Abstract

A compact dual-wavelength passively Q-switched green laser by intra-cavity frequency doubling of a Yb:YAG/Cr4+:YAG/YAG composite crystal was demonstrated for the first time to our best knowledge. The maximum green laser output power of 1.0 W was obtained under the pump power of 9.7 W, and the corresponding slope efficiency is 15.2%. The shortest pulse width, largest pulse energy, and highest peak power were achieved to be 5.54 ns, 246.1μJ, and 40.76 KW, respectively. Dual-wavelength laser oscillation simultaneously at 515 nm and 524.5 nm has been achieved. This passively Q-switched dual-wavelength green laser can be used as a laser source for Terahertz generation.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Composite Yb:YAG/Cr4+:YAG/YAG crystal passively Q-switched lasers at 1030  nm

Wei Jiang, Yumeng Liu, Weidong Chen, Siqi Zhu, Zaijun Chen, Ge Zhang, Yihong Chen, and Zhenqiang Chen
Appl. Opt. 54(7) 1834-1838 (2015)

Passively Q-switched dual-wavelength laser output of LD-end-pumped ceramic Nd:YAG laser

Zhengping Wang, Hong Liu, Jiyang Wang, Yaohui Lv, Yuanhua Sang, Ruijun Lan, Haohai Yu, Xinguang Xu, and Zongshu Shao
Opt. Express 17(14) 12076-12081 (2009)

Dual-loss-modulated Q-switched and mode-locked YVO4/Nd:YVO4/KTP green laser with EO and Cr4+:YAG saturable absorber

Tao Li, Shengzhi Zhao, Zhuang Zhuo, Kejian Yang, Guiqiu Li, and Dechun Li
Opt. Express 18(10) 10315-10322 (2010)

References

  • View by:
  • |
  • |
  • |

  1. G. Chang, C. J. Divin, C. H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “Power scalable compact THz system based on an ultrafast Yb-doped fiber amplifier,” Opt. Express 14(17), 7909–7913 (2006).
    [Crossref] [PubMed]
  2. A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Tunable terahertz quantum cascade lasers with external gratings,” Opt. Lett. 35(7), 910–912 (2010).
    [Crossref] [PubMed]
  3. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett. 27(16), 1454–1456 (2002).
    [Crossref] [PubMed]
  4. E. B. Petersen, W. Shi, D. T. Nguyen, Z. Yao, J. Zong, A. Chavez-Pirson, and N. Peyghambarian, “Enhanced terahertz source based on external cavity difference-frequency generation using monolithic single-frequency pulsed fiber lasers,” Opt. Lett. 35(13), 2170–2172 (2010).
    [Crossref] [PubMed]
  5. P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
    [Crossref]
  6. E. B. Petersen, W. Shi, A. Chavez-Pirson, N. Peyghambarian, and A. T. Cooney, “Efficient parametric terahertz generation in quasi-phase-matched GaP through cavity enhanced difference-frequency generation,” Appl. Phys. Lett. 98(12), 121119 (2011).
    [Crossref]
  7. R. Akbari, H. Zhao, and A. Major, “High-power continuous-wave dual-wavelength operation of a diode-pumped Yb:KGW laser,” Opt. Lett. 41(7), 1601–1604 (2016).
    [Crossref] [PubMed]
  8. K. Lünstedt, N. Pavel, K. Petermann, and G. Huber, “Continuous-wave simultaneous dual-wavelength operation at 912nm and 1063nm in Nd:GdVO4,” Appl. Phys. B 86(1), 65–70 (2006).
    [Crossref]
  9. Y. J. Huang, Y. F. Chen, W. D. Chen, and G. Zhang, “Dual-wavelength eye-safe Nd:YAP Raman laser,” Opt. Lett. 40(15), 3560–3563 (2015).
    [Crossref] [PubMed]
  10. W. F. Krupke, “Ytterbium solid-state lasers-The first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
    [Crossref]
  11. J. Liu, X. Mateos, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Characteristics of a continuous-wave Yb:GdVO4 laser end pumped by a high-power diode,” Opt. Lett. 31(17), 2580–2582 (2006).
    [Crossref] [PubMed]
  12. J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Prospects of monoclinic Yb:KLu (WO 4) 2 crystal for multi-watt microchip lasers,” Opt. Mater. Express 5(3), 661–667 (2015).
    [Crossref]
  13. A. Brenier, “Tunable THz frequency difference from a diode-pumped dual-wavelength Yb3+:KGd (WO4) 2 laser with chirped volume Bragg gratings,” Laser Phys. Lett. 8(7), 520–524 (2011).
    [Crossref]
  14. G. Sun, Y. Li, M. Zhao, X. Chen, J. Wang, and G. Chen, “A quasi-three-level dual-wavelength thin-disk laser at 1024 and 1030 nm based on a diode-pumped Yb:YAG crystal,” Laser Phys. 23(4), 045003 (2013).
    [Crossref]
  15. H. Zhu, G. Zhang, C. Huang, Y. Wei, L. Huang, A. Li, and Z. Chen, “1318.8 nm/1338.2 nm simultaneous dual-wavelength Q-switched Nd:YAG laser,” Appl. Phys. B 90(3–4), 451–454 (2008).
    [Crossref]
  16. J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20(9), 1975–1979 (2003).
    [Crossref]
  17. M. Tsunekane and T. Taira, “High peak power, passively Q-switched Yb:YAG/Cr:YAG micro-lasers,” IEEE J. Quantum Electron. 49(5), 454–461 (2013).
    [Crossref]
  18. H. Chu, S. Zhao, K. Yang, Y. Li, D. Li, G. Li, J. Zhao, W. Qiao, X. Xu, J. Di, L. Zheng, and J. Xu, “Experimental and theoretical study of passively Q-switched Yb:YAG laser with GaAs saturable absorber near 1050nm,” Opt. Laser Technol. 56, 398–403 (2014).
    [Crossref]
  19. J. M. Serres, V. Jambunathan, X. Mateos, P. Loiko, A. Lucianetti, T. Mocek, K. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Graphene Q-Switched Compact Yb:YAG Laser,” IEEE Photonics J. 7(5), 1–7 (2015).
    [Crossref]
  20. H. Chu, S. Zhao, K. Yang, Y. Li, D. Li, G. Li, J. Zhao, X. Xu, J. Di, L. Zheng, J. Xu, and Y. Wang, “A passively Q-switched Yb:YAG laser with a single-walled carbon nanotube saturable absorber,” Laser Phys. 23(6), 065002 (2013).
    [Crossref]
  21. P. Li, H. Zhang, X. Chen, and Q. Wang, “Diode-pumped Nd:YAG ceramic laser at 946nm passively Q-switched with a Cr4+:YAG saturable absorber,” Opt. Laser Technol. 44(3), 578–581 (2012).
    [Crossref]
  22. J. J. Zayhowski and C. Dill, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19(18), 1427–1429 (1994).
    [Crossref] [PubMed]
  23. Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F3/2→4I11/2 and 4F3/2→4I13/2 transitions,” Opt. Express 16(25), 21155–21160 (2008).
    [Crossref] [PubMed]
  24. Y. J. Huang and Y. F. Chen, “High-power diode-end-pumped laser with multi-segmented Nd-doped yttrium vanadate,” Opt. Express 21(13), 16063–16068 (2013).
    [Crossref] [PubMed]
  25. J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
    [Crossref] [PubMed]
  26. W. Jiang, Y. Liu, W. Chen, S. Zhu, Z. Chen, G. Zhang, Y. Chen, and Z. Chen, “Composite Yb:YAG/Cr4+:YAG/YAG crystal passively Q-switched lasers at 1030 nm,” Appl. Opt. 54(7), 1834–1838 (2015).
    [Crossref]
  27. J. Dong, A. Shirakawa, and K. I. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B 85(4), 513–518 (2006).
    [Crossref]
  28. T. T. Kajava and A. L. Gaeta, “Intra-cavity frequency-doubling of a Nd:YAG laser passively Q-switched with GaAs,” Opt. Commun. 137(1–3), 93–97 (1997).
    [Crossref]
  29. J. Dong, A. Shirakawa, K. I. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett. 89(9), 091114 (2006).
    [Crossref]
  30. J. Kong, D. Y. Tang, J. Lu, and K. Ueda, “Spectral characteristics of a Yb-doped Y2O3 ceramic laser,” Appl. Phys. B 79(4), 449–455 (2004).
    [Crossref]

