Abstract

This paper investigates the applicability of 1-μm-band mode-detection optical time domain reflectometry (OTDR), which detects microbending in single-mode fibers with high sensitivity by conducting measurements in the two-mode region of the fibers under test and observing the second-order mode of the backscattered light. To demonstrate its feasibility, we evaluate microbending losses as determined by the technique, and comparisons are made with conventional OTDR operating at the wavelength of 1650 nm. In addition, we discuss two potential applications of the technique. One is microbend sensing of fibers and cables for detecting microbending losses that are too small to be found with conventional OTDR. The other is health monitoring of installed fiber cables. This enables us to detect the growth in microbending losses at an earlier stage. Proof of concept is demonstrated experimentally.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reduction of modal evolution fluctuation in 2-LP mode optical time domain reflectometry

Atsushi Nakamura, Yusuke Koshikiya, and Tetsuya Manabe
Opt. Express 25(17) 20727-20736 (2017)

Optical frequency-domain reflectometry for microbend sensor demodulation

S. Gareth Pierce, Alistair MacLean, and Brian Culshaw
Appl. Opt. 39(25) 4569-4581 (2000)

Polarization discrimination in a phase-sensitive optical time-domain reflectometer intrusion-sensor system

Juan C. Juarez and Henry F. Taylor
Opt. Lett. 30(24) 3284-3286 (2005)

References

  • View by:
  • |
  • |
  • |

  1. W. B. Gardner, “Microbending loss in optical fibers,” Bell Syst. Tech. J. 54(2), 457–465 (1975).
    [Crossref]
  2. D. Marcuse, “Microbending losses of single-mode, step-index and multimode, parabolic-index fibers,” Bell Syst. Tech. J. 55(7), 937–955 (1976).
    [Crossref]
  3. W. A. Gambling, H. Matsumura, and C. M. Rangdale, “Curvature and microbending losses in single-mode optical fibres,” Opt. Quantum Electron. 11(1), 43–59 (1979).
    [Crossref]
  4. H. G. Unger, Planar Optical Waveguides and Fibres (Oxford University, 1977).
  5. K. Petermann, “Microbending loss in monomode fibres,” Electron. Lett. 12(4), 107–109 (1976).
    [Crossref]
  6. R. Olshansky, “Distortion losses in cabled optical fibers,” Appl. Opt. 14(1), 20–21 (1975).
    [Crossref] [PubMed]
  7. L. Han, P. Shah, J. Zhao, X. Wu, and S. R. Schmid, “Improvement of the precision (repeatability and reproducibility) of a test method to characterize microbending performance of optical fibers,” in Proceedings of the 60th International Wire and Cable Symposium (2011), pp. 6–10.
  8. P. Shah, L. Han, E. Murphy, S. Schmid, and D. Peterson, “Effect of ageing conditions on performance properties of selected commercial fibers,” in Proceedings of the 60th International Wire and Cable Symposium (2011), pp. 11–21.
  9. A. Nakamura, K. Okamoto, Y. Koshikiya, T. Manabe, M. Oguma, T. Hashimoto, and M. Itoh, “High-sensitivity detection of fiber bends: 1-μm-band mode-detection OTDR,” J. Lightwave Technol. 33(23), 4862–4869 (2015).
    [Crossref]
  10. A. Nakamura, K. Okamoto, Y. Koshikiya, T. Manabe, M. Oguma, T. Hashimoto, and M. Itoh, “Loss cause identification by evaluating backscattered modal loss ratio obtained with 1-μm-band mode-detection OTDR,” J. Lightwave Technol. 34(15), 3568–3576 (2016).
    [Crossref]
  11. K. Okamoto, A. Nakamura, Y. Koshikiya, and T. Manabe, “Highly sensitive monitoring of progressive microbending loss using 1-μm-band mode-detection OTDR,” in Proceedings of the 65th International Wire and Cable Symposium (2016), pp. 228–233.
  12. M. A. Bisyarin, O. I. Kotov, A. H. Hartog, L. B. Liokumovich, and N. A. Ushakov, “Rayleigh backscattering from the fundamental mode in multimode optical fibers,” Appl. Opt. 55(19), 5041–5051 (2016).
    [Crossref] [PubMed]
  13. Z. Wang, H. Wu, X. Hu, N. Zhao, Q. Mo, and G. Li, “Rayleigh scattering in few-mode optical fibers,” Sci. Rep. 6, 35844 (2016).
    [Crossref] [PubMed]
  14. IEC TR-62221, Optical fibres - Measurement methods - Microbending Sensitivity, 2nd ed. (2012).
  15. ITU-T Recommendation G.652, Characteristics of a Single-mode Optical Fibre and Cable (2009).

