[Crossref]

Y. Liao, W. Pan, Y. Cui, L. Qiao, Y. Bellouard, K. Sugioka, and Y. Cheng, “Formation of in-volume nanogratings with sub-100-nm periods in glass by femtosecond laser irradiation,” Opt. Lett. 40(15), 3623–3626 (2015).
[Crossref] [PubMed]

2014 (2)

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293 (2014).
[Crossref]

2013 (5)

2012 (2)

M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101(5), 53120 (2012).
[Crossref]

F. Liang, R. Vallée, and S. Chin, “Physical evolution of nanograting inscription on the surface of fused silica,” Opt. Mater. Express 2(7), 1244–1250 (2012).
[Crossref]

2011 (2)

2010 (1)

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

2009 (1)

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 41911 (2009).
[Crossref]

2008 (4)

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref] [PubMed]

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

A. Soleimani Dorcheh and M. H. Abbasi, “Silica aerogel; synthesis, properties and characterization,” J. Mater. Process. Technol. 199(1-3), 10–26 (2008).
[Crossref]

2006 (5)

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett. 88(20), 38–41 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B – Condens. Matter Mater. Phys. 73(21), 1–15 (2006).
[Crossref]

W. H. Cabot and A. W. Cook, “Reynolds number effects on Rayleigh-Taylor instability with possible implications for type Ia supernovae,” Nat. Phys. 2(8), 562–568 (2006).
[Crossref]

2004 (2)

2003 (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

2002 (2)

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[Crossref] [PubMed]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[Crossref] [PubMed]

2001 (2)

1999 (1)

P. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

1997 (1)

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882–884 (1997).
[Crossref]

1996 (2)

1994 (1)

I. Hachisu, T. Matsuda, K. Nomoto, and T. Shigeyama, “Mixing in ejecta of supernovae. II. Mixing width of 2D Rayleigh-Taylor instabilities in the helium star models for type Ib/Ic supernovae,” Astron. Astrophys. Suppl. Ser. 104, 341–364 (1994).

1982 (1)

G. Poelz and R. Riethmüller, “Preparation of silica aerogel for Cherenkov counters,” Nucl. Instrum. Methods Phys. Res. 195(3), 491–503 (1982).
[Crossref]

Abbasi, M. H.

A. Soleimani Dorcheh and M. H. Abbasi, “Silica aerogel; synthesis, properties and characterization,” J. Mater. Process. Technol. 199(1-3), 10–26 (2008).
[Crossref]

Audouard, E.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 41911 (2009).
[Crossref]

Bado, P.

Bellouard, Y.

Beresna, M.

R. Drevinskas, M. Beresna, J. Zhang, A. G. Kazanskii, and P. G. Kazansky, “Ultrafast laser‐induced metasurfaces for geometric phase manipulation,” Adv. Opt. Mater. 5(1), 1600575 (2017).
[Crossref]

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaite, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

Y. Dai, A. Patel, J. Song, M. Beresna, and P. G. Kazansky, “Void-nanograting transition by ultrashort laser pulse irradiation in silica glass,” Opt. Express 24(17), 19344–19353 (2016).
[Crossref] [PubMed]

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293 (2014).
[Crossref]

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

C. Corbari, A. Champion, M. Gecevičius, M. Beresna, Y. Bellouard, and P. G. Kazansky, “Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass,” Opt. Express 21(4), 3946–3958 (2013).
[Crossref] [PubMed]

M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101(5), 53120 (2012).
[Crossref]

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1(4), 783–795 (2011).
[Crossref]

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Bhardwaj, V. R.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Bonse, J.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 41911 (2009).
[Crossref]

Bourgeade, A.

O. Dematteo Caulier, K. Mishchik, B. Chimier, S. Skupin, A. Bourgeade, C. Javaux Léger, R. Kling, C. Hönninger, J. Lopez, V. Tikhonchuk, and G. Duchateau, “Femtosecond laser pulse train interaction with dielectric materials,” Appl. Phys. Lett. 107(18), 181110 (2015).
[Crossref]

Bradby, J. E.

L. Rapp, B. Haberl, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Fundamentals of laser-assisted micro- and nanotechnologies,” 195, 3–27 (2014).

Bricchi, E.

Brisset, F.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [Invited],” Opt. Mater. Express 1(5), 998 (2011).
[Crossref]

Bulgakova, N. M.