2016 (1)

2015 (4)

2014 (1)

H. Chu, S. Zhao, K. Yang, Y. Li, D. Li, G. Li, J. Zhao, W. Qiao, X. Xu, J. Di, L. Zheng, and J. Xu, “Experimental and theoretical study of passively Q-switched Yb:YAG laser with GaAs saturable absorber near 1050nm,” Opt. Laser Technol. 56, 398–403 (2014).
[Crossref]

2013 (4)

Y. J. Huang and Y. F. Chen, “High-power diode-end-pumped laser with multi-segmented Nd-doped yttrium vanadate,” Opt. Express 21(13), 16063–16068 (2013).
[Crossref] [PubMed]

H. Chu, S. Zhao, K. Yang, Y. Li, D. Li, G. Li, J. Zhao, X. Xu, J. Di, L. Zheng, J. Xu, and Y. Wang, “A passively Q-switched Yb:YAG laser with a single-walled carbon nanotube saturable absorber,” Laser Phys. 23(6), 065002 (2013).
[Crossref]

G. Sun, Y. Li, M. Zhao, X. Chen, J. Wang, and G. Chen, “A quasi-three-level dual-wavelength thin-disk laser at 1024 and 1030 nm based on a diode-pumped Yb:YAG crystal,” Laser Phys. 23(4), 045003 (2013).
[Crossref]

M. Tsunekane and T. Taira, “High peak power, passively Q-switched Yb:YAG/Cr:YAG micro-lasers,” IEEE J. Quantum Electron. 49(5), 454–461 (2013).
[Crossref]

2012 (1)

P. Li, H. Zhang, X. Chen, and Q. Wang, “Diode-pumped Nd:YAG ceramic laser at 946nm passively Q-switched with a Cr4+:YAG saturable absorber,” Opt. Laser Technol. 44(3), 578–581 (2012).
[Crossref]

2011 (3)

A. Brenier, “Tunable THz frequency difference from a diode-pumped dual-wavelength Yb3+:KGd (WO4) 2 laser with chirped volume Bragg gratings,” Laser Phys. Lett. 8(7), 520–524 (2011).
[Crossref]

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
[Crossref]