2016 (3)

2015 (1)

1979 (1)

W. A. Gambling, H. Matsumura, and C. M. Rangdale, “Curvature and microbending losses in single-mode optical fibres,” Opt. Quantum Electron. 11(1), 43–59 (1979).
[Crossref]

1976 (2)

K. Petermann, “Microbending loss in monomode fibres,” Electron. Lett. 12(4), 107–109 (1976).
[Crossref]

D. Marcuse, “Microbending losses of single-mode, step-index and multimode, parabolic-index fibers,” Bell Syst. Tech. J. 55(7), 937–955 (1976).
[Crossref]

1975 (2)

W. B. Gardner, “Microbending loss in optical fibers,” Bell Syst. Tech. J. 54(2), 457–465 (1975).
[Crossref]

R. Olshansky, “Distortion losses in cabled optical fibers,” Appl. Opt. 14(1), 20–21 (1975).
[Crossref] [PubMed]

Bisyarin, M. A.

Gambling, W. A.

W. A. Gambling, H. Matsumura, and C. M. Rangdale, “Curvature and microbending losses in single-mode optical fibres,” Opt. Quantum Electron. 11(1), 43–59 (1979).
[Crossref]

Gardner, W. B.

W. B. Gardner, “Microbending loss in optical fibers,” Bell Syst. Tech. J. 54(2), 457–465 (1975).
[Crossref]

Han, L.

P. Shah, L. Han, E. Murphy, S. Schmid, and D. Peterson, “Effect of ageing conditions on performance properties of selected commercial fibers,” in Proceedings of the 60th International Wire and Cable Symposium (2011), pp. 11–21.

L. Han, P. Shah, J. Zhao, X. Wu, and S. R. Schmid, “Improvement of the precision (repeatability and reproducibility) of a test method to characterize microbending performance of optical fibers,” in Proceedings of the 60th International Wire and Cable Symposium (2011), pp. 6–10.

Hartog, A. H.

Hashimoto, T.

Hu, X.

Z. Wang, H. Wu, X. Hu, N. Zhao, Q. Mo, and G. Li, “Rayleigh scattering in few-mode optical fibers,” Sci. Rep. 6, 35844 (2016).
[Crossref] [PubMed]

Itoh, M.

Koshikiya, Y.

Kotov, O. I.

Li, G.

Z. Wang, H. Wu, X. Hu, N. Zhao, Q. Mo, and G. Li, “Rayleigh scattering in few-mode optical fibers,” Sci. Rep. 6, 35844 (2016).
[Crossref] [PubMed]

Liokumovich, L. B.

Manabe, T.

Marcuse, D.

D. Marcuse, “Microbending losses of single-mode, step-index and multimode, parabolic-index fibers,” Bell Syst. Tech. J. 55(7), 937–955 (1976).
[Crossref]

Matsumura, H.

W. A. Gambling, H. Matsumura, and C. M. Rangdale, “Curvature and microbending losses in single-mode optical fibres,” Opt. Quantum Electron. 11(1), 43–59 (1979).
[Crossref]

Mo, Q.

