Abstract

We present an InP monolithically integrated all-optical wavelength converter array chip and experimentally validate its performance for unicast (single output wavelength) and multicast (multiple output wavelengths) wavelength conversion. The monolithically integrated chip includes four semiconductor optical amplifiers with an arrayed-waveguide grating and two delayed interferometers. The chip is fabricated on a multi-project wafer (MPW) platform, which allows multiple designers to share space on the same wafer exploiting a generic integration platform. We demonstrate error-free non-return-to-zero (NRZ) unicast wavelength conversions using 231-1 pseudorandom bit sequence data at 10 Gb/s, 20 Gb/s and 40 Gb/s with a 25-nm conversion range. Power penalties as low as 2.3 dB and 2.7 dB for NRZ and return-to-zero (RZ) unicast wavelength conversion at 40 Gb/s are obtained, respectively. Additionally, power penalties of 2.5 dB for NRZ and 3.2 dB for RZ signals at 40 Gb/s 1 × 2 multicast wavelength conversions are also achieved.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication and experimental demonstration of the first 160 Gb/s hybrid silicon-on-insulator integrated all-optical wavelength converter

C. Stamatiadis, L. Stampoulidis, D. Kalavrouziotis, I. Lazarou, K. Vyrsokinos, L. Zimmermann, K. Voigt, G. B. Preve, L. Moerl, J. Kreissl, and H. Avramopoulos
Opt. Express 20(4) 3825-3831 (2012)

All-optical parallel NRZ-DPSK to RZ-DPSK format conversion at 40 Gb/s based on XPM effect in a single SOA

Yu Yu, Bingrong Zou, Wenhan Wu, and Xinliang Zhang
Opt. Express 19(15) 14720-14725 (2011)

40 Gb/s all-optical NRZ to RZ format conversion using single SOA assisted by optical bandpass filter

Jianji Dong, Xinliang Zhang, Jing Xu, Dexiu Huang, Songnian Fu, and P. Shum
Opt. Express 15(6) 2907-2914 (2007)

References

  • View by:
  • |
  • |
  • |

  1. R. J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” in Proceedings of IEEE (IEEE, 2012), pp. 1035–1055.
  2. J. M. H. Elmirghani and H. T. Mouftah, “All-optical wavelength conversion: technologies and applications in DWDM networks,” IEEE Commun. Mag. 38(3), 86–92 (2000).
    [Crossref]
  3. S. J. Ben Yoo, “Optical packet and burst switching technologies for the future photonic internet,” J. Lightwave Technol. 24(12), 4468–4492 (2006).
    [Crossref]
  4. N. Yan, J. del Val Puente, T. G. Silveira, A. Teixeira, A. P. S. Ferreira, E. Tangdiongga, P. Monteiro, and A. M. J. Koonen, “Simulation and experimental characterization of SOA-MZI-based multiwavelength conversion,” J. Lightwave Technol. 27(2), 117–127 (2009).
    [Crossref]
  5. J. Leuthold, L. Möller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, “160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties,” Electron. Lett. 40(9), 554–555 (2004).
    [Crossref]
  6. Y. Liu, E. Tangdiongga, Z. Li, S. X. Zhang, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter,” J. Lightwave Technol. 24(1), 230–236 (2006).
    [Crossref]
  7. Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, X. W. Shu, I. Bennion, and H. J. S. Dorren, “Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” J. Lightwave Technol. 25(1), 103–108 (2007).
    [Crossref]
  8. S. C. Nicholes, M. L. Mašanović, B. Jevremović, E. Lively, L. A. Coldren, and D. J. Blumenthal, “An 8×8 InP monolithic tunable optical router (MOTOR) packet forwarding chip,” J. Lightwave Technol. 28(4), 641–650 (2010).
    [Crossref]
  9. N. Ohata, T. Yamatoya, T. Saito, T. Miyahara, Y. Morita, E. Ishimura, A. Sugitatsu, and H. Aruga, “Input-power and polarization insensitive all-optical wavelength converter with monolithically integrated monitor PD and gain-controlled SOA,” J. Lightwave Technol. 33(1), 267–274 (2015).
    [Crossref]
  10. T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
    [Crossref]
  11. J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, “Compact and fully packaged wavelength converter with integrated delay loop for 40 Gbit/s RZ signal,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2000), paper PD17.
    [Crossref]
  12. E. Tangdiongga, Y. Liu, J. H. den Besten, M. van Geemert, T. van Dongen, J. J. M. Binsma, H. de Waardt, G. D. Khoe, M. K. Smit, and H. J. S. Dorren, “Monolithically integrated 80-Gb/s AWG-based all-optical wavelength converter,” IEEE Photonics Technol. Lett. 18(15), 1627–1629 (2006).
    [Crossref]
  13. F. Bontempi, S. Faralli, N. Andriolli, and G. Contestabile, “An InP monolithically integrated unicast and multicast wavelength converter,” IEEE Photonics Technol. Lett. 25(22), 2178–2181 (2013).
    [Crossref]
  14. X. Zheng, O. Raz, N. Calabretta, R. G. Lu, and Y. Liu, “Error-free all-optical wavelength multicasting at 40 Gb/s on a compact InP-based chip,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th1C.4.
    [Crossref]
  15. L. G. Chen, R. G. Lu, S. J. Zhang, J. F. Li, and Y. Liu, “Time-resolved chirp properties of semiconductor optical amplifiers in high-speed all optical switches,” Opt. Eng. 52(3), 035003 (2013).
    [Crossref]