E. B. Petersen, W. Shi, A. Chavez-Pirson, N. Peyghambarian, and A. T. Cooney, “Efficient parametric terahertz generation in quasi-phase-matched GaP through cavity enhanced difference-frequency generation,” Appl. Phys. Lett. 98(12), 121119 (2011).
[Crossref]

2010 (2)

2008 (2)

2007 (1)

2006 (5)

J. Dong, A. Shirakawa, and K. I. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B 85(4), 513–518 (2006).
[Crossref]

J. Dong, A. Shirakawa, K. I. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett. 89(9), 091114 (2006).
[Crossref]

J. Liu, X. Mateos, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Characteristics of a continuous-wave Yb:GdVO4 laser end pumped by a high-power diode,” Opt. Lett. 31(17), 2580–2582 (2006).
[Crossref] [PubMed]

G. Chang, C. J. Divin, C. H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “Power scalable compact THz system based on an ultrafast Yb-doped fiber amplifier,” Opt. Express 14(17), 7909–7913 (2006).
[Crossref] [PubMed]

K. Lünstedt, N. Pavel, K. Petermann, and G. Huber, “Continuous-wave simultaneous dual-wavelength operation at 912nm and 1063nm in Nd:GdVO4,” Appl. Phys. B 86(1), 65–70 (2006).
[Crossref]

2004 (1)

J. Kong, D. Y. Tang, J. Lu, and K. Ueda, “Spectral characteristics of a Yb-doped Y2O3 ceramic laser,” Appl. Phys. B 79(4), 449–455 (2004).
[Crossref]

2003 (1)

2002 (1)

2000 (1)

W. F. Krupke, “Ytterbium solid-state lasers-The first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[Crossref]

1997 (1)

T. T. Kajava and A. L. Gaeta, “Intra-cavity frequency-doubling of a Nd:YAG laser passively Q-switched with GaAs,” Opt. Commun. 137(1–3), 93–97 (1997).
[Crossref]

1994 (1)

Aguiló, M.

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Prospects of monoclinic Yb:KLu (WO 4) 2 crystal for multi-watt microchip lasers,” Opt. Mater. Express 5(3), 661–667 (2015).
[Crossref]

J. M. Serres, V. Jambunathan, X. Mateos, P. Loiko, A. Lucianetti, T. Mocek, K. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Graphene Q-Switched Compact Yb:YAG Laser,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

Akbari, R.

Bass, M.

Brenier, A.

A. Brenier, “Tunable THz frequency difference from a diode-pumped dual-wavelength Yb3+:KGd (WO4) 2 laser with chirped volume Bragg gratings,” Laser Phys. Lett. 8(7), 520–524 (2011).
[Crossref]

Chang, G.

Chang, Y. T.

Chavez-Pirson, A.

E. B. Petersen, W. Shi, A. Chavez-Pirson, N. Peyghambarian, and A. T. Cooney, “Efficient parametric terahertz generation in quasi-phase-matched GaP through cavity enhanced difference-frequency generation,” Appl. Phys. Lett. 98(12), 121119 (2011).
[Crossref]

E. B. Petersen, W. Shi, D. T. Nguyen, Z. Yao, J. Zong, A. Chavez-Pirson, and N. Peyghambarian, “Enhanced terahertz source based on external cavity difference-frequency generation using monolithic single-frequency pulsed fiber lasers,” Opt. Lett. 35(13), 2170–2172 (2010).
[Crossref] [PubMed]

Chen, G.

G. Sun, Y. Li, M. Zhao, X. Chen, J. Wang, and G. Chen, “A quasi-three-level dual-wavelength thin-disk laser at 1024 and 1030 nm based on a diode-pumped Yb:YAG crystal,” Laser Phys. 23(4), 045003 (2013).
[Crossref]

Chen, W.

Chen, W. D.

Chen, X.

G. Sun, Y. Li, M. Zhao, X. Chen, J. Wang, and G. Chen, “A quasi-three-level dual-wavelength thin-disk laser at 1024 and 1030 nm based on a diode-pumped Yb:YAG crystal,” Laser Phys. 23(4), 045003 (2013).
[Crossref]

P. Li, H. Zhang, X. Chen, and Q. Wang, “Diode-pumped Nd:YAG ceramic laser at 946nm passively Q-switched with a Cr4+:YAG saturable absorber,” Opt. Laser Technol. 44(3), 578–581 (2012).
[Crossref]

Chen, Y.

Chen, Y. F.

Chen, Z.

Chu, H.

H. Chu, S. Zhao, K. Yang, Y. Li, D. Li, G. Li, J. Zhao, W. Qiao, X. Xu, J. Di, L. Zheng, and J. Xu, “Experimental and theoretical study of passively Q-switched Yb:YAG laser with GaAs saturable absorber near 1050nm,” Opt. Laser Technol. 56, 398–403 (2014).
[Crossref]

H. Chu, S. Zhao, K. Yang, Y. Li, D. Li, G. Li, J. Zhao, X. Xu, J. Di, L. Zheng, J. Xu, and Y. Wang, “A passively Q-switched Yb:YAG laser with a single-walled carbon nanotube saturable absorber,” Laser Phys. 23(6), 065002 (2013).
[Crossref]

Cooney, A. T.

E. B. Petersen, W. Shi, A. Chavez-Pirson, N. Peyghambarian, and A. T. Cooney, “Efficient parametric terahertz generation in quasi-phase-matched GaP through cavity enhanced difference-frequency generation,” Appl. Phys. Lett. 98(12), 121119 (2011).
[Crossref]

Deng, P.