Z. Wang, H. Wu, X. Hu, N. Zhao, Q. Mo, and G. Li, “Rayleigh scattering in few-mode optical fibers,” Sci. Rep. 6, 35844 (2016).
[Crossref] [PubMed]

Murphy, E.

P. Shah, L. Han, E. Murphy, S. Schmid, and D. Peterson, “Effect of ageing conditions on performance properties of selected commercial fibers,” in Proceedings of the 60th International Wire and Cable Symposium (2011), pp. 11–21.

Nakamura, A.

Oguma, M.

Okamoto, K.

Olshansky, R.

Petermann, K.

K. Petermann, “Microbending loss in monomode fibres,” Electron. Lett. 12(4), 107–109 (1976).
[Crossref]

Peterson, D.

P. Shah, L. Han, E. Murphy, S. Schmid, and D. Peterson, “Effect of ageing conditions on performance properties of selected commercial fibers,” in Proceedings of the 60th International Wire and Cable Symposium (2011), pp. 11–21.

Rangdale, C. M.

W. A. Gambling, H. Matsumura, and C. M. Rangdale, “Curvature and microbending losses in single-mode optical fibres,” Opt. Quantum Electron. 11(1), 43–59 (1979).
[Crossref]

Schmid, S.

P. Shah, L. Han, E. Murphy, S. Schmid, and D. Peterson, “Effect of ageing conditions on performance properties of selected commercial fibers,” in Proceedings of the 60th International Wire and Cable Symposium (2011), pp. 11–21.

Schmid, S. R.

L. Han, P. Shah, J. Zhao, X. Wu, and S. R. Schmid, “Improvement of the precision (repeatability and reproducibility) of a test method to characterize microbending performance of optical fibers,” in Proceedings of the 60th International Wire and Cable Symposium (2011), pp. 6–10.

Shah, P.

L. Han, P. Shah, J. Zhao, X. Wu, and S. R. Schmid, “Improvement of the precision (repeatability and reproducibility) of a test method to characterize microbending performance of optical fibers,” in Proceedings of the 60th International Wire and Cable Symposium (2011), pp. 6–10.

P. Shah, L. Han, E. Murphy, S. Schmid, and D. Peterson, “Effect of ageing conditions on performance properties of selected commercial fibers,” in Proceedings of the 60th International Wire and Cable Symposium (2011), pp. 11–21.

Ushakov, N. A.

Wang, Z.

Z. Wang, H. Wu, X. Hu, N. Zhao, Q. Mo, and G. Li, “Rayleigh scattering in few-mode optical fibers,” Sci. Rep. 6, 35844 (2016).
[Crossref] [PubMed]

Wu, H.

Z. Wang, H. Wu, X. Hu, N. Zhao, Q. Mo, and G. Li, “Rayleigh scattering in few-mode optical fibers,” Sci. Rep. 6, 35844 (2016).
[Crossref] [PubMed]

Wu, X.

L. Han, P. Shah, J. Zhao, X. Wu, and S. R. Schmid, “Improvement of the precision (repeatability and reproducibility) of a test method to characterize microbending performance of optical fibers,” in Proceedings of the 60th International Wire and Cable Symposium (2011), pp. 6–10.

Zhao, J.

L. Han, P. Shah, J. Zhao, X. Wu, and S. R. Schmid, “Improvement of the precision (repeatability and reproducibility) of a test method to characterize microbending performance of optical fibers,” in Proceedings of the 60th International Wire and Cable Symposium (2011), pp. 6–10.

Zhao, N.

