Abstract

A novel method is presented for rapid measurement of optical rotatory dispersion (ORD). Light passes through a polarizer, sample and analyzer, to a transmission grating that disperses the collimated light beam. A step-motor rotating stage controlled by a digital signal processor changes the analyzer orientation. The light power is measured by a charge-coupled device (CCD) after each rotating-stage step. The optical rotation angle for each wavelength is determined from the shift between two Malus curves obtained from each CCD pixel. The ORD spectrum is obtained by transforming the optical rotation angle into specific rotation. The ORD spectrum for a standard quartz tube demonstrates good continuity and agreement with reference data.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Determination of Small Birefringence in the Bovine Lens Capsule by Optical Rotatory Dispersion

Noriaki Takeguchi and Masayuki Nakagaki
J. Opt. Soc. Am. 58(3) 415-418 (1968)

Broadband polarimetric glucose determination in protein containing media using characteristic optical rotatory dispersion

Christian Stark, Cesar Andres Carvajal Arrieta, Reza Behroozian, Benjamin Redmer, Felix Fiedler, and Stefan Müller
Biomed. Opt. Express 10(12) 6340-6350 (2019)

Optical-rotatory-dispersion measurement approach using the nonlinear behavior of the geometric phase

Makoto Ginya, Makoto Kimura, and Tetsuo Iwata
Opt. Express 25(4) 3024-3037 (2017)

References

  • View by:
  • |
  • |
  • |

  1. B. Kunnen, C. Macdonald, A. Doronin, S. Jacques, M. Eccles, and I. Meglinski, “Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media,” J. Biophotonics 8(4), 317–323 (2015).
    [Crossref] [PubMed]
  2. J. C. Ramella-Roman, A. Nayak, and S. A. Prahl, “Spectroscopic sensitive polarimeter for biomedical applications,” J. Biomed. Opt. 16(4), 047001 (2011).
    [Crossref] [PubMed]
  3. T. Müller, K. B. Wiberg, and P. H. Vaccaro, “Cavity Ring-Down Polarimetry (CRDP): A New Scheme for Probing Circular Birefringence and Circular Dichroism in the Gas Phase,” J. Phys. Chem. A 104(25), 5959–5968 (2000).
    [Crossref]
  4. T. Müller, K. B. Wiberg, P. H. Vaccaro, J. R. Cheeseman, and M. J. Frisch, “Cavity ring-down polarimetry (CRDP): theoretical and experimental characterization,” J. Opt. Soc. Am. B 19(1), 125–141 (2002).
    [Crossref]
  5. E. Giorgio, R. G. Viglione, R. Zanasi, and C. Rosini, “Ab Initio Calculation of Optical Rotatory Dispersion (ORD) Curves: A Simple and Reliable Approach to the Assignment of the Molecular Absolute Configuration,” J. Am. Chem. Soc. 126(40), 12968–12976 (2004).
    [Crossref] [PubMed]
  6. E. Giorgio, C. Rosini, R. G. Viglione, and R. Zanasi, “Calculation of the gas phase specific rotation of (S)-propylene oxide at 355 nm,” Chem. Phys. Lett. 376(3–4), 452–456 (2003).
    [Crossref]
  7. H. Z. Jia, G. Z. Xia, B. C. Wu, T. Jin, and H. C. Lu, “A novel optical polarimeter based on the signal width measurement of the waveform,” Optik (Stuttg.) 122(23), 2107–2109 (2011).
    [Crossref]
  8. A. Arnaud, F. Silveira, E. M. Frins, A. Dubra, C. D. Perciante, and J. A. Ferrari, “Precision synchronous polarimeter with linear response for the measurement of small rotation angles,” Appl. Opt. 39(16), 2601–2604 (2000).
    [Crossref] [PubMed]
  9. M. Tanaka, Y. Nakashima, H. Amamiya, M. Chujo, and Y. Otani, “Spectroscopic Stokes polarimeter with dual rotating retarder and analyzer for optical rotation measurement,” Proc. SPIE 7461, 74610O (2009).
    [Crossref]
  10. J. F. Lin and Y. L. Lo, “Measurement of optical rotation and depolarization using both linearly and circularly polarized lights,” Proc. SPIE 7375, 73754K (2008).
    [Crossref]
  11. K. H. Chen, Y. C. Chu, and J. H. Chen, “Applying the phase difference property of polarization angle for measuring the concentration of solutions,” Opt. Laser Technol. 44(1), 251–254 (2012).
    [Crossref]
  12. J. Y. Lin and D. C. Su, “A new type of optical heterodyne polarimeter,” Meas. Sci. Technol. 14(1), 55–58 (2003).
    [Crossref]
  13. Z. Yang and H. Jia, “Improving the accuracy of optical rotation measurement based on optical null methods by curve-fitting,” Rev. Sci. Instrum. 84(5), 053104 (2013).
    [Crossref] [PubMed]
  14. J. Cao, H. Jia, X. Shen, and S. Jiang, “Research of optical rotation measurement system based on centroid algorithm,” Rev. Sci. Instrum. 87(9), 093108 (2016).
    [Crossref] [PubMed]
  15. D. B. Shapiro, R. A. Goldbeck, D. Che, R. M. Esquerra, S. J. Paquette, and D. S. Kliger, “Nanosecond optical rotatory dispersion spectroscopy: application to photolyzed hemoglobin-CO kinetics,” Biophys. J. 68(1), 326–334 (1995).
    [Crossref] [PubMed]
  16. R. D. L. Kronig, “On the theory of dispersion of X-rays,” J. Opt. Soc. Am. 12(6), 547–557 (1926).
    [Crossref]
  17. J. R. Macdonald and M. K. Brachman, “Linear-system integral transform relations,” Rev. Mod. Phys. 28(4), 393–422 (1956).
    [Crossref]
  18. C. Djerassi, Optical Rotatory Dispersion: Applications to Organic Chemistry (McGraw-Hill, 1960).
  19. B. de Campos Vidal, “Anormal dispersion of birefringence, linear dichroism, and relationships with ORD (extrinsic cotton effect),” Histochemie 30(2), 102–107 (1972).
    [Crossref] [PubMed]
  20. B. Jirgensons, “The Cotton effects in the optical rotatory dispersion of proteins as new criteria of conformation,” J. Biol. Chem. 240(3), 1064–1071 (1965).
    [PubMed]
  21. A. L. Stone, “Optical rotatory dispersion of mucopolysaccharides and mucopolysaccharide--dye complexes. II. Ultraviolet Cotton effects in the amide transition bands,” Biopolymers 7(2), 173–187 (1969).
    [Crossref] [PubMed]
  22. D. V. Myers and J. T. Edsall, “Optical rotatory dispersion of human carbonic anhydrases: Cotton effects and aromatic absorption bands,” Proc. Natl. Acad. Sci. U.S.A. 53(1), 169–177 (1965).
    [Crossref] [PubMed]
  23. G. D. Fasman, E. Bodenheimer, and C. Lindblow, “Optical rotatory dispersion studies of Poly-L-tyrosine and copolymers of L-glutamic acid and L-tyrosine. Significance of the tyrosyl Cotton effects with respect to protein conformation,” Biochemistry 3(11), 1665–1674 (1964).
    [Crossref] [PubMed]
  24. S. Sugai, K. Nitta, and M. Ishikawa, “Analysis of Cotton-effect distribution of optical rotatory dispersion for polypeptides in solution,” Biophysik 7(1), 8–16 (1970).
    [Crossref] [PubMed]
  25. Z. G. Han, Z. Xu, and L. Chen, “New spectroscopic method for the determination of optical rotatory dispersion,” Chin. Opt. Lett. 12(8), 081202 (2014).
    [Crossref]
  26. D. G. Dimitriu and D. O. Dorohoi, “New method to determine the optical rotatory dispersion of inorganic crystals applied to some samples of Carpathian Quartz,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 131, 674–677 (2014).
    [Crossref] [PubMed]
  27. D. O. Dorohoi, D. G. Dimitriu, I. Cosutchi, and I. Breaban, “A new method for determining the optical rotatory dispersion of transparent crystalline layers,” Proc. SPIE 9286, 92862Z (2014).
    [Crossref]
  28. D. J. Lockwood, “Plane grating dispersion formulae,” Appl. Opt. 12(4), 896 (1973).
  29. T. M. Lowry and W. R. C. Coode-Adams, “Optical rotatory dispersion. Part III: the rotatory dispersion of quartz in the infra-red, visible and ultra-violet regions of the spectrum,” Philos. Trans. R. Soc. A 226(636), 391-466 (1927).
  30. C. D. Hodgman, Handbook of Chemistry and Physics, 39th (1957–1958) (Chemical Rubber Publishing Co., 1957).