Di, J.

H. Chu, S. Zhao, K. Yang, Y. Li, D. Li, G. Li, J. Zhao, W. Qiao, X. Xu, J. Di, L. Zheng, and J. Xu, “Experimental and theoretical study of passively Q-switched Yb:YAG laser with GaAs saturable absorber near 1050nm,” Opt. Laser Technol. 56, 398–403 (2014).
[Crossref]

H. Chu, S. Zhao, K. Yang, Y. Li, D. Li, G. Li, J. Zhao, X. Xu, J. Di, L. Zheng, J. Xu, and Y. Wang, “A passively Q-switched Yb:YAG laser with a single-walled carbon nanotube saturable absorber,” Laser Phys. 23(6), 065002 (2013).
[Crossref]

Díaz, F.

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Prospects of monoclinic Yb:KLu (WO 4) 2 crystal for multi-watt microchip lasers,” Opt. Mater. Express 5(3), 661–667 (2015).
[Crossref]

J. M. Serres, V. Jambunathan, X. Mateos, P. Loiko, A. Lucianetti, T. Mocek, K. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Graphene Q-Switched Compact Yb:YAG Laser,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

Dill, C.

Ding, Y. J.

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
[Crossref]

W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett. 27(16), 1454–1456 (2002).
[Crossref] [PubMed]

Divin, C. J.

Dong, J.

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[Crossref] [PubMed]

J. Dong, A. Shirakawa, and K. I. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B 85(4), 513–518 (2006).
[Crossref]

J. Dong, A. Shirakawa, K. I. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett. 89(9), 091114 (2006).
[Crossref]

J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20(9), 1975–1979 (2003).
[Crossref]

Fernelius, N.

Gaeta, A. L.

T. T. Kajava and A. L. Gaeta, “Intra-cavity frequency-doubling of a Nd:YAG laser passively Q-switched with GaAs,” Opt. Commun. 137(1–3), 93–97 (1997).
[Crossref]

Galvanauskas, A.

Gan, F.

Griebner, U.

Hu, Q.

Huang, C.

H. Zhu, G. Zhang, C. Huang, Y. Wei, L. Huang, A. Li, and Z. Chen, “1318.8 nm/1338.2 nm simultaneous dual-wavelength Q-switched Nd:YAG laser,” Appl. Phys. B 90(3–4), 451–454 (2008).
[Crossref]

Huang, L.

H. Zhu, G. Zhang, C. Huang, Y. Wei, L. Huang, A. Li, and Z. Chen, “1318.8 nm/1338.2 nm simultaneous dual-wavelength Q-switched Nd:YAG laser,” Appl. Phys. B 90(3–4), 451–454 (2008).
[Crossref]

Huang, Y. J.

Huang, Y. P.

Huber, G.

K. Lünstedt, N. Pavel, K. Petermann, and G. Huber, “Continuous-wave simultaneous dual-wavelength operation at 912nm and 1063nm in Nd:GdVO4,” Appl. Phys. B 86(1), 65–70 (2006).
[Crossref]

Jambunathan, V.

J. M. Serres, V. Jambunathan, X. Mateos, P. Loiko, A. Lucianetti, T. Mocek, K. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Graphene Q-Switched Compact Yb:YAG Laser,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

Jiang, M.

Jiang, W.

Kajava, T. T.

T. T. Kajava and A. L. Gaeta, “Intra-cavity frequency-doubling of a Nd:YAG laser passively Q-switched with GaAs,” Opt. Commun. 137(1–3), 93–97 (1997).
[Crossref]

Kaminskii, A. A.

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[Crossref] [PubMed]

J. Dong, A. Shirakawa, K. I. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett. 89(9), 091114 (2006).
[Crossref]

Kong, J.

J. Kong, D. Y. Tang, J. Lu, and K. Ueda, “Spectral characteristics of a Yb-doped Y2O3 ceramic laser,” Appl. Phys. B 79(4), 449–455 (2004).
[Crossref]

Krupke, W. F.

W. F. Krupke, “Ytterbium solid-state lasers-The first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[Crossref]

Kuleshov, N.

Kumar, S.

Lee, A. W. M.

Li, A.

H. Zhu, G. Zhang, C. Huang, Y. Wei, L. Huang, A. Li, and Z. Chen, “1318.8 nm/1338.2 nm simultaneous dual-wavelength Q-switched Nd:YAG laser,” Appl. Phys. B 90(3–4), 451–454 (2008).
[Crossref]

Li, D.

H. Chu, S. Zhao, K. Yang, Y. Li, D. Li, G. Li, J. Zhao, W. Qiao, X. Xu, J. Di, L. Zheng, and J. Xu, “Experimental and theoretical study of passively Q-switched Yb:YAG laser with GaAs saturable absorber near 1050nm,” Opt. Laser Technol. 56, 398–403 (2014).
[Crossref]

H. Chu, S. Zhao, K. Yang, Y. Li, D. Li, G. Li, J. Zhao, X. Xu, J. Di, L. Zheng, J. Xu, and Y. Wang, “A passively Q-switched Yb:YAG laser with a single-walled carbon nanotube saturable absorber,” Laser Phys. 23(6), 065002 (2013).
[Crossref]

Li, G.