N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?” J. Appl. Phys. 118(23), 233108 (2015).
[Crossref]

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 41911 (2009).
[Crossref]

Cabot, W. H.

W. H. Cabot and A. W. Cook, “Reynolds number effects on Rayleigh-Taylor instability with possible implications for type Ia supernovae,” Nat. Phys. 2(8), 562–568 (2006).
[Crossref]

Callan, J. P.

Canning, J.

Cerkauskaite, A.

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaite, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

Champion, A.

Chen, D.

Cheng, G.

Cheng, Y.

Chimier, B.

O. Dematteo Caulier, K. Mishchik, B. Chimier, S. Skupin, A. Bourgeade, C. Javaux Léger, R. Kling, C. Hönninger, J. Lopez, V. Tikhonchuk, and G. Duchateau, “Femtosecond laser pulse train interaction with dielectric materials,” Appl. Phys. Lett. 107(18), 181110 (2015).
[Crossref]

Chin, S.

F. Liang, R. Vallée, and S. Chin, “Physical evolution of nanograting inscription on the surface of fused silica,” Opt. Mater. Express 2(7), 1244–1250 (2012).
[Crossref]

Colombier, J. P.

Colombier, J.-P.

A. Rudenko, J.-P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 75427 (2016).
[Crossref]

Cook, A. W.

W. H. Cabot and A. W. Cook, “Reynolds number effects on Rayleigh-Taylor instability with possible implications for type Ia supernovae,” Nat. Phys. 2(8), 562–568 (2006).
[Crossref]

Cook, K.

Corbari, C.

Corkum, P. B.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Couairon, A.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[Crossref] [PubMed]

Cui, Y.

D’Amico, C.

Dai, Y.

Davis, K. M.

Dematteo Caulier, O.

O. Dematteo Caulier, K. Mishchik, B. Chimier, S. Skupin, A. Bourgeade, C. Javaux Léger, R. Kling, C. Hönninger, J. Lopez, V. Tikhonchuk, and G. Duchateau, “Femtosecond laser pulse train interaction with dielectric materials,” Appl. Phys. Lett. 107(18), 181110 (2015).
[Crossref]

Döring, S.

Drevinskas, R.

R. Drevinskas, M. Beresna, J. Zhang, A. G. Kazanskii, and P. G. Kazansky, “Ultrafast laser‐induced metasurfaces for geometric phase manipulation,” Adv. Opt. Mater. 5(1), 1600575 (2017).
[Crossref]

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaite, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

Duchateau, G.

O. Dematteo Caulier, K. Mishchik, B. Chimier, S. Skupin, A. Bourgeade, C. Javaux Léger, R. Kling, C. Hönninger, J. Lopez, V. Tikhonchuk, and G. Duchateau, “Femtosecond laser pulse train interaction with dielectric materials,” Appl. Phys. Lett. 107(18), 181110 (2015).
[Crossref]

Dugan, M.

Fedotov, S. S.

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaite, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

Finlay, R. J.

Franco, M.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[Crossref] [PubMed]

Freidank, S.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref] [PubMed]

Gamaly, E. G.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B – Condens. Matter Mater. Phys. 73(21), 1–15 (2006).
[Crossref]

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett. 88(20), 38–41 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

L. Rapp, B. Haberl, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Fundamentals of laser-assisted micro- and nanotechnologies,” 195, 3–27 (2014).

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gecevicius, M.

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293 (2014).
[Crossref]

C. Corbari, A. Champion, M. Gecevičius, M. Beresna, Y. Bellouard, and P. G. Kazansky, “Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass,” Opt. Express 21(4), 3946–3958 (2013).
[Crossref] [PubMed]

M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101(5), 53120 (2012).
[Crossref]

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1(4), 783–795 (2011).
[Crossref]

Glezer, E. N.

Haberl, B.

L. Rapp, B. Haberl, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Fundamentals of laser-assisted micro- and nanotechnologies,” 195, 3–27 (2014).

Hachisu, I.

I. Hachisu, T. Matsuda, K. Nomoto, and T. Shigeyama, “Mixing in ejecta of supernovae. II. Mixing width of 2D Rayleigh-Taylor instabilities in the helium star models for type Ib/Ic supernovae,” Astron. Astrophys. Suppl. Ser. 104, 341–364 (1994).