2015 (1)

2013 (2)

F. Bontempi, S. Faralli, N. Andriolli, and G. Contestabile, “An InP monolithically integrated unicast and multicast wavelength converter,” IEEE Photonics Technol. Lett. 25(22), 2178–2181 (2013).
[Crossref]

L. G. Chen, R. G. Lu, S. J. Zhang, J. F. Li, and Y. Liu, “Time-resolved chirp properties of semiconductor optical amplifiers in high-speed all optical switches,” Opt. Eng. 52(3), 035003 (2013).
[Crossref]

2010 (1)

2009 (1)

2007 (1)

2006 (3)

2004 (1)

J. Leuthold, L. Möller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, “160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties,” Electron. Lett. 40(9), 554–555 (2004).
[Crossref]

2000 (1)

J. M. H. Elmirghani and H. T. Mouftah, “All-optical wavelength conversion: technologies and applications in DWDM networks,” IEEE Commun. Mag. 38(3), 86–92 (2000).
[Crossref]

1996 (1)

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[Crossref]

Andriolli, N.

F. Bontempi, S. Faralli, N. Andriolli, and G. Contestabile, “An InP monolithically integrated unicast and multicast wavelength converter,” IEEE Photonics Technol. Lett. 25(22), 2178–2181 (2013).
[Crossref]

Aruga, H.

Ben Yoo, S. J.

Bennion, I.

Bernasconi, P.

J. Leuthold, L. Möller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, “160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties,” Electron. Lett. 40(9), 554–555 (2004).
[Crossref]

Binsma, J. J. M.

E. Tangdiongga, Y. Liu, J. H. den Besten, M. van Geemert, T. van Dongen, J. J. M. Binsma, H. de Waardt, G. D. Khoe, M. K. Smit, and H. J. S. Dorren, “Monolithically integrated 80-Gb/s AWG-based all-optical wavelength converter,” IEEE Photonics Technol. Lett. 18(15), 1627–1629 (2006).
[Crossref]

Blumenthal, D. J.

Bontempi, F.

F. Bontempi, S. Faralli, N. Andriolli, and G. Contestabile, “An InP monolithically integrated unicast and multicast wavelength converter,” IEEE Photonics Technol. Lett. 25(22), 2178–2181 (2013).
[Crossref]

Cabot, S.

J. Leuthold, L. Möller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, “160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties,” Electron. Lett. 40(9), 554–555 (2004).
[Crossref]

Cappuzzo, M.

J. Leuthold, L. Möller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, “160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties,” Electron. Lett. 40(9), 554–555 (2004).
[Crossref]

Chen, E.

J. Leuthold, L. Möller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, “160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties,” Electron. Lett. 40(9), 554–555 (2004).
[Crossref]

Chen, L. G.

L. G. Chen, R. G. Lu, S. J. Zhang, J. F. Li, and Y. Liu, “Time-resolved chirp properties of semiconductor optical amplifiers in high-speed all optical switches,” Opt. Eng. 52(3), 035003 (2013).
[Crossref]

Coldren, L. A.