2016 (1)

J. Cao, H. Jia, X. Shen, and S. Jiang, “Research of optical rotation measurement system based on centroid algorithm,” Rev. Sci. Instrum. 87(9), 093108 (2016).
[Crossref] [PubMed]

2015 (1)

B. Kunnen, C. Macdonald, A. Doronin, S. Jacques, M. Eccles, and I. Meglinski, “Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media,” J. Biophotonics 8(4), 317–323 (2015).
[Crossref] [PubMed]

2014 (3)

Z. G. Han, Z. Xu, and L. Chen, “New spectroscopic method for the determination of optical rotatory dispersion,” Chin. Opt. Lett. 12(8), 081202 (2014).
[Crossref]

D. G. Dimitriu and D. O. Dorohoi, “New method to determine the optical rotatory dispersion of inorganic crystals applied to some samples of Carpathian Quartz,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 131, 674–677 (2014).
[Crossref] [PubMed]

D. O. Dorohoi, D. G. Dimitriu, I. Cosutchi, and I. Breaban, “A new method for determining the optical rotatory dispersion of transparent crystalline layers,” Proc. SPIE 9286, 92862Z (2014).
[Crossref]

2013 (1)

Z. Yang and H. Jia, “Improving the accuracy of optical rotation measurement based on optical null methods by curve-fitting,” Rev. Sci. Instrum. 84(5), 053104 (2013).
[Crossref] [PubMed]

2012 (1)

K. H. Chen, Y. C. Chu, and J. H. Chen, “Applying the phase difference property of polarization angle for measuring the concentration of solutions,” Opt. Laser Technol. 44(1), 251–254 (2012).
[Crossref]

2011 (2)

J. C. Ramella-Roman, A. Nayak, and S. A. Prahl, “Spectroscopic sensitive polarimeter for biomedical applications,” J. Biomed. Opt. 16(4), 047001 (2011).
[Crossref] [PubMed]

H. Z. Jia, G. Z. Xia, B. C. Wu, T. Jin, and H. C. Lu, “A novel optical polarimeter based on the signal width measurement of the waveform,” Optik (Stuttg.) 122(23), 2107–2109 (2011).
[Crossref]

2009 (1)

M. Tanaka, Y. Nakashima, H. Amamiya, M. Chujo, and Y. Otani, “Spectroscopic Stokes polarimeter with dual rotating retarder and analyzer for optical rotation measurement,” Proc. SPIE 7461, 74610O (2009).
[Crossref]