Hallo, L.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B – Condens. Matter Mater. Phys. 73(21), 1–15 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

Hashimoto, T.

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett. 88(20), 38–41 (2006).
[Crossref]

Heili, M.

Her, T.-H.

Hertel, I. V.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 41911 (2009).
[Crossref]

Hirao, K.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

P. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref] [PubMed]

Hnatovsky, C.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
[Crossref]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Hönninger, C.

O. Dematteo Caulier, K. Mishchik, B. Chimier, S. Skupin, A. Bourgeade, C. Javaux Léger, R. Kling, C. Hönninger, J. Lopez, V. Tikhonchuk, and G. Duchateau, “Femtosecond laser pulse train interaction with dielectric materials,” Appl. Phys. Lett. 107(18), 181110 (2015).
[Crossref]

Huang, L.

Huang, M.

Inouye, H.

P. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

Itina, T. E.

A. Rudenko, J.-P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 75427 (2016).
[Crossref]

Javaux Léger, C.

O. Dematteo Caulier, K. Mishchik, B. Chimier, S. Skupin, A. Bourgeade, C. Javaux Léger, R. Kling, C. Hönninger, J. Lopez, V. Tikhonchuk, and G. Duchateau, “Femtosecond laser pulse train interaction with dielectric materials,” Appl. Phys. Lett. 107(18), 181110 (2015).
[Crossref]

Juodkazis, S.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett. 88(20), 38–41 (2006).
[Crossref]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B – Condens. Matter Mater. Phys. 73(21), 1–15 (2006).
[Crossref]

A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
[Crossref] [PubMed]

Kavokin, A. V.

M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101(5), 53120 (2012).
[Crossref]

Kazanskii, A. G.

R. Drevinskas, M. Beresna, J. Zhang, A. G. Kazanskii, and P. G. Kazansky, “Ultrafast laser‐induced metasurfaces for geometric phase manipulation,” Adv. Opt. Mater. 5(1), 1600575 (2017).
[Crossref]

Kazansky, P.

P. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

Kazansky, P. G.

R. Drevinskas, M. Beresna, J. Zhang, A. G. Kazanskii, and P. G. Kazansky, “Ultrafast laser‐induced metasurfaces for geometric phase manipulation,” Adv. Opt. Mater. 5(1), 1600575 (2017).
[Crossref]

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaite, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

Y. Dai, A. Patel, J. Song, M. Beresna, and P. G. Kazansky, “Void-nanograting transition by ultrashort laser pulse irradiation in silica glass,” Opt. Express 24(17), 19344–19353 (2016).
[Crossref] [PubMed]

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293 (2014).
[Crossref]

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

C. Corbari, A. Champion, M. Gecevičius, M. Beresna, Y. Bellouard, and P. G. Kazansky, “Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass,” Opt. Express 21(4), 3946–3958 (2013).
[Crossref] [PubMed]

M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101(5), 53120 (2012).
[Crossref]

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1(4), 783–795 (2011).
[Crossref]

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett. 29(1), 119–121 (2004).
[Crossref] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Klappauf, B. G.

Kling, R.

O. Dematteo Caulier, K. Mishchik, B. Chimier, S. Skupin, A. Bourgeade, C. Javaux Léger, R. Kling, C. Hönninger, J. Lopez, V. Tikhonchuk, and G. Duchateau, “Femtosecond laser pulse train interaction with dielectric materials,” Appl. Phys. Lett. 107(18), 181110 (2015).
[Crossref]

Lamouroux, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[Crossref] [PubMed]

Lancry, M.

Liang, F.

F. Liang, R. Vallée, and S. Chin, “Physical evolution of nanograting inscription on the surface of fused silica,” Opt. Mater. Express 2(7), 1244–1250 (2012).
[Crossref]

Liao, Y.

Linz, N.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref] [PubMed]

Lipatiev, A. S.

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaite, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

Longtin, J. P.

J. Sun, J. P. Longtin, and P. M. Norris, “Ultrafast laser micromachining of silica aerogels,” J. Non-Cryst. Solids 281(1-3), 39–47 (2001).
[Crossref]

Lopez, J.

O. Dematteo Caulier, K. Mishchik, B. Chimier, S. Skupin, A. Bourgeade, C. Javaux Léger, R. Kling, C. Hönninger, J. Lopez, V. Tikhonchuk, and G. Duchateau, “Femtosecond laser pulse train interaction with dielectric materials,” Appl. Phys. Lett. 107(18), 181110 (2015).
[Crossref]

Lotarev, S. V.

