Abstract

We report evanescent wave long wave infrared (LWIR) spectroscopy on a microsecond wavelength switching time scale using the recently developed acousto-optic modulator (AOM) tuned quantum cascade laser. We have examined several liquids to demonstrate the technique and they include isopropyl alcohol (IPA), ethanol, water, alcoholic beverage such as vodka, gin and whiskey, 2,2,2-trifluroethanol and Epsom salt dissolved in water. We also carried out dilution studies of absolute ethanol with water. We find that the commercially available vodka, gin and scotch alcohol concentrations fit well with our calibration. In each of these cases, we were able to collect spectral data from ~8.6 μm to ~9.5 μm in a spectral scan time of <500 μs. The fast data collection capability point to applications of the AOM tuned QCL system as a real time process control tool where flowing fluids are mixed for production of new chemical and biological end products.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Determination of quality and adulteration of tequila through the use of surface plasmon resonance

D. Luna-Moreno, D. Monzón-Hernández, E. Noé-Arias, and L. E. Regalado
Appl. Opt. 51(21) 5161-5167 (2012)

Terahertz reflection spectroscopy of Debye relaxation in polar liquids [Invited]

Uffe Møller, David G. Cooke, Koichiro Tanaka, and Peter Uhd Jepsen
J. Opt. Soc. Am. B 26(9) A113-A125 (2009)

Proof-of-principle of surface detection with air-guided quantum cascade lasers

Virginie Moreau, Raffaele Colombelli, Raviv Perahia, Oskar Painter, Luke R. Wilson, and Andrey B. Krysa
Opt. Express 16(9) 6387-6396 (2008)

References

  • View by:
  • |
  • |
  • |

  1. P. A. Wilkes and T. Hirschfeld, “Internal Reflection Spectroscopy,” Appl. Spectrosc. Rev. 1(1), 99–130 (1967).
    [Crossref]
  2. F. M. Mirabella., “Internal Reflection Spectroscopy,” Appl. Spectrosc. Rev. 21(1), 45–178 (1985).
    [Crossref]
  3. M. Milosevic, Internal Reflection and ATR Spectroscopy (Wiley Press, 2012).
  4. A. Lyakh, R. Barron-Jimenez, I. Dunayevskiy, R. Go, and C. K. N. Patel, “External cavity quantum cascade lasers with ultra rapid acousto-optic tuning,” Appl. Phys. Lett. 106(14), 141101 (2015).
    [Crossref]
  5. C. Kumar and N. Patel, “Single Snapshot Standoff Detection Using Sub Microsecond Tuning Speed Quantum Cascade Lasers,” Proc. SPIE 9836, 98362E (2016).
  6. A. Lyakh, R. Barron-Jimenez, I. Dunayevskiy, R. Go, G. Tsvid, C. Kumar, and N. Patel, “Continuous Wave Operation of Quantum Cascade Lasers with Frequency-Shifted Feedback,” AIP Adv. 6(1), 015312 (2016).
    [Crossref]
  7. A. Lyakh, R. Barron-Jimenez, I. Dunayevskiy, R. Go, E. Tsvid, and C. Patel, “Progress in Rapidly-Tunable External Cavity Quantum Cascade Lasers with a Frequency-Shifted Feedback,” Photonics 3(2), 19 (2016).
    [Crossref]
  8. C. Kumar, N. Patel, R. Barron-Jimenez, I. Dunayevskiy, G. Tsvid, and A. Lyakh, “Two Wavelength Operation of an Acousto-Optically Tuned Quantum Cascade Laser and Direct Measurements of Quantum Cascade Laser Level Lifetimes,” Appl. Phys. Lett. 110, 0331104 (2017).
  9. G.-M. De Naurois, I. Gaby, F. Capasso, and A. Katzir, “Fiberoptic Evanescent Wave Spectroscopy in Water at ppm Sensitivity with a Tunable Quantum Cascade Laser,” in OSA Technical Digest: Science and Innovations 2015, Fiber-Based Sensing (SM2O) (2015).
  10. Y. Raichlin and A. Katzir, “Fiber-optic evanescent wave spectroscopy in the middle infrared,” Appl. Spectrosc. 62(2), 55A–72A (2008).
    [Crossref] [PubMed]
  11. S. Yu, D. Li, H. Chong, C. Sun, H. Yu, and K. Xu, “In vitro glucose measurement using tunable mid-infrared laser spectroscopy combined with fiber-optic sensor,” Biomed. Opt. Express 5(1), 275–286 (2013).
    [Crossref] [PubMed]
  12. IR Spectrum from NIST Standard Reference Database 69: NIST Chemistry WebBook.
  13. D. H. Smith and K. S. Seshadri, “Infrared Spectra of Mg2Ca(SO4)3, MgSO4, Hexagonal CaSO4, and Orthorhombic CaSO4,” Spectrochimica Acta Part A 55(4), 795–805 (1999).
    [Crossref]