2008 (1)

J. F. Lin and Y. L. Lo, “Measurement of optical rotation and depolarization using both linearly and circularly polarized lights,” Proc. SPIE 7375, 73754K (2008).
[Crossref]

2004 (1)

E. Giorgio, R. G. Viglione, R. Zanasi, and C. Rosini, “Ab Initio Calculation of Optical Rotatory Dispersion (ORD) Curves: A Simple and Reliable Approach to the Assignment of the Molecular Absolute Configuration,” J. Am. Chem. Soc. 126(40), 12968–12976 (2004).
[Crossref] [PubMed]

2003 (2)

E. Giorgio, C. Rosini, R. G. Viglione, and R. Zanasi, “Calculation of the gas phase specific rotation of (S)-propylene oxide at 355 nm,” Chem. Phys. Lett. 376(3–4), 452–456 (2003).
[Crossref]

J. Y. Lin and D. C. Su, “A new type of optical heterodyne polarimeter,” Meas. Sci. Technol. 14(1), 55–58 (2003).
[Crossref]

2002 (1)

2000 (2)

T. Müller, K. B. Wiberg, and P. H. Vaccaro, “Cavity Ring-Down Polarimetry (CRDP): A New Scheme for Probing Circular Birefringence and Circular Dichroism in the Gas Phase,” J. Phys. Chem. A 104(25), 5959–5968 (2000).
[Crossref]

A. Arnaud, F. Silveira, E. M. Frins, A. Dubra, C. D. Perciante, and J. A. Ferrari, “Precision synchronous polarimeter with linear response for the measurement of small rotation angles,” Appl. Opt. 39(16), 2601–2604 (2000).
[Crossref] [PubMed]

1995 (1)

D. B. Shapiro, R. A. Goldbeck, D. Che, R. M. Esquerra, S. J. Paquette, and D. S. Kliger, “Nanosecond optical rotatory dispersion spectroscopy: application to photolyzed hemoglobin-CO kinetics,” Biophys. J. 68(1), 326–334 (1995).
[Crossref] [PubMed]

1973 (1)

1972 (1)

B. de Campos Vidal, “Anormal dispersion of birefringence, linear dichroism, and relationships with ORD (extrinsic cotton effect),” Histochemie 30(2), 102–107 (1972).
[Crossref] [PubMed]

1970 (1)

S. Sugai, K. Nitta, and M. Ishikawa, “Analysis of Cotton-effect distribution of optical rotatory dispersion for polypeptides in solution,” Biophysik 7(1), 8–16 (1970).
[Crossref] [PubMed]

1969 (1)

A. L. Stone, “Optical rotatory dispersion of mucopolysaccharides and mucopolysaccharide--dye complexes. II. Ultraviolet Cotton effects in the amide transition bands,” Biopolymers 7(2), 173–187 (1969).
[Crossref] [PubMed]

1965 (2)

D. V. Myers and J. T. Edsall, “Optical rotatory dispersion of human carbonic anhydrases: Cotton effects and aromatic absorption bands,” Proc. Natl. Acad. Sci. U.S.A. 53(1), 169–177 (1965).
[Crossref] [PubMed]

B. Jirgensons, “The Cotton effects in the optical rotatory dispersion of proteins as new criteria of conformation,” J. Biol. Chem. 240(3), 1064–1071 (1965).
[PubMed]

1964 (1)

G. D. Fasman, E. Bodenheimer, and C. Lindblow, “Optical rotatory dispersion studies of Poly-L-tyrosine and copolymers of L-glutamic acid and L-tyrosine. Significance of the tyrosyl Cotton effects with respect to protein conformation,” Biochemistry 3(11), 1665–1674 (1964).
[Crossref] [PubMed]

1956 (1)

J. R. Macdonald and M. K. Brachman, “Linear-system integral transform relations,” Rev. Mod. Phys. 28(4), 393–422 (1956).
[Crossref]

1927 (1)

T. M. Lowry and W. R. C. Coode-Adams, “Optical rotatory dispersion. Part III: the rotatory dispersion of quartz in the infra-red, visible and ultra-violet regions of the spectrum,” Philos. Trans. R. Soc. A 226(636), 391-466 (1927).

1926 (1)

Amamiya, H.

M. Tanaka, Y. Nakashima, H. Amamiya, M. Chujo, and Y. Otani, “Spectroscopic Stokes polarimeter with dual rotating retarder and analyzer for optical rotation measurement,” Proc. SPIE 7461, 74610O (2009).
[Crossref]

Arnaud, A.

Bodenheimer, E.

G. D. Fasman, E. Bodenheimer, and C. Lindblow, “Optical rotatory dispersion studies of Poly-L-tyrosine and copolymers of L-glutamic acid and L-tyrosine. Significance of the tyrosyl Cotton effects with respect to protein conformation,” Biochemistry 3(11), 1665–1674 (1964).
[Crossref] [PubMed]

Brachman, M. K.

J. R. Macdonald and M. K. Brachman, “Linear-system integral transform relations,” Rev. Mod. Phys. 28(4), 393–422 (1956).
[Crossref]

Breaban, I.

D. O. Dorohoi, D. G. Dimitriu, I. Cosutchi, and I. Breaban, “A new method for determining the optical rotatory dispersion of transparent crystalline layers,” Proc. SPIE 9286, 92862Z (2014).
[Crossref]

Cao, J.

J. Cao, H. Jia, X. Shen, and S. Jiang, “Research of optical rotation measurement system based on centroid algorithm,” Rev. Sci. Instrum. 87(9), 093108 (2016).
[Crossref] [PubMed]

Che, D.