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaite, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

Luther-Davies, B.

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett. 88(20), 38–41 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B – Condens. Matter Mater. Phys. 73(21), 1–15 (2006).
[Crossref]

Marcinkevicius, A.

Matsuda, T.

I. Hachisu, T. Matsuda, K. Nomoto, and T. Shigeyama, “Mixing in ejecta of supernovae. II. Mixing width of 2D Rayleigh-Taylor instabilities in the helium star models for type Ib/Ic supernovae,” Astron. Astrophys. Suppl. Ser. 104, 341–364 (1994).

Matsuo, S.

Mauclair, C.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[Crossref] [PubMed]

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882–884 (1997).
[Crossref]

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21(24), 2023–2025 (1996).
[Crossref] [PubMed]

Mermillod-Blondin, A.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 41911 (2009).
[Crossref]

Meshcheryakov, Y. P.

N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?” J. Appl. Phys. 118(23), 233108 (2015).
[Crossref]

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 41911 (2009).
[Crossref]

Midorikawa, K.

Miese, C.

Milosavljevic, M.

Misawa, H.

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett. 88(20), 38–41 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B – Condens. Matter Mater. Phys. 73(21), 1–15 (2006).
[Crossref]

A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
[Crossref] [PubMed]

Mishchik, K.

O. Dematteo Caulier, K. Mishchik, B. Chimier, S. Skupin, A. Bourgeade, C. Javaux Léger, R. Kling, C. Hönninger, J. Lopez, V. Tikhonchuk, and G. Duchateau, “Femtosecond laser pulse train interaction with dielectric materials,” Appl. Phys. Lett. 107(18), 181110 (2015).
[Crossref]

R. Stoian, K. Mishchik, G. Cheng, C. Mauclair, C. D’Amico, J. P. Colombier, and M. Zamfirescu, “Investigation and control of ultrafast laser-induced isotropic and anisotropic nanoscale-modulated index patterns in bulk fused silica,” Opt. Mater. Express 3(10), 1755 (2013).
[Crossref]

Mitsuyu, T.

P. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

Miura, K.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

P. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref] [PubMed]

Miwa, M.

Mysyrowicz, A.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[Crossref] [PubMed]

Neuville, D. R.

Ni, J.

Nicolai, P.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B – Condens. Matter Mater. Phys. 73(21), 1–15 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

Nishii, J.

Nishimura, K.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B – Condens. Matter Mater. Phys. 73(21), 1–15 (2006).
[Crossref]

Nolte, S.

Nomoto, K.

I. Hachisu, T. Matsuda, K. Nomoto, and T. Shigeyama, “Mixing in ejecta of supernovae. II. Mixing width of 2D Rayleigh-Taylor instabilities in the helium star models for type Ib/Ic supernovae,” Astron. Astrophys. Suppl. Ser. 104, 341–364 (1994).

Norris, P. M.

J. Sun, J. P. Longtin, and P. M. Norris, “Ultrafast laser micromachining of silica aerogels,” J. Non-Cryst. Solids 281(1-3), 39–47 (2001).
[Crossref]

Paltauf, G.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref] [PubMed]

Pan, W.

Patel, A.

Plech, A.

F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “The onset of ultrashort pulse-induced nanogratings,” Laser Photonics Rev. 8, 1–8 (2016).

Poelz, G.

G. Poelz and R. Riethmüller, “Preparation of silica aerogel for Cherenkov counters,” Nucl. Instrum. Methods Phys. Res. 195(3), 491–503 (1982).
[Crossref]

Poulin, J. C.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

Poumellec, B.

Prade, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[Crossref] [PubMed]

Qiao, L.

Qiu, J.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

P. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

Rajeev, P. P.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Rapp, L.

L. Rapp, B. Haberl, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Fundamentals of laser-assisted micro- and nanotechnologies,” 195, 3–27 (2014).

Rayner, D. M.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Richter, S.

Riethmüller, R.

G. Poelz and R. Riethmüller, “Preparation of silica aerogel for Cherenkov counters,” Nucl. Instrum. Methods Phys. Res. 195(3), 491–503 (1982).
[Crossref]

Rode, A. V.