H. Chu, S. Zhao, K. Yang, Y. Li, D. Li, G. Li, J. Zhao, W. Qiao, X. Xu, J. Di, L. Zheng, and J. Xu, “Experimental and theoretical study of passively Q-switched Yb:YAG laser with GaAs saturable absorber near 1050nm,” Opt. Laser Technol. 56, 398–403 (2014).
[Crossref]

H. Chu, S. Zhao, K. Yang, Y. Li, D. Li, G. Li, J. Zhao, X. Xu, J. Di, L. Zheng, J. Xu, and Y. Wang, “A passively Q-switched Yb:YAG laser with a single-walled carbon nanotube saturable absorber,” Laser Phys. 23(6), 065002 (2013).
[Crossref]

Li, P.

P. Li, H. Zhang, X. Chen, and Q. Wang, “Diode-pumped Nd:YAG ceramic laser at 946nm passively Q-switched with a Cr4+:YAG saturable absorber,” Opt. Laser Technol. 44(3), 578–581 (2012).
[Crossref]

Li, Y.

H. Chu, S. Zhao, K. Yang, Y. Li, D. Li, G. Li, J. Zhao, W. Qiao, X. Xu, J. Di, L. Zheng, and J. Xu, “Experimental and theoretical study of passively Q-switched Yb:YAG laser with GaAs saturable absorber near 1050nm,” Opt. Laser Technol. 56, 398–403 (2014).
[Crossref]

H. Chu, S. Zhao, K. Yang, Y. Li, D. Li, G. Li, J. Zhao, X. Xu, J. Di, L. Zheng, J. Xu, and Y. Wang, “A passively Q-switched Yb:YAG laser with a single-walled carbon nanotube saturable absorber,” Laser Phys. 23(6), 065002 (2013).
[Crossref]

G. Sun, Y. Li, M. Zhao, X. Chen, J. Wang, and G. Chen, “A quasi-three-level dual-wavelength thin-disk laser at 1024 and 1030 nm based on a diode-pumped Yb:YAG crystal,” Laser Phys. 23(4), 045003 (2013).
[Crossref]

Liu, C. H.

Liu, J.

Liu, Y.

Loiko, P.

J. M. Serres, V. Jambunathan, X. Mateos, P. Loiko, A. Lucianetti, T. Mocek, K. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Graphene Q-Switched Compact Yb:YAG Laser,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Prospects of monoclinic Yb:KLu (WO 4) 2 crystal for multi-watt microchip lasers,” Opt. Mater. Express 5(3), 661–667 (2015).
[Crossref]

Lu, J.

J. Kong, D. Y. Tang, J. Lu, and K. Ueda, “Spectral characteristics of a Yb-doped Y2O3 ceramic laser,” Appl. Phys. B 79(4), 449–455 (2004).
[Crossref]

Lucianetti, A.

J. M. Serres, V. Jambunathan, X. Mateos, P. Loiko, A. Lucianetti, T. Mocek, K. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Graphene Q-Switched Compact Yb:YAG Laser,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

Lünstedt, K.

K. Lünstedt, N. Pavel, K. Petermann, and G. Huber, “Continuous-wave simultaneous dual-wavelength operation at 912nm and 1063nm in Nd:GdVO4,” Appl. Phys. B 86(1), 65–70 (2006).
[Crossref]

Major, A.

Mao, Y.

Mateos, X.

Mocek, T.

J. M. Serres, V. Jambunathan, X. Mateos, P. Loiko, A. Lucianetti, T. Mocek, K. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Graphene Q-Switched Compact Yb:YAG Laser,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

Nguyen, D. T.

Norris, T. B.

Pavel, N.

K. Lünstedt, N. Pavel, K. Petermann, and G. Huber, “Continuous-wave simultaneous dual-wavelength operation at 912nm and 1063nm in Nd:GdVO4,” Appl. Phys. B 86(1), 65–70 (2006).
[Crossref]

Petermann, K.

K. Lünstedt, N. Pavel, K. Petermann, and G. Huber, “Continuous-wave simultaneous dual-wavelength operation at 912nm and 1063nm in Nd:GdVO4,” Appl. Phys. B 86(1), 65–70 (2006).
[Crossref]

Petersen, E. B.

E. B. Petersen, W. Shi, A. Chavez-Pirson, N. Peyghambarian, and A. T. Cooney, “Efficient parametric terahertz generation in quasi-phase-matched GaP through cavity enhanced difference-frequency generation,” Appl. Phys. Lett. 98(12), 121119 (2011).
[Crossref]

E. B. Petersen, W. Shi, D. T. Nguyen, Z. Yao, J. Zong, A. Chavez-Pirson, and N. Peyghambarian, “Enhanced terahertz source based on external cavity difference-frequency generation using monolithic single-frequency pulsed fiber lasers,” Opt. Lett. 35(13), 2170–2172 (2010).
[Crossref] [PubMed]

Petrov, V.

Peyghambarian, N.

E. B. Petersen, W. Shi, A. Chavez-Pirson, N. Peyghambarian, and A. T. Cooney, “Efficient parametric terahertz generation in quasi-phase-matched GaP through cavity enhanced difference-frequency generation,” Appl. Phys. Lett. 98(12), 121119 (2011).
[Crossref]

E. B. Petersen, W. Shi, D. T. Nguyen, Z. Yao, J. Zong, A. Chavez-Pirson, and N. Peyghambarian, “Enhanced terahertz source based on external cavity difference-frequency generation using monolithic single-frequency pulsed fiber lasers,” Opt. Lett. 35(13), 2170–2172 (2010).
[Crossref] [PubMed]

Qiao, W.