D. B. Shapiro, R. A. Goldbeck, D. Che, R. M. Esquerra, S. J. Paquette, and D. S. Kliger, “Nanosecond optical rotatory dispersion spectroscopy: application to photolyzed hemoglobin-CO kinetics,” Biophys. J. 68(1), 326–334 (1995).
[Crossref] [PubMed]

Cheeseman, J. R.

Chen, J. H.

K. H. Chen, Y. C. Chu, and J. H. Chen, “Applying the phase difference property of polarization angle for measuring the concentration of solutions,” Opt. Laser Technol. 44(1), 251–254 (2012).
[Crossref]

Chen, K. H.

K. H. Chen, Y. C. Chu, and J. H. Chen, “Applying the phase difference property of polarization angle for measuring the concentration of solutions,” Opt. Laser Technol. 44(1), 251–254 (2012).
[Crossref]

Chen, L.

Chu, Y. C.

K. H. Chen, Y. C. Chu, and J. H. Chen, “Applying the phase difference property of polarization angle for measuring the concentration of solutions,” Opt. Laser Technol. 44(1), 251–254 (2012).
[Crossref]

Chujo, M.

M. Tanaka, Y. Nakashima, H. Amamiya, M. Chujo, and Y. Otani, “Spectroscopic Stokes polarimeter with dual rotating retarder and analyzer for optical rotation measurement,” Proc. SPIE 7461, 74610O (2009).
[Crossref]

Coode-Adams, W. R. C.

T. M. Lowry and W. R. C. Coode-Adams, “Optical rotatory dispersion. Part III: the rotatory dispersion of quartz in the infra-red, visible and ultra-violet regions of the spectrum,” Philos. Trans. R. Soc. A 226(636), 391-466 (1927).

Cosutchi, I.

D. O. Dorohoi, D. G. Dimitriu, I. Cosutchi, and I. Breaban, “A new method for determining the optical rotatory dispersion of transparent crystalline layers,” Proc. SPIE 9286, 92862Z (2014).
[Crossref]

de Campos Vidal, B.

B. de Campos Vidal, “Anormal dispersion of birefringence, linear dichroism, and relationships with ORD (extrinsic cotton effect),” Histochemie 30(2), 102–107 (1972).
[Crossref] [PubMed]

Dimitriu, D. G.

D. O. Dorohoi, D. G. Dimitriu, I. Cosutchi, and I. Breaban, “A new method for determining the optical rotatory dispersion of transparent crystalline layers,” Proc. SPIE 9286, 92862Z (2014).
[Crossref]

D. G. Dimitriu and D. O. Dorohoi, “New method to determine the optical rotatory dispersion of inorganic crystals applied to some samples of Carpathian Quartz,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 131, 674–677 (2014).
[Crossref] [PubMed]

Dorohoi, D. O.

D. G. Dimitriu and D. O. Dorohoi, “New method to determine the optical rotatory dispersion of inorganic crystals applied to some samples of Carpathian Quartz,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 131, 674–677 (2014).
[Crossref] [PubMed]

D. O. Dorohoi, D. G. Dimitriu, I. Cosutchi, and I. Breaban, “A new method for determining the optical rotatory dispersion of transparent crystalline layers,” Proc. SPIE 9286, 92862Z (2014).
[Crossref]

Doronin, A.

B. Kunnen, C. Macdonald, A. Doronin, S. Jacques, M. Eccles, and I. Meglinski, “Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media,” J. Biophotonics 8(4), 317–323 (2015).
[Crossref] [PubMed]

Dubra, A.

Eccles, M.

B. Kunnen, C. Macdonald, A. Doronin, S. Jacques, M. Eccles, and I. Meglinski, “Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media,” J. Biophotonics 8(4), 317–323 (2015).
[Crossref] [PubMed]

Edsall, J. T.

D. V. Myers and J. T. Edsall, “Optical rotatory dispersion of human carbonic anhydrases: Cotton effects and aromatic absorption bands,” Proc. Natl. Acad. Sci. U.S.A. 53(1), 169–177 (1965).
[Crossref] [PubMed]

Esquerra, R. M.

D. B. Shapiro, R. A. Goldbeck, D. Che, R. M. Esquerra, S. J. Paquette, and D. S. Kliger, “Nanosecond optical rotatory dispersion spectroscopy: application to photolyzed hemoglobin-CO kinetics,” Biophys. J. 68(1), 326–334 (1995).
[Crossref] [PubMed]

Fasman, G. D.

G. D. Fasman, E. Bodenheimer, and C. Lindblow, “Optical rotatory dispersion studies of Poly-L-tyrosine and copolymers of L-glutamic acid and L-tyrosine. Significance of the tyrosyl Cotton effects with respect to protein conformation,” Biochemistry 3(11), 1665–1674 (1964).
[Crossref] [PubMed]

Ferrari, J. A.

Frins, E. M.

Frisch, M. J.

Giorgio, E.

E. Giorgio, R. G. Viglione, R. Zanasi, and C. Rosini, “Ab Initio Calculation of Optical Rotatory Dispersion (ORD) Curves: A Simple and Reliable Approach to the Assignment of the Molecular Absolute Configuration,” J. Am. Chem. Soc. 126(40), 12968–12976 (2004).
[Crossref] [PubMed]

E. Giorgio, C. Rosini, R. G. Viglione, and R. Zanasi, “Calculation of the gas phase specific rotation of (S)-propylene oxide at 355 nm,” Chem. Phys. Lett. 376(3–4), 452–456 (2003).
[Crossref]

Goldbeck, R. A.