2017 (1)

C. Kumar, N. Patel, R. Barron-Jimenez, I. Dunayevskiy, G. Tsvid, and A. Lyakh, “Two Wavelength Operation of an Acousto-Optically Tuned Quantum Cascade Laser and Direct Measurements of Quantum Cascade Laser Level Lifetimes,” Appl. Phys. Lett. 110, 0331104 (2017).

2016 (3)

C. Kumar and N. Patel, “Single Snapshot Standoff Detection Using Sub Microsecond Tuning Speed Quantum Cascade Lasers,” Proc. SPIE 9836, 98362E (2016).

A. Lyakh, R. Barron-Jimenez, I. Dunayevskiy, R. Go, G. Tsvid, C. Kumar, and N. Patel, “Continuous Wave Operation of Quantum Cascade Lasers with Frequency-Shifted Feedback,” AIP Adv. 6(1), 015312 (2016).
[Crossref]

A. Lyakh, R. Barron-Jimenez, I. Dunayevskiy, R. Go, E. Tsvid, and C. Patel, “Progress in Rapidly-Tunable External Cavity Quantum Cascade Lasers with a Frequency-Shifted Feedback,” Photonics 3(2), 19 (2016).
[Crossref]

2015 (1)

A. Lyakh, R. Barron-Jimenez, I. Dunayevskiy, R. Go, and C. K. N. Patel, “External cavity quantum cascade lasers with ultra rapid acousto-optic tuning,” Appl. Phys. Lett. 106(14), 141101 (2015).
[Crossref]

2013 (1)

2008 (1)

1999 (1)

D. H. Smith and K. S. Seshadri, “Infrared Spectra of Mg2Ca(SO4)3, MgSO4, Hexagonal CaSO4, and Orthorhombic CaSO4,” Spectrochimica Acta Part A 55(4), 795–805 (1999).
[Crossref]

1985 (1)

F. M. Mirabella., “Internal Reflection Spectroscopy,” Appl. Spectrosc. Rev. 21(1), 45–178 (1985).
[Crossref]

1967 (1)

P. A. Wilkes and T. Hirschfeld, “Internal Reflection Spectroscopy,” Appl. Spectrosc. Rev. 1(1), 99–130 (1967).
[Crossref]

Barron-Jimenez, R.

C. Kumar, N. Patel, R. Barron-Jimenez, I. Dunayevskiy, G. Tsvid, and A. Lyakh, “Two Wavelength Operation of an Acousto-Optically Tuned Quantum Cascade Laser and Direct Measurements of Quantum Cascade Laser Level Lifetimes,” Appl. Phys. Lett. 110, 0331104 (2017).

A. Lyakh, R. Barron-Jimenez, I. Dunayevskiy, R. Go, E. Tsvid, and C. Patel, “Progress in Rapidly-Tunable External Cavity Quantum Cascade Lasers with a Frequency-Shifted Feedback,” Photonics 3(2), 19 (2016).
[Crossref]

A. Lyakh, R. Barron-Jimenez, I. Dunayevskiy, R. Go, G. Tsvid, C. Kumar, and N. Patel, “Continuous Wave Operation of Quantum Cascade Lasers with Frequency-Shifted Feedback,” AIP Adv. 6(1), 015312 (2016).
[Crossref]

A. Lyakh, R. Barron-Jimenez, I. Dunayevskiy, R. Go, and C. K. N. Patel, “External cavity quantum cascade lasers with ultra rapid acousto-optic tuning,” Appl. Phys. Lett. 106(14), 141101 (2015).
[Crossref]

Chong, H.