Z. Wang, H. Wu, X. Hu, N. Zhao, Q. Mo, and G. Li, “Rayleigh scattering in few-mode optical fibers,” Sci. Rep. 6, 35844 (2016).
[Crossref] [PubMed]

Appl. Opt. (2)

Bell Syst. Tech. J. (2)

W. B. Gardner, “Microbending loss in optical fibers,” Bell Syst. Tech. J. 54(2), 457–465 (1975).
[Crossref]

D. Marcuse, “Microbending losses of single-mode, step-index and multimode, parabolic-index fibers,” Bell Syst. Tech. J. 55(7), 937–955 (1976).
[Crossref]

Electron. Lett. (1)

K. Petermann, “Microbending loss in monomode fibres,” Electron. Lett. 12(4), 107–109 (1976).
[Crossref]

J. Lightwave Technol. (2)

Opt. Quantum Electron. (1)

W. A. Gambling, H. Matsumura, and C. M. Rangdale, “Curvature and microbending losses in single-mode optical fibres,” Opt. Quantum Electron. 11(1), 43–59 (1979).
[Crossref]

Sci. Rep. (1)

Z. Wang, H. Wu, X. Hu, N. Zhao, Q. Mo, and G. Li, “Rayleigh scattering in few-mode optical fibers,” Sci. Rep. 6, 35844 (2016).
[Crossref] [PubMed]

Other (6)

IEC TR-62221, Optical fibres - Measurement methods - Microbending Sensitivity, 2nd ed. (2012).

ITU-T Recommendation G.652, Characteristics of a Single-mode Optical Fibre and Cable (2009).

H. G. Unger, Planar Optical Waveguides and Fibres (Oxford University, 1977).

L. Han, P. Shah, J. Zhao, X. Wu, and S. R. Schmid, “Improvement of the precision (repeatability and reproducibility) of a test method to characterize microbending performance of optical fibers,” in Proceedings of the 60th International Wire and Cable Symposium (2011), pp. 6–10.

P. Shah, L. Han, E. Murphy, S. Schmid, and D. Peterson, “Effect of ageing conditions on performance properties of selected commercial fibers,” in Proceedings of the 60th International Wire and Cable Symposium (2011), pp. 11–21.

K. Okamoto, A. Nakamura, Y. Koshikiya, and T. Manabe, “Highly sensitive monitoring of progressive microbending loss using 1-μm-band mode-detection OTDR,” in Proceedings of the 65th International Wire and Cable Symposium (2016), pp. 228–233.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Basic configuration of 1μm-OTDR. FL: fiber laser. AOM: acousto-optic modulator. PG: pulse generator. OC: optical circulator. MSC: mode selective coupler. FUT: fiber under test. PD: photo detector. ADC: analogue-to-digital converter.
Fig. 2
Fig. 2 Example of OTDR traces. The blue and red traces represent the optical intensity distributions obtained with the LP01 and LP11 modes of the backscattered light using the LP01 mode of the probe pulses, respectively. The green and orange traces represent the optical intensity distributions obtained with the LP01 and LP11 modes of the backscattered light using the LP11 mode of the probe pulses, respectively. The gray trace represents the optical intensity distribution obtained with 1.65μm-OTDR.
Fig. 3
Fig. 3 Loss increment with respect to winding tension. The blue and red plots are obtained from the LP01 and LP11 modes of the backscattered light using the LP01 mode of the probe pulses, respectively. The green and orange plots are obtained from the LP01 and LP11 modes of the backscattered light using the LP11 mode of the probe pulses, respectively. The gray plots are obtained with 1.65μm-OTDR.
Fig. 4
Fig. 4 Examples of OTDR traces measured for different fibers in the same cable. The orange and black traces represent the optical intensity distributions obtained with 1μm-OTDR and 1.65μm-OTDR, respectively.
Fig. 5
Fig. 5 Examples of OTDR traces obtained with (a) 1μm-OTDR and (b) 1.65μm-OTDR. The green, pink and blue lines are the results at the start of testing, and after 5 and 7 hours, respectively.
Fig. 6
Fig. 6 Loss increment with respect to elapsed time after the start of testing (a) and enlarged view (b). The orange and gray circles show the results obtained with 1μm-OTDR and 1.65μm-OTDR, respectively. The blue line shows the humidity.

Metrics