D. B. Shapiro, R. A. Goldbeck, D. Che, R. M. Esquerra, S. J. Paquette, and D. S. Kliger, “Nanosecond optical rotatory dispersion spectroscopy: application to photolyzed hemoglobin-CO kinetics,” Biophys. J. 68(1), 326–334 (1995).
[Crossref] [PubMed]

Han, Z. G.

Ishikawa, M.

S. Sugai, K. Nitta, and M. Ishikawa, “Analysis of Cotton-effect distribution of optical rotatory dispersion for polypeptides in solution,” Biophysik 7(1), 8–16 (1970).
[Crossref] [PubMed]

Jacques, S.

B. Kunnen, C. Macdonald, A. Doronin, S. Jacques, M. Eccles, and I. Meglinski, “Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media,” J. Biophotonics 8(4), 317–323 (2015).
[Crossref] [PubMed]

Jia, H.

J. Cao, H. Jia, X. Shen, and S. Jiang, “Research of optical rotation measurement system based on centroid algorithm,” Rev. Sci. Instrum. 87(9), 093108 (2016).
[Crossref] [PubMed]

Z. Yang and H. Jia, “Improving the accuracy of optical rotation measurement based on optical null methods by curve-fitting,” Rev. Sci. Instrum. 84(5), 053104 (2013).
[Crossref] [PubMed]

Jia, H. Z.

H. Z. Jia, G. Z. Xia, B. C. Wu, T. Jin, and H. C. Lu, “A novel optical polarimeter based on the signal width measurement of the waveform,” Optik (Stuttg.) 122(23), 2107–2109 (2011).
[Crossref]

Jiang, S.

J. Cao, H. Jia, X. Shen, and S. Jiang, “Research of optical rotation measurement system based on centroid algorithm,” Rev. Sci. Instrum. 87(9), 093108 (2016).
[Crossref] [PubMed]

Jin, T.

H. Z. Jia, G. Z. Xia, B. C. Wu, T. Jin, and H. C. Lu, “A novel optical polarimeter based on the signal width measurement of the waveform,” Optik (Stuttg.) 122(23), 2107–2109 (2011).
[Crossref]

Jirgensons, B.

B. Jirgensons, “The Cotton effects in the optical rotatory dispersion of proteins as new criteria of conformation,” J. Biol. Chem. 240(3), 1064–1071 (1965).
[PubMed]

Kliger, D. S.

D. B. Shapiro, R. A. Goldbeck, D. Che, R. M. Esquerra, S. J. Paquette, and D. S. Kliger, “Nanosecond optical rotatory dispersion spectroscopy: application to photolyzed hemoglobin-CO kinetics,” Biophys. J. 68(1), 326–334 (1995).
[Crossref] [PubMed]

Kronig, R. D. L.

Kunnen, B.

B. Kunnen, C. Macdonald, A. Doronin, S. Jacques, M. Eccles, and I. Meglinski, “Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media,” J. Biophotonics 8(4), 317–323 (2015).
[Crossref] [PubMed]

Lin, J. F.

J. F. Lin and Y. L. Lo, “Measurement of optical rotation and depolarization using both linearly and circularly polarized lights,” Proc. SPIE 7375, 73754K (2008).
[Crossref]

Lin, J. Y.

J. Y. Lin and D. C. Su, “A new type of optical heterodyne polarimeter,” Meas. Sci. Technol. 14(1), 55–58 (2003).
[Crossref]

Lindblow, C.

G. D. Fasman, E. Bodenheimer, and C. Lindblow, “Optical rotatory dispersion studies of Poly-L-tyrosine and copolymers of L-glutamic acid and L-tyrosine. Significance of the tyrosyl Cotton effects with respect to protein conformation,” Biochemistry 3(11), 1665–1674 (1964).
[Crossref] [PubMed]

Lo, Y. L.

J. F. Lin and Y. L. Lo, “Measurement of optical rotation and depolarization using both linearly and circularly polarized lights,” Proc. SPIE 7375, 73754K (2008).
[Crossref]

Lockwood, D. J.

Lowry, T. M.

T. M. Lowry and W. R. C. Coode-Adams, “Optical rotatory dispersion. Part III: the rotatory dispersion of quartz in the infra-red, visible and ultra-violet regions of the spectrum,” Philos. Trans. R. Soc. A 226(636), 391-466 (1927).

Lu, H. C.

H. Z. Jia, G. Z. Xia, B. C. Wu, T. Jin, and H. C. Lu, “A novel optical polarimeter based on the signal width measurement of the waveform,” Optik (Stuttg.) 122(23), 2107–2109 (2011).
[Crossref]

Macdonald, C.

B. Kunnen, C. Macdonald, A. Doronin, S. Jacques, M. Eccles, and I. Meglinski, “Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media,” J. Biophotonics 8(4), 317–323 (2015).
[Crossref] [PubMed]

Macdonald, J. R.

J. R. Macdonald and M. K. Brachman, “Linear-system integral transform relations,” Rev. Mod. Phys. 28(4), 393–422 (1956).
[Crossref]

Meglinski, I.

B. Kunnen, C. Macdonald, A. Doronin, S. Jacques, M. Eccles, and I. Meglinski, “Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media,” J. Biophotonics 8(4), 317–323 (2015).
[Crossref] [PubMed]

Müller, T.