L. Rapp, B. Haberl, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Fundamentals of laser-assisted micro- and nanotechnologies,” 195, 3–27 (2014).

Rosenfeld, A.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 41911 (2009).
[Crossref]

Rudenko, A.

A. Rudenko, J.-P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 75427 (2016).
[Crossref]

Said, A.

Sakakura, M.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Shen, Y.

Shigeyama, T.

I. Hachisu, T. Matsuda, K. Nomoto, and T. Shigeyama, “Mixing in ejecta of supernovae. II. Mixing width of 2D Rayleigh-Taylor instabilities in the helium star models for type Ib/Ic supernovae,” Astron. Astrophys. Suppl. Ser. 104, 341–364 (1994).

Shimotsuma, Y.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Sigaev, V. N.

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaite, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

Simova, E.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
[Crossref]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Skupin, S.

O. Dematteo Caulier, K. Mishchik, B. Chimier, S. Skupin, A. Bourgeade, C. Javaux Léger, R. Kling, C. Hönninger, J. Lopez, V. Tikhonchuk, and G. Duchateau, “Femtosecond laser pulse train interaction with dielectric materials,” Appl. Phys. Lett. 107(18), 181110 (2015).
[Crossref]

Soleimani Dorcheh, A.

A. Soleimani Dorcheh and M. H. Abbasi, “Silica aerogel; synthesis, properties and characterization,” J. Mater. Process. Technol. 199(1-3), 10–26 (2008).
[Crossref]

Song, J.

Sonina, S. V.

N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?” J. Appl. Phys. 118(23), 233108 (2015).
[Crossref]

Starrost, F.

P. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

Stoian, R.

R. Stoian, K. Mishchik, G. Cheng, C. Mauclair, C. D’Amico, J. P. Colombier, and M. Zamfirescu, “Investigation and control of ultrafast laser-induced isotropic and anisotropic nanoscale-modulated index patterns in bulk fused silica,” Opt. Mater. Express 3(10), 1755 (2013).
[Crossref]

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 41911 (2009).
[Crossref]

Sudrie, L.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[Crossref] [PubMed]

Sugimoto, N.

Sugioka, K.

Sun, J.

J. Sun, J. P. Longtin, and P. M. Norris, “Ultrafast laser micromachining of silica aerogels,” J. Non-Cryst. Solids 281(1-3), 39–47 (2001).
[Crossref]

Sundaram, S. K.

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[Crossref] [PubMed]

Tanaka, S.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

Taylor, R.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
[Crossref]

Taylor, R. S.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Taylor, T.

M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101(5), 53120 (2012).
[Crossref]

Tikhonchuk, V.

O. Dematteo Caulier, K. Mishchik, B. Chimier, S. Skupin, A. Bourgeade, C. Javaux Léger, R. Kling, C. Hönninger, J. Lopez, V. Tikhonchuk, and G. Duchateau, “Femtosecond laser pulse train interaction with dielectric materials,” Appl. Phys. Lett. 107(18), 181110 (2015).
[Crossref]

Tikhonchuk, V. T.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B – Condens. Matter Mater. Phys. 73(21), 1–15 (2006).
[Crossref]

Tünnermann, A.

Tzortzakis, S.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[Crossref] [PubMed]

Vallée, R.

F. Liang, R. Vallée, and S. Chin, “Physical evolution of nanograting inscription on the surface of fused silica,” Opt. Mater. Express 2(7), 1244–1250 (2012).
[Crossref]

Vogel, A.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref] [PubMed]

Watanabe, M.

Weickman, A.

Williams, J. S.

L. Rapp, B. Haberl, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Fundamentals of laser-assisted micro- and nanotechnologies,” 195, 3–27 (2014).

Withford, M. J.

Zamfirescu, M.

Zhang, J.

R. Drevinskas, M. Beresna, J. Zhang, A. G. Kazanskii, and P. G. Kazansky, “Ultrafast laser‐induced metasurfaces for geometric phase manipulation,” Adv. Opt. Mater. 5(1), 1600575 (2017).
[Crossref]

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

Zhukov, V. P.

N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?” J. Appl. Phys. 118(23), 233108 (2015).
[Crossref]

Zimmermann, F.