H. Chu, S. Zhao, K. Yang, Y. Li, D. Li, G. Li, J. Zhao, W. Qiao, X. Xu, J. Di, L. Zheng, and J. Xu, “Experimental and theoretical study of passively Q-switched Yb:YAG laser with GaAs saturable absorber near 1050nm,” Opt. Laser Technol. 56, 398–403 (2014).
[Crossref]

Ragam, S.

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
[Crossref]

Reno, J. L.

Serres, J. M.

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Prospects of monoclinic Yb:KLu (WO 4) 2 crystal for multi-watt microchip lasers,” Opt. Mater. Express 5(3), 661–667 (2015).
[Crossref]

J. M. Serres, V. Jambunathan, X. Mateos, P. Loiko, A. Lucianetti, T. Mocek, K. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Graphene Q-Switched Compact Yb:YAG Laser,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

Shi, W.

Shirakawa, A.

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[Crossref] [PubMed]

J. Dong, A. Shirakawa, and K. I. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B 85(4), 513–518 (2006).
[Crossref]

J. Dong, A. Shirakawa, K. I. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett. 89(9), 091114 (2006).
[Crossref]

Su, K. W.

Sun, G.

G. Sun, Y. Li, M. Zhao, X. Chen, J. Wang, and G. Chen, “A quasi-three-level dual-wavelength thin-disk laser at 1024 and 1030 nm based on a diode-pumped Yb:YAG crystal,” Laser Phys. 23(4), 045003 (2013).
[Crossref]

Taira, T.

M. Tsunekane and T. Taira, “High peak power, passively Q-switched Yb:YAG/Cr:YAG micro-lasers,” IEEE J. Quantum Electron. 49(5), 454–461 (2013).
[Crossref]

Tang, D. Y.

J. Kong, D. Y. Tang, J. Lu, and K. Ueda, “Spectral characteristics of a Yb-doped Y2O3 ceramic laser,” Appl. Phys. B 79(4), 449–455 (2004).
[Crossref]

Tsunekane, M.

M. Tsunekane and T. Taira, “High peak power, passively Q-switched Yb:YAG/Cr:YAG micro-lasers,” IEEE J. Quantum Electron. 49(5), 454–461 (2013).
[Crossref]

Ueda, K.

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[Crossref] [PubMed]

J. Kong, D. Y. Tang, J. Lu, and K. Ueda, “Spectral characteristics of a Yb-doped Y2O3 ceramic laser,” Appl. Phys. B 79(4), 449–455 (2004).
[Crossref]

Ueda, K. I.

J. Dong, A. Shirakawa, K. I. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett. 89(9), 091114 (2006).
[Crossref]

J. Dong, A. Shirakawa, and K. I. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B 85(4), 513–518 (2006).
[Crossref]

Vodopyanov, K.

Wang, J.

G. Sun, Y. Li, M. Zhao, X. Chen, J. Wang, and G. Chen, “A quasi-three-level dual-wavelength thin-disk laser at 1024 and 1030 nm based on a diode-pumped Yb:YAG crystal,” Laser Phys. 23(4), 045003 (2013).
[Crossref]

J. Liu, X. Mateos, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Characteristics of a continuous-wave Yb:GdVO4 laser end pumped by a high-power diode,” Opt. Lett. 31(17), 2580–2582 (2006).
[Crossref] [PubMed]

Wang, Q.

P. Li, H. Zhang, X. Chen, and Q. Wang, “Diode-pumped Nd:YAG ceramic laser at 946nm passively Q-switched with a Cr4+:YAG saturable absorber,” Opt. Laser Technol. 44(3), 578–581 (2012).
[Crossref]

Wang, Y.

H. Chu, S. Zhao, K. Yang, Y. Li, D. Li, G. Li, J. Zhao, X. Xu, J. Di, L. Zheng, J. Xu, and Y. Wang, “A passively Q-switched Yb:YAG laser with a single-walled carbon nanotube saturable absorber,” Laser Phys. 23(6), 065002 (2013).
[Crossref]

Wei, Y.

H. Zhu, G. Zhang, C. Huang, Y. Wei, L. Huang, A. Li, and Z. Chen, “1318.8 nm/1338.2 nm simultaneous dual-wavelength Q-switched Nd:YAG laser,” Appl. Phys. B 90(3–4), 451–454 (2008).
[Crossref]

Williams, B. S.

Williamson, S. L.

Xu, J.

H. Chu, S. Zhao, K. Yang, Y. Li, D. Li, G. Li, J. Zhao, W. Qiao, X. Xu, J. Di, L. Zheng, and J. Xu, “Experimental and theoretical study of passively Q-switched Yb:YAG laser with GaAs saturable absorber near 1050nm,” Opt. Laser Technol. 56, 398–403 (2014).
[Crossref]

H. Chu, S. Zhao, K. Yang, Y. Li, D. Li, G. Li, J. Zhao, X. Xu, J. Di, L. Zheng, J. Xu, and Y. Wang, “A passively Q-switched Yb:YAG laser with a single-walled carbon nanotube saturable absorber,” Laser Phys. 23(6), 065002 (2013).
[Crossref]

Xu, X.