T. Müller, K. B. Wiberg, P. H. Vaccaro, J. R. Cheeseman, and M. J. Frisch, “Cavity ring-down polarimetry (CRDP): theoretical and experimental characterization,” J. Opt. Soc. Am. B 19(1), 125–141 (2002).
[Crossref]

T. Müller, K. B. Wiberg, and P. H. Vaccaro, “Cavity Ring-Down Polarimetry (CRDP): A New Scheme for Probing Circular Birefringence and Circular Dichroism in the Gas Phase,” J. Phys. Chem. A 104(25), 5959–5968 (2000).
[Crossref]

Myers, D. V.

D. V. Myers and J. T. Edsall, “Optical rotatory dispersion of human carbonic anhydrases: Cotton effects and aromatic absorption bands,” Proc. Natl. Acad. Sci. U.S.A. 53(1), 169–177 (1965).
[Crossref] [PubMed]

Nakashima, Y.

M. Tanaka, Y. Nakashima, H. Amamiya, M. Chujo, and Y. Otani, “Spectroscopic Stokes polarimeter with dual rotating retarder and analyzer for optical rotation measurement,” Proc. SPIE 7461, 74610O (2009).
[Crossref]

Nayak, A.

J. C. Ramella-Roman, A. Nayak, and S. A. Prahl, “Spectroscopic sensitive polarimeter for biomedical applications,” J. Biomed. Opt. 16(4), 047001 (2011).
[Crossref] [PubMed]

Nitta, K.

S. Sugai, K. Nitta, and M. Ishikawa, “Analysis of Cotton-effect distribution of optical rotatory dispersion for polypeptides in solution,” Biophysik 7(1), 8–16 (1970).
[Crossref] [PubMed]

Otani, Y.

M. Tanaka, Y. Nakashima, H. Amamiya, M. Chujo, and Y. Otani, “Spectroscopic Stokes polarimeter with dual rotating retarder and analyzer for optical rotation measurement,” Proc. SPIE 7461, 74610O (2009).
[Crossref]

Paquette, S. J.

D. B. Shapiro, R. A. Goldbeck, D. Che, R. M. Esquerra, S. J. Paquette, and D. S. Kliger, “Nanosecond optical rotatory dispersion spectroscopy: application to photolyzed hemoglobin-CO kinetics,” Biophys. J. 68(1), 326–334 (1995).
[Crossref] [PubMed]

Perciante, C. D.

Prahl, S. A.

J. C. Ramella-Roman, A. Nayak, and S. A. Prahl, “Spectroscopic sensitive polarimeter for biomedical applications,” J. Biomed. Opt. 16(4), 047001 (2011).
[Crossref] [PubMed]

Ramella-Roman, J. C.

J. C. Ramella-Roman, A. Nayak, and S. A. Prahl, “Spectroscopic sensitive polarimeter for biomedical applications,” J. Biomed. Opt. 16(4), 047001 (2011).
[Crossref] [PubMed]

Rosini, C.

E. Giorgio, R. G. Viglione, R. Zanasi, and C. Rosini, “Ab Initio Calculation of Optical Rotatory Dispersion (ORD) Curves: A Simple and Reliable Approach to the Assignment of the Molecular Absolute Configuration,” J. Am. Chem. Soc. 126(40), 12968–12976 (2004).
[Crossref] [PubMed]

E. Giorgio, C. Rosini, R. G. Viglione, and R. Zanasi, “Calculation of the gas phase specific rotation of (S)-propylene oxide at 355 nm,” Chem. Phys. Lett. 376(3–4), 452–456 (2003).
[Crossref]

Shapiro, D. B.

D. B. Shapiro, R. A. Goldbeck, D. Che, R. M. Esquerra, S. J. Paquette, and D. S. Kliger, “Nanosecond optical rotatory dispersion spectroscopy: application to photolyzed hemoglobin-CO kinetics,” Biophys. J. 68(1), 326–334 (1995).
[Crossref] [PubMed]

Shen, X.

J. Cao, H. Jia, X. Shen, and S. Jiang, “Research of optical rotation measurement system based on centroid algorithm,” Rev. Sci. Instrum. 87(9), 093108 (2016).
[Crossref] [PubMed]

Silveira, F.

Stone, A. L.

A. L. Stone, “Optical rotatory dispersion of mucopolysaccharides and mucopolysaccharide--dye complexes. II. Ultraviolet Cotton effects in the amide transition bands,” Biopolymers 7(2), 173–187 (1969).
[Crossref] [PubMed]

Su, D. C.

J. Y. Lin and D. C. Su, “A new type of optical heterodyne polarimeter,” Meas. Sci. Technol. 14(1), 55–58 (2003).
[Crossref]

Sugai, S.

S. Sugai, K. Nitta, and M. Ishikawa, “Analysis of Cotton-effect distribution of optical rotatory dispersion for polypeptides in solution,” Biophysik 7(1), 8–16 (1970).
[Crossref] [PubMed]

Tanaka, M.

M. Tanaka, Y. Nakashima, H. Amamiya, M. Chujo, and Y. Otani, “Spectroscopic Stokes polarimeter with dual rotating retarder and analyzer for optical rotation measurement,” Proc. SPIE 7461, 74610O (2009).
[Crossref]

Vaccaro, P. H.

T. Müller, K. B. Wiberg, P. H. Vaccaro, J. R. Cheeseman, and M. J. Frisch, “Cavity ring-down polarimetry (CRDP): theoretical and experimental characterization,” J. Opt. Soc. Am. B 19(1), 125–141 (2002).
[Crossref]

T. Müller, K. B. Wiberg, and P. H. Vaccaro, “Cavity Ring-Down Polarimetry (CRDP): A New Scheme for Probing Circular Birefringence and Circular Dichroism in the Gas Phase,” J. Phys. Chem. A 104(25), 5959–5968 (2000).
[Crossref]

Viglione, R. G.