Contestabile, G.

F. Bontempi, S. Faralli, N. Andriolli, and G. Contestabile, “An InP monolithically integrated unicast and multicast wavelength converter,” IEEE Photonics Technol. Lett. 25(22), 2178–2181 (2013).
[Crossref]

de Waardt, H.

del Val Puente, J.

den Besten, J. H.

E. Tangdiongga, Y. Liu, J. H. den Besten, M. van Geemert, T. van Dongen, J. J. M. Binsma, H. de Waardt, G. D. Khoe, M. K. Smit, and H. J. S. Dorren, “Monolithically integrated 80-Gb/s AWG-based all-optical wavelength converter,” IEEE Photonics Technol. Lett. 18(15), 1627–1629 (2006).
[Crossref]

Dorren, H. J. S.

Durhuus, T.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[Crossref]

Elmirghani, J. M. H.

J. M. H. Elmirghani and H. T. Mouftah, “All-optical wavelength conversion: technologies and applications in DWDM networks,” IEEE Commun. Mag. 38(3), 86–92 (2000).
[Crossref]

Faralli, S.

F. Bontempi, S. Faralli, N. Andriolli, and G. Contestabile, “An InP monolithically integrated unicast and multicast wavelength converter,” IEEE Photonics Technol. Lett. 25(22), 2178–2181 (2013).
[Crossref]

Ferreira, A. P. S.

Gomez, L.

J. Leuthold, L. Möller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, “160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties,” Electron. Lett. 40(9), 554–555 (2004).
[Crossref]

Griffin, A.

J. Leuthold, L. Möller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, “160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties,” Electron. Lett. 40(9), 554–555 (2004).
[Crossref]

Ishimura, E.

Jaques, J.

J. Leuthold, L. Möller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, “160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties,” Electron. Lett. 40(9), 554–555 (2004).
[Crossref]

Jevremovic, B.

Joergensen, C.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[Crossref]

Khoe, G. D.

Koonen, A. M. J.

Laskowski, E.

J. Leuthold, L. Möller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, “160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties,” Electron. Lett. 40(9), 554–555 (2004).
[Crossref]

Leuthold, J.

J. Leuthold, L. Möller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, “160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties,” Electron. Lett. 40(9), 554–555 (2004).
[Crossref]

Li, J. F.

L. G. Chen, R. G. Lu, S. J. Zhang, J. F. Li, and Y. Liu, “Time-resolved chirp properties of semiconductor optical amplifiers in high-speed all optical switches,” Opt. Eng. 52(3), 035003 (2013).
[Crossref]

Li, Z.

Liu, Y.

L. G. Chen, R. G. Lu, S. J. Zhang, J. F. Li, and Y. Liu, “Time-resolved chirp properties of semiconductor optical amplifiers in high-speed all optical switches,” Opt. Eng. 52(3), 035003 (2013).
[Crossref]

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, X. W. Shu, I. Bennion, and H. J. S. Dorren, “Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” J. Lightwave Technol. 25(1), 103–108 (2007).
[Crossref]

Y. Liu, E. Tangdiongga, Z. Li, S. X. Zhang, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter,” J. Lightwave Technol. 24(1), 230–236 (2006).
[Crossref]

E. Tangdiongga, Y. Liu, J. H. den Besten, M. van Geemert, T. van Dongen, J. J. M. Binsma, H. de Waardt, G. D. Khoe, M. K. Smit, and H. J. S. Dorren, “Monolithically integrated 80-Gb/s AWG-based all-optical wavelength converter,” IEEE Photonics Technol. Lett. 18(15), 1627–1629 (2006).
[Crossref]

Lively, E.

Lu, R. G.

L. G. Chen, R. G. Lu, S. J. Zhang, J. F. Li, and Y. Liu, “Time-resolved chirp properties of semiconductor optical amplifiers in high-speed all optical switches,” Opt. Eng. 52(3), 035003 (2013).
[Crossref]

Lykke Danielsen, S.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[Crossref]

Mašanovic, M. L.

Mikkelsen, B.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[Crossref]

Miyahara, T.

Möller, L.