H. Chu, S. Zhao, K. Yang, Y. Li, D. Li, G. Li, J. Zhao, W. Qiao, X. Xu, J. Di, L. Zheng, and J. Xu, “Experimental and theoretical study of passively Q-switched Yb:YAG laser with GaAs saturable absorber near 1050nm,” Opt. Laser Technol. 56, 398–403 (2014).
[Crossref]

H. Chu, S. Zhao, K. Yang, Y. Li, D. Li, G. Li, J. Zhao, X. Xu, J. Di, L. Zheng, J. Xu, and Y. Wang, “A passively Q-switched Yb:YAG laser with a single-walled carbon nanotube saturable absorber,” Laser Phys. 23(6), 065002 (2013).
[Crossref]

Yagi, H.

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[Crossref] [PubMed]

J. Dong, A. Shirakawa, K. I. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett. 89(9), 091114 (2006).
[Crossref]

Yanagitani, T.

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[Crossref] [PubMed]

J. Dong, A. Shirakawa, K. I. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett. 89(9), 091114 (2006).
[Crossref]

Yang, K.

H. Chu, S. Zhao, K. Yang, Y. Li, D. Li, G. Li, J. Zhao, W. Qiao, X. Xu, J. Di, L. Zheng, and J. Xu, “Experimental and theoretical study of passively Q-switched Yb:YAG laser with GaAs saturable absorber near 1050nm,” Opt. Laser Technol. 56, 398–403 (2014).
[Crossref]

H. Chu, S. Zhao, K. Yang, Y. Li, D. Li, G. Li, J. Zhao, X. Xu, J. Di, L. Zheng, J. Xu, and Y. Wang, “A passively Q-switched Yb:YAG laser with a single-walled carbon nanotube saturable absorber,” Laser Phys. 23(6), 065002 (2013).
[Crossref]

Yao, Z.

Yumashev, K.

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Prospects of monoclinic Yb:KLu (WO 4) 2 crystal for multi-watt microchip lasers,” Opt. Mater. Express 5(3), 661–667 (2015).
[Crossref]

J. M. Serres, V. Jambunathan, X. Mateos, P. Loiko, A. Lucianetti, T. Mocek, K. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Graphene Q-Switched Compact Yb:YAG Laser,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

Zayhowski, J. J.

Zhang, G.

Zhang, H.

P. Li, H. Zhang, X. Chen, and Q. Wang, “Diode-pumped Nd:YAG ceramic laser at 946nm passively Q-switched with a Cr4+:YAG saturable absorber,” Opt. Laser Technol. 44(3), 578–581 (2012).
[Crossref]

J. Liu, X. Mateos, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Characteristics of a continuous-wave Yb:GdVO4 laser end pumped by a high-power diode,” Opt. Lett. 31(17), 2580–2582 (2006).
[Crossref] [PubMed]

Zhao, H.

Zhao, J.

H. Chu, S. Zhao, K. Yang, Y. Li, D. Li, G. Li, J. Zhao, W. Qiao, X. Xu, J. Di, L. Zheng, and J. Xu, “Experimental and theoretical study of passively Q-switched Yb:YAG laser with GaAs saturable absorber near 1050nm,” Opt. Laser Technol. 56, 398–403 (2014).
[Crossref]

H. Chu, S. Zhao, K. Yang, Y. Li, D. Li, G. Li, J. Zhao, X. Xu, J. Di, L. Zheng, J. Xu, and Y. Wang, “A passively Q-switched Yb:YAG laser with a single-walled carbon nanotube saturable absorber,” Laser Phys. 23(6), 065002 (2013).
[Crossref]

Zhao, M.

G. Sun, Y. Li, M. Zhao, X. Chen, J. Wang, and G. Chen, “A quasi-three-level dual-wavelength thin-disk laser at 1024 and 1030 nm based on a diode-pumped Yb:YAG crystal,” Laser Phys. 23(4), 045003 (2013).
[Crossref]

Zhao, P.

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
[Crossref]

Zhao, S.

H. Chu, S. Zhao, K. Yang, Y. Li, D. Li, G. Li, J. Zhao, W. Qiao, X. Xu, J. Di, L. Zheng, and J. Xu, “Experimental and theoretical study of passively Q-switched Yb:YAG laser with GaAs saturable absorber near 1050nm,” Opt. Laser Technol. 56, 398–403 (2014).
[Crossref]

H. Chu, S. Zhao, K. Yang, Y. Li, D. Li, G. Li, J. Zhao, X. Xu, J. Di, L. Zheng, J. Xu, and Y. Wang, “A passively Q-switched Yb:YAG laser with a single-walled carbon nanotube saturable absorber,” Laser Phys. 23(6), 065002 (2013).
[Crossref]

Zheng, L.

H. Chu, S. Zhao, K. Yang, Y. Li, D. Li, G. Li, J. Zhao, W. Qiao, X. Xu, J. Di, L. Zheng, and J. Xu, “Experimental and theoretical study of passively Q-switched Yb:YAG laser with GaAs saturable absorber near 1050nm,” Opt. Laser Technol. 56, 398–403 (2014).
[Crossref]

H. Chu, S. Zhao, K. Yang, Y. Li, D. Li, G. Li, J. Zhao, X. Xu, J. Di, L. Zheng, J. Xu, and Y. Wang, “A passively Q-switched Yb:YAG laser with a single-walled carbon nanotube saturable absorber,” Laser Phys. 23(6), 065002 (2013).
[Crossref]

Zhu, H.