E. Giorgio, R. G. Viglione, R. Zanasi, and C. Rosini, “Ab Initio Calculation of Optical Rotatory Dispersion (ORD) Curves: A Simple and Reliable Approach to the Assignment of the Molecular Absolute Configuration,” J. Am. Chem. Soc. 126(40), 12968–12976 (2004).
[Crossref] [PubMed]

E. Giorgio, C. Rosini, R. G. Viglione, and R. Zanasi, “Calculation of the gas phase specific rotation of (S)-propylene oxide at 355 nm,” Chem. Phys. Lett. 376(3–4), 452–456 (2003).
[Crossref]

Wiberg, K. B.

T. Müller, K. B. Wiberg, P. H. Vaccaro, J. R. Cheeseman, and M. J. Frisch, “Cavity ring-down polarimetry (CRDP): theoretical and experimental characterization,” J. Opt. Soc. Am. B 19(1), 125–141 (2002).
[Crossref]

T. Müller, K. B. Wiberg, and P. H. Vaccaro, “Cavity Ring-Down Polarimetry (CRDP): A New Scheme for Probing Circular Birefringence and Circular Dichroism in the Gas Phase,” J. Phys. Chem. A 104(25), 5959–5968 (2000).
[Crossref]

Wu, B. C.

H. Z. Jia, G. Z. Xia, B. C. Wu, T. Jin, and H. C. Lu, “A novel optical polarimeter based on the signal width measurement of the waveform,” Optik (Stuttg.) 122(23), 2107–2109 (2011).
[Crossref]

Xia, G. Z.

H. Z. Jia, G. Z. Xia, B. C. Wu, T. Jin, and H. C. Lu, “A novel optical polarimeter based on the signal width measurement of the waveform,” Optik (Stuttg.) 122(23), 2107–2109 (2011).
[Crossref]

Xu, Z.

Yang, Z.

Z. Yang and H. Jia, “Improving the accuracy of optical rotation measurement based on optical null methods by curve-fitting,” Rev. Sci. Instrum. 84(5), 053104 (2013).
[Crossref] [PubMed]

Zanasi, R.

E. Giorgio, R. G. Viglione, R. Zanasi, and C. Rosini, “Ab Initio Calculation of Optical Rotatory Dispersion (ORD) Curves: A Simple and Reliable Approach to the Assignment of the Molecular Absolute Configuration,” J. Am. Chem. Soc. 126(40), 12968–12976 (2004).
[Crossref] [PubMed]

E. Giorgio, C. Rosini, R. G. Viglione, and R. Zanasi, “Calculation of the gas phase specific rotation of (S)-propylene oxide at 355 nm,” Chem. Phys. Lett. 376(3–4), 452–456 (2003).
[Crossref]

Appl. Opt. (2)

Biochemistry (1)

G. D. Fasman, E. Bodenheimer, and C. Lindblow, “Optical rotatory dispersion studies of Poly-L-tyrosine and copolymers of L-glutamic acid and L-tyrosine. Significance of the tyrosyl Cotton effects with respect to protein conformation,” Biochemistry 3(11), 1665–1674 (1964).
[Crossref] [PubMed]

Biophys. J. (1)

D. B. Shapiro, R. A. Goldbeck, D. Che, R. M. Esquerra, S. J. Paquette, and D. S. Kliger, “Nanosecond optical rotatory dispersion spectroscopy: application to photolyzed hemoglobin-CO kinetics,” Biophys. J. 68(1), 326–334 (1995).
[Crossref] [PubMed]

Biophysik (1)

S. Sugai, K. Nitta, and M. Ishikawa, “Analysis of Cotton-effect distribution of optical rotatory dispersion for polypeptides in solution,” Biophysik 7(1), 8–16 (1970).
[Crossref] [PubMed]

Biopolymers (1)

A. L. Stone, “Optical rotatory dispersion of mucopolysaccharides and mucopolysaccharide--dye complexes. II. Ultraviolet Cotton effects in the amide transition bands,” Biopolymers 7(2), 173–187 (1969).
[Crossref] [PubMed]

Chem. Phys. Lett. (1)

E. Giorgio, C. Rosini, R. G. Viglione, and R. Zanasi, “Calculation of the gas phase specific rotation of (S)-propylene oxide at 355 nm,” Chem. Phys. Lett. 376(3–4), 452–456 (2003).
[Crossref]

Chin. Opt. Lett. (1)

Histochemie (1)

B. de Campos Vidal, “Anormal dispersion of birefringence, linear dichroism, and relationships with ORD (extrinsic cotton effect),” Histochemie 30(2), 102–107 (1972).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

E. Giorgio, R. G. Viglione, R. Zanasi, and C. Rosini, “Ab Initio Calculation of Optical Rotatory Dispersion (ORD) Curves: A Simple and Reliable Approach to the Assignment of the Molecular Absolute Configuration,” J. Am. Chem. Soc. 126(40), 12968–12976 (2004).
[Crossref] [PubMed]

J. Biol. Chem. (1)

B. Jirgensons, “The Cotton effects in the optical rotatory dispersion of proteins as new criteria of conformation,” J. Biol. Chem. 240(3), 1064–1071 (1965).
[PubMed]

J. Biomed. Opt. (1)

J. C. Ramella-Roman, A. Nayak, and S. A. Prahl, “Spectroscopic sensitive polarimeter for biomedical applications,” J. Biomed. Opt. 16(4), 047001 (2011).
[Crossref] [PubMed]

J. Biophotonics (1)

B. Kunnen, C. Macdonald, A. Doronin, S. Jacques, M. Eccles, and I. Meglinski, “Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media,” J. Biophotonics 8(4), 317–323 (2015).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (1)