Dunayevskiy, I.

C. Kumar, N. Patel, R. Barron-Jimenez, I. Dunayevskiy, G. Tsvid, and A. Lyakh, “Two Wavelength Operation of an Acousto-Optically Tuned Quantum Cascade Laser and Direct Measurements of Quantum Cascade Laser Level Lifetimes,” Appl. Phys. Lett. 110, 0331104 (2017).

A. Lyakh, R. Barron-Jimenez, I. Dunayevskiy, R. Go, E. Tsvid, and C. Patel, “Progress in Rapidly-Tunable External Cavity Quantum Cascade Lasers with a Frequency-Shifted Feedback,” Photonics 3(2), 19 (2016).
[Crossref]

A. Lyakh, R. Barron-Jimenez, I. Dunayevskiy, R. Go, G. Tsvid, C. Kumar, and N. Patel, “Continuous Wave Operation of Quantum Cascade Lasers with Frequency-Shifted Feedback,” AIP Adv. 6(1), 015312 (2016).
[Crossref]

A. Lyakh, R. Barron-Jimenez, I. Dunayevskiy, R. Go, and C. K. N. Patel, “External cavity quantum cascade lasers with ultra rapid acousto-optic tuning,” Appl. Phys. Lett. 106(14), 141101 (2015).
[Crossref]

Go, R.

A. Lyakh, R. Barron-Jimenez, I. Dunayevskiy, R. Go, G. Tsvid, C. Kumar, and N. Patel, “Continuous Wave Operation of Quantum Cascade Lasers with Frequency-Shifted Feedback,” AIP Adv. 6(1), 015312 (2016).
[Crossref]

A. Lyakh, R. Barron-Jimenez, I. Dunayevskiy, R. Go, E. Tsvid, and C. Patel, “Progress in Rapidly-Tunable External Cavity Quantum Cascade Lasers with a Frequency-Shifted Feedback,” Photonics 3(2), 19 (2016).
[Crossref]

A. Lyakh, R. Barron-Jimenez, I. Dunayevskiy, R. Go, and C. K. N. Patel, “External cavity quantum cascade lasers with ultra rapid acousto-optic tuning,” Appl. Phys. Lett. 106(14), 141101 (2015).
[Crossref]

Hirschfeld, T.

P. A. Wilkes and T. Hirschfeld, “Internal Reflection Spectroscopy,” Appl. Spectrosc. Rev. 1(1), 99–130 (1967).
[Crossref]

Katzir, A.

Kumar, C.

C. Kumar, N. Patel, R. Barron-Jimenez, I. Dunayevskiy, G. Tsvid, and A. Lyakh, “Two Wavelength Operation of an Acousto-Optically Tuned Quantum Cascade Laser and Direct Measurements of Quantum Cascade Laser Level Lifetimes,” Appl. Phys. Lett. 110, 0331104 (2017).

C. Kumar and N. Patel, “Single Snapshot Standoff Detection Using Sub Microsecond Tuning Speed Quantum Cascade Lasers,” Proc. SPIE 9836, 98362E (2016).

A. Lyakh, R. Barron-Jimenez, I. Dunayevskiy, R. Go, G. Tsvid, C. Kumar, and N. Patel, “Continuous Wave Operation of Quantum Cascade Lasers with Frequency-Shifted Feedback,” AIP Adv. 6(1), 015312 (2016).
[Crossref]

Li, D.

Lyakh, A.

C. Kumar, N. Patel, R. Barron-Jimenez, I. Dunayevskiy, G. Tsvid, and A. Lyakh, “Two Wavelength Operation of an Acousto-Optically Tuned Quantum Cascade Laser and Direct Measurements of Quantum Cascade Laser Level Lifetimes,” Appl. Phys. Lett. 110, 0331104 (2017).