J. Leuthold, L. Möller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, “160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties,” Electron. Lett. 40(9), 554–555 (2004).
[Crossref]

Monteiro, P.

Morita, Y.

Mouftah, H. T.

J. M. H. Elmirghani and H. T. Mouftah, “All-optical wavelength conversion: technologies and applications in DWDM networks,” IEEE Commun. Mag. 38(3), 86–92 (2000).
[Crossref]

Nicholes, S. C.

Ohata, N.

Saito, T.

Shu, X. W.

Silveira, T. G.

Smit, M. K.

E. Tangdiongga, Y. Liu, J. H. den Besten, M. van Geemert, T. van Dongen, J. J. M. Binsma, H. de Waardt, G. D. Khoe, M. K. Smit, and H. J. S. Dorren, “Monolithically integrated 80-Gb/s AWG-based all-optical wavelength converter,” IEEE Photonics Technol. Lett. 18(15), 1627–1629 (2006).
[Crossref]

Stubkjaer, K. E.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[Crossref]

Sugitatsu, A.

Tangdiongga, E.

Teixeira, A.

van Dongen, T.

E. Tangdiongga, Y. Liu, J. H. den Besten, M. van Geemert, T. van Dongen, J. J. M. Binsma, H. de Waardt, G. D. Khoe, M. K. Smit, and H. J. S. Dorren, “Monolithically integrated 80-Gb/s AWG-based all-optical wavelength converter,” IEEE Photonics Technol. Lett. 18(15), 1627–1629 (2006).
[Crossref]

van Geemert, M.

E. Tangdiongga, Y. Liu, J. H. den Besten, M. van Geemert, T. van Dongen, J. J. M. Binsma, H. de Waardt, G. D. Khoe, M. K. Smit, and H. J. S. Dorren, “Monolithically integrated 80-Gb/s AWG-based all-optical wavelength converter,” IEEE Photonics Technol. Lett. 18(15), 1627–1629 (2006).
[Crossref]

Wong-Foy, A.

J. Leuthold, L. Möller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, “160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties,” Electron. Lett. 40(9), 554–555 (2004).
[Crossref]

Yamatoya, T.

Yan, N.

Zhang, L.

J. Leuthold, L. Möller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, “160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties,” Electron. Lett. 40(9), 554–555 (2004).
[Crossref]

Zhang, S. J.

L. G. Chen, R. G. Lu, S. J. Zhang, J. F. Li, and Y. Liu, “Time-resolved chirp properties of semiconductor optical amplifiers in high-speed all optical switches,” Opt. Eng. 52(3), 035003 (2013).
[Crossref]

Zhang, S. X.

Electron. Lett. (1)

J. Leuthold, L. Möller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, “160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties,” Electron. Lett. 40(9), 554–555 (2004).
[Crossref]

IEEE Commun. Mag. (1)

J. M. H. Elmirghani and H. T. Mouftah, “All-optical wavelength conversion: technologies and applications in DWDM networks,” IEEE Commun. Mag. 38(3), 86–92 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (2)

E. Tangdiongga, Y. Liu, J. H. den Besten, M. van Geemert, T. van Dongen, J. J. M. Binsma, H. de Waardt, G. D. Khoe, M. K. Smit, and H. J. S. Dorren, “Monolithically integrated 80-Gb/s AWG-based all-optical wavelength converter,” IEEE Photonics Technol. Lett. 18(15), 1627–1629 (2006).
[Crossref]

F. Bontempi, S. Faralli, N. Andriolli, and G. Contestabile, “An InP monolithically integrated unicast and multicast wavelength converter,” IEEE Photonics Technol. Lett. 25(22), 2178–2181 (2013).
[Crossref]

J. Lightwave Technol. (7)

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[Crossref]

S. C. Nicholes, M. L. Mašanović, B. Jevremović, E. Lively, L. A. Coldren, and D. J. Blumenthal, “An 8×8 InP monolithic tunable optical router (MOTOR) packet forwarding chip,” J. Lightwave Technol. 28(4), 641–650 (2010).
[Crossref]

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, X. W. Shu, I. Bennion, and H. J. S. Dorren, “Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” J. Lightwave Technol. 25(1), 103–108 (2007).
[Crossref]