T. Müller, K. B. Wiberg, and P. H. Vaccaro, “Cavity Ring-Down Polarimetry (CRDP): A New Scheme for Probing Circular Birefringence and Circular Dichroism in the Gas Phase,” J. Phys. Chem. A 104(25), 5959–5968 (2000).
[Crossref]

Meas. Sci. Technol. (1)

J. Y. Lin and D. C. Su, “A new type of optical heterodyne polarimeter,” Meas. Sci. Technol. 14(1), 55–58 (2003).
[Crossref]

Opt. Laser Technol. (1)

K. H. Chen, Y. C. Chu, and J. H. Chen, “Applying the phase difference property of polarization angle for measuring the concentration of solutions,” Opt. Laser Technol. 44(1), 251–254 (2012).
[Crossref]

Optik (Stuttg.) (1)

H. Z. Jia, G. Z. Xia, B. C. Wu, T. Jin, and H. C. Lu, “A novel optical polarimeter based on the signal width measurement of the waveform,” Optik (Stuttg.) 122(23), 2107–2109 (2011).
[Crossref]

Philos. Trans. R. Soc. A (1)

T. M. Lowry and W. R. C. Coode-Adams, “Optical rotatory dispersion. Part III: the rotatory dispersion of quartz in the infra-red, visible and ultra-violet regions of the spectrum,” Philos. Trans. R. Soc. A 226(636), 391-466 (1927).

Proc. Natl. Acad. Sci. U.S.A. (1)

D. V. Myers and J. T. Edsall, “Optical rotatory dispersion of human carbonic anhydrases: Cotton effects and aromatic absorption bands,” Proc. Natl. Acad. Sci. U.S.A. 53(1), 169–177 (1965).
[Crossref] [PubMed]

Proc. SPIE (3)

M. Tanaka, Y. Nakashima, H. Amamiya, M. Chujo, and Y. Otani, “Spectroscopic Stokes polarimeter with dual rotating retarder and analyzer for optical rotation measurement,” Proc. SPIE 7461, 74610O (2009).
[Crossref]

J. F. Lin and Y. L. Lo, “Measurement of optical rotation and depolarization using both linearly and circularly polarized lights,” Proc. SPIE 7375, 73754K (2008).
[Crossref]

D. O. Dorohoi, D. G. Dimitriu, I. Cosutchi, and I. Breaban, “A new method for determining the optical rotatory dispersion of transparent crystalline layers,” Proc. SPIE 9286, 92862Z (2014).
[Crossref]

Rev. Mod. Phys. (1)

J. R. Macdonald and M. K. Brachman, “Linear-system integral transform relations,” Rev. Mod. Phys. 28(4), 393–422 (1956).
[Crossref]

Rev. Sci. Instrum. (2)

Z. Yang and H. Jia, “Improving the accuracy of optical rotation measurement based on optical null methods by curve-fitting,” Rev. Sci. Instrum. 84(5), 053104 (2013).
[Crossref] [PubMed]

J. Cao, H. Jia, X. Shen, and S. Jiang, “Research of optical rotation measurement system based on centroid algorithm,” Rev. Sci. Instrum. 87(9), 093108 (2016).
[Crossref] [PubMed]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

D. G. Dimitriu and D. O. Dorohoi, “New method to determine the optical rotatory dispersion of inorganic crystals applied to some samples of Carpathian Quartz,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 131, 674–677 (2014).
[Crossref] [PubMed]

Other (2)

C. D. Hodgman, Handbook of Chemistry and Physics, 39th (1957–1958) (Chemical Rubber Publishing Co., 1957).

C. Djerassi, Optical Rotatory Dispersion: Applications to Organic Chemistry (McGraw-Hill, 1960).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of optical rotatory dispersion spectrophotometer system: (1) broadband light source (bromine tungsten lamp with collimating lens); (2) aperture diaphragm (used to control the beam diameter); (3) polarizer (Glan-Taylor prism); (4) sample (in the specimen chamber); (5) analyzer (Glan-Taylor prism); (6) aperture diaphragm (slit of the detection system); (7) transmission grating; (8) convex lens (used to converge light on the pixels of CCD); (9) line scan CCD.
Fig. 2
Fig. 2 Curves of the normalized light intensity versus rotating angle with and without sample.
Fig. 3
Fig. 3 The geometric relationship of detection system.
Fig. 4
Fig. 4 Experimental setup.
Fig. 5
Fig. 5 The calibration fitting curve determined by 6 filters.
Fig. 6
Fig. 6 The measured specific rotation and fitting curve.
Fig. 7
Fig. 7 The residuals of fitting.
Fig. 8
Fig. 8 The fitting curve and Lowry’s curve.

Tables (4)

Tables Icon

Table 1 The Data Record Format

Tables Icon

Table 2 Optical Rotation Angles and Specific Rotations of All Pixels

Tables Icon

Table 3 Relationship between Wavelengths and Specific Rotations

Tables Icon

Table 4 Six Groups of Relations between Wavelength and Pixel Number

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I I 0 = cos 2 α,
I I 0 = cos 2 (α α j ),
[ α ]= α L ,
kλ=d(sini+sinθ),
kλ=dsinθ,
tanθ=x/f ,
x=s+b(nj),
λ= d k sin(arctan s+b(nj) f ),
[ α ]= k 1 λ 2 λ 1 2 k 2 λ 2 λ 2 2 k 3 ,
[ α ]= 7.994 λ 2 0.03386 0.9008 λ 2 0.1328 +0.4665,

Metrics