A. Lyakh, R. Barron-Jimenez, I. Dunayevskiy, R. Go, G. Tsvid, C. Kumar, and N. Patel, “Continuous Wave Operation of Quantum Cascade Lasers with Frequency-Shifted Feedback,” AIP Adv. 6(1), 015312 (2016).
[Crossref]

A. Lyakh, R. Barron-Jimenez, I. Dunayevskiy, R. Go, E. Tsvid, and C. Patel, “Progress in Rapidly-Tunable External Cavity Quantum Cascade Lasers with a Frequency-Shifted Feedback,” Photonics 3(2), 19 (2016).
[Crossref]

A. Lyakh, R. Barron-Jimenez, I. Dunayevskiy, R. Go, and C. K. N. Patel, “External cavity quantum cascade lasers with ultra rapid acousto-optic tuning,” Appl. Phys. Lett. 106(14), 141101 (2015).
[Crossref]

Mirabella, F. M.

F. M. Mirabella., “Internal Reflection Spectroscopy,” Appl. Spectrosc. Rev. 21(1), 45–178 (1985).
[Crossref]

Patel, C.

A. Lyakh, R. Barron-Jimenez, I. Dunayevskiy, R. Go, E. Tsvid, and C. Patel, “Progress in Rapidly-Tunable External Cavity Quantum Cascade Lasers with a Frequency-Shifted Feedback,” Photonics 3(2), 19 (2016).
[Crossref]

Patel, C. K. N.

A. Lyakh, R. Barron-Jimenez, I. Dunayevskiy, R. Go, and C. K. N. Patel, “External cavity quantum cascade lasers with ultra rapid acousto-optic tuning,” Appl. Phys. Lett. 106(14), 141101 (2015).
[Crossref]

Patel, N.

C. Kumar, N. Patel, R. Barron-Jimenez, I. Dunayevskiy, G. Tsvid, and A. Lyakh, “Two Wavelength Operation of an Acousto-Optically Tuned Quantum Cascade Laser and Direct Measurements of Quantum Cascade Laser Level Lifetimes,” Appl. Phys. Lett. 110, 0331104 (2017).

A. Lyakh, R. Barron-Jimenez, I. Dunayevskiy, R. Go, G. Tsvid, C. Kumar, and N. Patel, “Continuous Wave Operation of Quantum Cascade Lasers with Frequency-Shifted Feedback,” AIP Adv. 6(1), 015312 (2016).
[Crossref]

C. Kumar and N. Patel, “Single Snapshot Standoff Detection Using Sub Microsecond Tuning Speed Quantum Cascade Lasers,” Proc. SPIE 9836, 98362E (2016).

Raichlin, Y.

Seshadri, K. S.

D. H. Smith and K. S. Seshadri, “Infrared Spectra of Mg2Ca(SO4)3, MgSO4, Hexagonal CaSO4, and Orthorhombic CaSO4,” Spectrochimica Acta Part A 55(4), 795–805 (1999).
[Crossref]

Smith, D. H.

D. H. Smith and K. S. Seshadri, “Infrared Spectra of Mg2Ca(SO4)3, MgSO4, Hexagonal CaSO4, and Orthorhombic CaSO4,” Spectrochimica Acta Part A 55(4), 795–805 (1999).
[Crossref]

Sun, C.

Tsvid, E.

A. Lyakh, R. Barron-Jimenez, I. Dunayevskiy, R. Go, E. Tsvid, and C. Patel, “Progress in Rapidly-Tunable External Cavity Quantum Cascade Lasers with a Frequency-Shifted Feedback,” Photonics 3(2), 19 (2016).
[Crossref]

Tsvid, G.

C. Kumar, N. Patel, R. Barron-Jimenez, I. Dunayevskiy, G. Tsvid, and A. Lyakh, “Two Wavelength Operation of an Acousto-Optically Tuned Quantum Cascade Laser and Direct Measurements of Quantum Cascade Laser Level Lifetimes,” Appl. Phys. Lett. 110, 0331104 (2017).

A. Lyakh, R. Barron-Jimenez, I. Dunayevskiy, R. Go, G. Tsvid, C. Kumar, and N. Patel, “Continuous Wave Operation of Quantum Cascade Lasers with Frequency-Shifted Feedback,” AIP Adv. 6(1), 015312 (2016).
[Crossref]

Wilkes, P. A.