H. Zhu, G. Zhang, C. Huang, Y. Wei, L. Huang, A. Li, and Z. Chen, “1318.8 nm/1338.2 nm simultaneous dual-wavelength Q-switched Nd:YAG laser,” Appl. Phys. B 90(3–4), 451–454 (2008).
[Crossref]

Zhu, S.

Zong, J.

Zotova, I. B.

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (4)

K. Lünstedt, N. Pavel, K. Petermann, and G. Huber, “Continuous-wave simultaneous dual-wavelength operation at 912nm and 1063nm in Nd:GdVO4,” Appl. Phys. B 86(1), 65–70 (2006).
[Crossref]

H. Zhu, G. Zhang, C. Huang, Y. Wei, L. Huang, A. Li, and Z. Chen, “1318.8 nm/1338.2 nm simultaneous dual-wavelength Q-switched Nd:YAG laser,” Appl. Phys. B 90(3–4), 451–454 (2008).
[Crossref]

J. Dong, A. Shirakawa, and K. I. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B 85(4), 513–518 (2006).
[Crossref]

J. Kong, D. Y. Tang, J. Lu, and K. Ueda, “Spectral characteristics of a Yb-doped Y2O3 ceramic laser,” Appl. Phys. B 79(4), 449–455 (2004).
[Crossref]

Appl. Phys. Lett. (3)

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
[Crossref]

E. B. Petersen, W. Shi, A. Chavez-Pirson, N. Peyghambarian, and A. T. Cooney, “Efficient parametric terahertz generation in quasi-phase-matched GaP through cavity enhanced difference-frequency generation,” Appl. Phys. Lett. 98(12), 121119 (2011).
[Crossref]

J. Dong, A. Shirakawa, K. I. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett. 89(9), 091114 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Tsunekane and T. Taira, “High peak power, passively Q-switched Yb:YAG/Cr:YAG micro-lasers,” IEEE J. Quantum Electron. 49(5), 454–461 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

W. F. Krupke, “Ytterbium solid-state lasers-The first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[Crossref]

IEEE Photonics J. (1)

J. M. Serres, V. Jambunathan, X. Mateos, P. Loiko, A. Lucianetti, T. Mocek, K. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Graphene Q-Switched Compact Yb:YAG Laser,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. (2)

H. Chu, S. Zhao, K. Yang, Y. Li, D. Li, G. Li, J. Zhao, X. Xu, J. Di, L. Zheng, J. Xu, and Y. Wang, “A passively Q-switched Yb:YAG laser with a single-walled carbon nanotube saturable absorber,” Laser Phys. 23(6), 065002 (2013).
[Crossref]

G. Sun, Y. Li, M. Zhao, X. Chen, J. Wang, and G. Chen, “A quasi-three-level dual-wavelength thin-disk laser at 1024 and 1030 nm based on a diode-pumped Yb:YAG crystal,” Laser Phys. 23(4), 045003 (2013).
[Crossref]

Laser Phys. Lett. (1)

A. Brenier, “Tunable THz frequency difference from a diode-pumped dual-wavelength Yb3+:KGd (WO4) 2 laser with chirped volume Bragg gratings,” Laser Phys. Lett. 8(7), 520–524 (2011).
[Crossref]

Opt. Commun. (1)

T. T. Kajava and A. L. Gaeta, “Intra-cavity frequency-doubling of a Nd:YAG laser passively Q-switched with GaAs,” Opt. Commun. 137(1–3), 93–97 (1997).
[Crossref]

Opt. Express (4)

Opt. Laser Technol. (2)

P. Li, H. Zhang, X. Chen, and Q. Wang, “Diode-pumped Nd:YAG ceramic laser at 946nm passively Q-switched with a Cr4+:YAG saturable absorber,” Opt. Laser Technol. 44(3), 578–581 (2012).
[Crossref]

H. Chu, S. Zhao, K. Yang, Y. Li, D. Li, G. Li, J. Zhao, W. Qiao, X. Xu, J. Di, L. Zheng, and J. Xu, “Experimental and theoretical study of passively Q-switched Yb:YAG laser with GaAs saturable absorber near 1050nm,” Opt. Laser Technol. 56, 398–403 (2014).
[Crossref]

Opt. Lett. (7)

Opt. Mater. Express (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The energy level diagram of the Yb:YAG crystal.
Fig. 2
Fig. 2 Experimental configuration of the dual-wavelength passively Q-switched green laser with a Yb:YAG/Cr4+:YAG/YAG composite crystal.
Fig. 3
Fig. 3 Average output power versus pump power for dual-wavelength green laser. Insets: the laser spectrum at the pump power of 5.34 W.
Fig. 4
Fig. 4 (a) Pulse width and repetition rate of dual-wavelength green laser varying with increasing pump power. (b) Pulse energy and peak power versus incident pump power. (c) The train of laser pulses under the pump power of 9.7 W. (d) Profile of the frequency-doubling pulse with the width of 5.54 ns under the pump power of 9.7 W.
Fig. 5
Fig. 5 2D and 3D beam quality image of dual-wavelength laser at 515 and 524.5 nm.
Fig. 6
Fig. 6 The dual-wavelength green laser spectra at different pump powers.

Tables (1)

Tables Icon

Table 1 Variations of frequency doubling dual-wavelengths with incident pump powers

Metrics