Adv. Mater. (1)

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

R. Drevinskas, M. Beresna, J. Zhang, A. G. Kazanskii, and P. G. Kazansky, “Ultrafast laser‐induced metasurfaces for geometric phase manipulation,” Adv. Opt. Mater. 5(1), 1600575 (2017).
[Crossref]

Adv. Opt. Photonics (1)

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293 (2014).
[Crossref]

Appl. Phys. Lett. (6)

O. Dematteo Caulier, K. Mishchik, B. Chimier, S. Skupin, A. Bourgeade, C. Javaux Léger, R. Kling, C. Hönninger, J. Lopez, V. Tikhonchuk, and G. Duchateau, “Femtosecond laser pulse train interaction with dielectric materials,” Appl. Phys. Lett. 107(18), 181110 (2015).
[Crossref]

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882–884 (1997).
[Crossref]

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett. 88(20), 38–41 (2006).
[Crossref]

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 41911 (2009).
[Crossref]

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaite, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101(5), 53120 (2012).
[Crossref]

Astron. Astrophys. Suppl. Ser. (1)

I. Hachisu, T. Matsuda, K. Nomoto, and T. Shigeyama, “Mixing in ejecta of supernovae. II. Mixing width of 2D Rayleigh-Taylor instabilities in the helium star models for type Ib/Ic supernovae,” Astron. Astrophys. Suppl. Ser. 104, 341–364 (1994).

J. Appl. Phys. (1)

N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?” J. Appl. Phys. 118(23), 233108 (2015).
[Crossref]

J. Mater. Process. Technol. (1)

A. Soleimani Dorcheh and M. H. Abbasi, “Silica aerogel; synthesis, properties and characterization,” J. Mater. Process. Technol. 199(1-3), 10–26 (2008).
[Crossref]

J. Non-Cryst. Solids (1)

J. Sun, J. P. Longtin, and P. M. Norris, “Ultrafast laser micromachining of silica aerogels,” J. Non-Cryst. Solids 281(1-3), 39–47 (2001).
[Crossref]

Laser Photonics Rev. (3)

F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “The onset of ultrashort pulse-induced nanogratings,” Laser Photonics Rev. 8, 1–8 (2016).

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
[Crossref]

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

Nat. Mater. (1)

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[Crossref] [PubMed]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Nat. Phys. (1)

W. H. Cabot and A. W. Cook, “Reynolds number effects on Rayleigh-Taylor instability with possible implications for type Ia supernovae,” Nat. Phys. 2(8), 562–568 (2006).
[Crossref]

Nucl. Instrum. Methods Phys. Res. (1)

G. Poelz and R. Riethmüller, “Preparation of silica aerogel for Cherenkov counters,” Nucl. Instrum. Methods Phys. Res. 195(3), 491–503 (1982).
[Crossref]

Opt. Express (3)

Opt. Lett. (6)

Opt. Mater. Express (6)

Optica (1)

Phys. Rev. B (1)

A. Rudenko, J.-P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 75427 (2016).
[Crossref]

Phys. Rev. B – Condens. Matter Mater. Phys. (1)

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B – Condens. Matter Mater. Phys. 73(21), 1–15 (2006).
[Crossref]

Phys. Rev. Lett. (7)

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[Crossref] [PubMed]

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref] [PubMed]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

P. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

Other (3)

J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” in Laser-Based Micro- and Nanoprocessing X, U. Klotzbach, K. Washio, and C. B. Arnold, eds. (2016), p. 97360U.

B. Yalizay, Y. Morova, K. Dincer, Y. Ozbakir, A. Jonas, C. Erkey, A. Kiraz, and S. Akturk, “Versatile liquid-core optofluidic waveguides fabricated in hydrophobic silica aerogels by femtosecond-laser ablation,” Opt. Mater. (Amst). (2015).