P. A. Wilkes and T. Hirschfeld, “Internal Reflection Spectroscopy,” Appl. Spectrosc. Rev. 1(1), 99–130 (1967).
[Crossref]

Xu, K.

Yu, H.

Yu, S.

AIP Adv. (1)

A. Lyakh, R. Barron-Jimenez, I. Dunayevskiy, R. Go, G. Tsvid, C. Kumar, and N. Patel, “Continuous Wave Operation of Quantum Cascade Lasers with Frequency-Shifted Feedback,” AIP Adv. 6(1), 015312 (2016).
[Crossref]

Appl. Phys. Lett. (2)

C. Kumar, N. Patel, R. Barron-Jimenez, I. Dunayevskiy, G. Tsvid, and A. Lyakh, “Two Wavelength Operation of an Acousto-Optically Tuned Quantum Cascade Laser and Direct Measurements of Quantum Cascade Laser Level Lifetimes,” Appl. Phys. Lett. 110, 0331104 (2017).

A. Lyakh, R. Barron-Jimenez, I. Dunayevskiy, R. Go, and C. K. N. Patel, “External cavity quantum cascade lasers with ultra rapid acousto-optic tuning,” Appl. Phys. Lett. 106(14), 141101 (2015).
[Crossref]

Appl. Spectrosc. (1)

Appl. Spectrosc. Rev. (2)

P. A. Wilkes and T. Hirschfeld, “Internal Reflection Spectroscopy,” Appl. Spectrosc. Rev. 1(1), 99–130 (1967).
[Crossref]

F. M. Mirabella., “Internal Reflection Spectroscopy,” Appl. Spectrosc. Rev. 21(1), 45–178 (1985).
[Crossref]

Biomed. Opt. Express (1)

Photonics (1)

A. Lyakh, R. Barron-Jimenez, I. Dunayevskiy, R. Go, E. Tsvid, and C. Patel, “Progress in Rapidly-Tunable External Cavity Quantum Cascade Lasers with a Frequency-Shifted Feedback,” Photonics 3(2), 19 (2016).
[Crossref]

Proc. SPIE (1)

C. Kumar and N. Patel, “Single Snapshot Standoff Detection Using Sub Microsecond Tuning Speed Quantum Cascade Lasers,” Proc. SPIE 9836, 98362E (2016).

Spectrochimica Acta Part A (1)

D. H. Smith and K. S. Seshadri, “Infrared Spectra of Mg2Ca(SO4)3, MgSO4, Hexagonal CaSO4, and Orthorhombic CaSO4,” Spectrochimica Acta Part A 55(4), 795–805 (1999).
[Crossref]

Other (3)

IR Spectrum from NIST Standard Reference Database 69: NIST Chemistry WebBook.

M. Milosevic, Internal Reflection and ATR Spectroscopy (Wiley Press, 2012).

G.-M. De Naurois, I. Gaby, F. Capasso, and A. Katzir, “Fiberoptic Evanescent Wave Spectroscopy in Water at ppm Sensitivity with a Tunable Quantum Cascade Laser,” in OSA Technical Digest: Science and Innovations 2015, Fiber-Based Sensing (SM2O) (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Principle of ATR spectroscopy.
Fig. 2
Fig. 2 Experimental setup for ATR measurements of liquids using tunable radiation from an AOM tuned QCL.
Fig. 3
Fig. 3 ATR absorption measurements of IPA. Single scan data with scan time of 500 μs.
Fig. 4
Fig. 4 ATR absorption measurements of water. Single scan data with scan time of 500 μs.
Fig. 5
Fig. 5 ATR absorption measurements of absolute ethanol. Single scan data with scan time of 500 μs.
Fig. 6
Fig. 6 Ethanol absorption as a function of dilution with water.
Fig. 7
Fig. 7 ATR absorption measurements of vodka. Single scan data with scan time of 500 μs.
Fig. 8
Fig. 8 ATR absorption measurements of 2,2,2-trifluoroethanol. Single scan data with scan time of 500 μs.
Fig. 9
Fig. 9 ATR absorption measurements of MgSO4 solution in water. Single scan data with scan time of 500 μs.

Metrics