Y. Liu, E. Tangdiongga, Z. Li, S. X. Zhang, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter,” J. Lightwave Technol. 24(1), 230–236 (2006).
[Crossref]

S. J. Ben Yoo, “Optical packet and burst switching technologies for the future photonic internet,” J. Lightwave Technol. 24(12), 4468–4492 (2006).
[Crossref]

N. Yan, J. del Val Puente, T. G. Silveira, A. Teixeira, A. P. S. Ferreira, E. Tangdiongga, P. Monteiro, and A. M. J. Koonen, “Simulation and experimental characterization of SOA-MZI-based multiwavelength conversion,” J. Lightwave Technol. 27(2), 117–127 (2009).
[Crossref]

N. Ohata, T. Yamatoya, T. Saito, T. Miyahara, Y. Morita, E. Ishimura, A. Sugitatsu, and H. Aruga, “Input-power and polarization insensitive all-optical wavelength converter with monolithically integrated monitor PD and gain-controlled SOA,” J. Lightwave Technol. 33(1), 267–274 (2015).
[Crossref]

Opt. Eng. (1)

L. G. Chen, R. G. Lu, S. J. Zhang, J. F. Li, and Y. Liu, “Time-resolved chirp properties of semiconductor optical amplifiers in high-speed all optical switches,” Opt. Eng. 52(3), 035003 (2013).
[Crossref]

Other (3)

X. Zheng, O. Raz, N. Calabretta, R. G. Lu, and Y. Liu, “Error-free all-optical wavelength multicasting at 40 Gb/s on a compact InP-based chip,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th1C.4.
[Crossref]

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, “Compact and fully packaged wavelength converter with integrated delay loop for 40 Gbit/s RZ signal,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2000), paper PD17.
[Crossref]

R. J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” in Proceedings of IEEE (IEEE, 2012), pp. 1035–1055.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) Scheme and (b) layout of the integrated wavelength converter array.
Fig. 2
Fig. 2 Photograph of the fabricated (a) 2-inch wafer, (b) design cell with a size of 4.6 × 4 mm2 and (c) wavelength converter array with a size of 4.6 × 1.85 mm2.
Fig. 3
Fig. 3 Photograph of the coupling setup with the wire-bounded chip.
Fig. 4
Fig. 4 Experimental setup for NRZ wavelength conversion. MOD: modulator.
Fig. 5
Fig. 5 AWG performance measured at output port #6 by biasing SOA2, while SOA2 ASE is measured at input port #2 (measured on 0.06-nm resolution bandwidth).
Fig. 6
Fig. 6 (a) BER performances and (b) eye diagrams for several UWCs at 10 Gb/s.
Fig. 7
Fig. 7 (a) BER performances and (b) eye diagrams for several UWCs at 20 Gb/s.
Fig. 8
Fig. 8 (a) BER performances and (b) eye diagrams for several UWCs at 40 Gb/s.
Fig. 9
Fig. 9 (a) Power penalties, (b) ER and (c) conversion efficiencies for UWCs with different pump wavelengths at 10 Gb/s, 20 Gb/s and 40 Gb/s.
Fig. 10
Fig. 10 (a)-(c) Optical spectra and the corresponding eye diagrams, and (d) BER performances for 40 Gb/s NRZ UWCs and MWC: (a) UWC from 1550.2 nm to 1537.1 nm; (b) UWC from 1550.2 nm to 1542.2 nm; (c) MWC from 1550.2 nm to 1537.1 nm and 1542.2 nm.
Fig. 11
Fig. 11 Experimental setup for RZ wavelength conversion.
Fig. 12
Fig. 12 Experimental results at 40 Gb/s: (a)-(c) RZ UWC from 1550.1 nm to 1537.1 nm; (d)-(f) RZ UWC from 1550.1 nm to 1542.2 nm; (g)-(i) RZ MWC from 1550.1 nm to 1537.1 nm and 1542.2 nm.

Tables (3)

Tables Icon

Table 1 Experimental parameter values used in NRZ UWCs

Tables Icon

Table 2 Experimental parameter values used in NRZ UWCs and MWC at 40 Gb/s.

Tables Icon

Table 3 Experimental parameter values used in RZ UWCs and MWC at 40 Gb/s

Metrics