L. Rapp, B. Haberl, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Fundamentals of laser-assisted micro- and nanotechnologies,” 195, 3–27 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Laser-induced modification in silica glasses. (a) Optical transmission (left) and optical path difference (right) top view images defining the laser affected region Da and the lateral void region Dv in silica aerogel induced by a single pulse irradiation. (b) The diameter of Da (closed symbols) and Dv (open symbols) as a function of laser pulse energy. Black, red and blue colours represent the modification in aerogel, porous glass and fused silica, respectively. Fitting dependences (solid lines) were calculated using Eq. (1). (c) Optical transmission (i) top view and (ii) side viewed images of single dot modification in silica aerogel, porous glass and fused silica, induced by 1 pulse and 100 pulses irradiation The laser beam in (c,ii) was propagating from top to bottom.. The pulse energy in (a) and (c) was set to 0.2 μJ. Scale bars are 5 μm.
Fig. 2
Fig. 2 Femtosecond laser-induced modification in different density silica glasses: (a) fused silica, (b) porous glass (Vycor), and (c,d) silica aerogel. Colour maps on the left in (a-c) show the resulting retardance of polarization sensitive structures as a function of pulse energy and number of pulses. Colour bars are linear retardance scales in nanometres; the value of zero corresponds to the voids, i.e. polarization independent structures; black color indicates the condition below the modification threshold. Edge and stress-induced birefringence are not considered. In (a), red dotted line marks the regions with a different type of modification: (i) – nanogratings, (ii) – nanogratings with polarization sensitive cracks, (iii) – voids, (iv) – voids with randomly oriented cracks. In (b), the red dotted line indicates the boundary between the laser-induced void accompanied by the anisotropic structure and its transition to the uniform anisotropic material, i.e. nanogratings. On the right in (a-c), top view images of the corresponding retardance (top) and its slow axis (bottom) of structures induced by 100 pulses at a certain constant pulse energy. (d) Aerogel sample irradiated by 100 pulses with pulse energy increasing from 0.02 μJ to 0.38 μJ. Red arrow defines the polarization state of the incident laser beam. Colour bars are linear retardance scales in nanometres. Pseudo colours (bottom insets) indicate the orientation of the slow axis. Scale bar is 5 μm.
Fig. 3
Fig. 3 (a) Retardance maps of polarization sensitive structures induced in sol-gel derived porous glass with pores size of 2.5 nm, 7.5 nm, and 20 nm. Red dotted lines show the approximate boundary between the laser-induced void accompanied by the anisotropic structure and its transition to the uniform anisotropic material, i.e. nanogratings. Colour bars are linear retardance scales in nanometres; the value of zero corresponds to the void, i.e. polarization independent, structure; black colour indicates the condition below the modification threshold. Stress and edge induced birefringence are not considered. (b) Evolution of the optical anisotropy in silica sample with the pores size of 2.5 nm, for two orthogonal polarizations. Images indicate retardation (top) and its slow axis (bottom) induced by 1 to 10 pulses when the pulse energy was fixed at 0.06 μJ. Insets represent the slow axis of 3x magnified structures induced by 1 and 10 pulses. Red arrows define the polarization state of the incident laser beam. Colour bars are linear retardance scales in nanometres. Pseudo colours (bottom insets) indicate the orientation of the slow axis. Scale bar is 5 μm.
Fig. 4
Fig. 4 (a,c) Optical transmission and (b,d) retardance, (a,b) top and (c,d) side view, images of laser written lines in silica aerogel, porous glass and fused silica. The laser beam in (c,d) was propagating from top to bottom. The pulse energy and pulse duration were fixed at 0.2 μJ and 320 fs. Inset (i) indicates the movement of the laser-induced cavity inside fused silica. Top view snapshots were taken at t1, t2, t3 points in time during the writing process. Colour bars are linear retardance scales in nanometres. Black and red arrows indicate the writing direction and polarization state of the incident beam, respectively. Scale bar is 10 μm.
Fig. 5
Fig. 5 SEM side views images of the lines written in silica aerogel. The interline distance was set to (a,b) 10 μm and (c,d) 0.5 μm. The incident polarization was oriented perpendicular (red arrow in (a,c)) and parallel (blue cross in (b,d)) to the writing direction (normal to image plane). The laser beam was propagating from top to bottom. The pulse energy and pulse duration were fixed at 0.2 μJ and 320 fs. White open circles mark the regions with polarization sensitive structures. Scale bars: 5 μm and 10 μm.
Fig. 6
Fig. 6 (a) Laser-induced retardance in silica aerogel, porous glass (Vycor) and fused silica as a function of pulse duration and pulse energy. The retardation values were retrieved from the lines written with an interline distance of 10 μm. Polarization of the incident beam was oriented perpendicular to the writing direction. The colour bar is retardance scale in nanometres; black colour indicates the condition below the modification threshold. (b) Threshold intensity dependence on pulse duration of the laser beam focused on samples. The graphs were extracted from the retardance maps.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

D v = 1 c 6a E p πYb 3 ,
c= δ δ1 3 .

Metrics