Abstract

A kind of plasmonic vector beam generator is proposed with the help of a compact nano-hole structure. The structure is composed of the homogeneous rectangular holes which are etched in a silver film and arranged in an Archimedes' spiral. Under the circularly polarized light illumination, each rectangular hole is identified as a quarter-wave plate, and the vector beams including the radial and azimuthal polarization beams can form through properly orientating and spirally arranging these holes. The numerical simulations according to the finite-difference time-domain method provide the parameters of the optimized structure of the vector beam generator. The theoretical analysis reveals the formation principle of the vector beams. The practical measurement for the diffraction of the proposed structure verifies the vector beam generation.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Radially polarized plasmonic vector vortex generated by a metasurface spiral in gold film

Yuqin Zhang, Ruirui Zhang, Xing Li, Li Ma, Chunxiang Liu, Changwei He, and Chuanfu Cheng
Opt. Express 25(25) 32150-32160 (2017)

Generation of vector beams using spatial variation nanoslits with linearly polarized light illumination

Qi Zhang, Han Wang, Lixia Liu, and Shuyun Teng
Opt. Express 26(18) 24145-24153 (2018)

Analysis of a segmented q-plate tunable retarder for the generation of first-order vector beams

Jeffrey A. Davis, Nobuyuki Hashimoto, Makoto Kurihara, Enrique Hurtado, Melanie Pierce, María M. Sánchez-López, Katherine Badham, and Ignacio Moreno
Appl. Opt. 54(32) 9583-9590 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 27(5), 899–910 (2009).
  2. Q. Zhan and J. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
    [Crossref] [PubMed]
  3. E. Y. Yew and C. J. Sheppard, “Tight focusing of radially polarized Gaussian and Bessel-Gauss beams,” Opt. Lett. 32(23), 3417–3419 (2007).
    [Crossref] [PubMed]
  4. M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single-molecule orientations determined by direct emission pattern imaging,” J. Opt. Soc. Am. B 21(6), 1210–1215 (2004).
    [Crossref]
  5. Z. Bomzon, V. Kleiner, and E. Hasman, “Pancharatnam-Berry phase in space-variant polarization-state manipulations with subwavelength gratings,” Opt. Lett. 26(18), 1424–1426 (2001).
    [Crossref] [PubMed]
  6. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27(5), 285–287 (2002).
    [Crossref] [PubMed]
  7. R. S. Kurti, K. Halterman, R. K. Shori, and M. J. Wardlaw, “Discrete cylindrical vector beam generation from an array of optical fibers,” Opt. Express 17(16), 13982–13988 (2009).
    [Crossref] [PubMed]
  8. K. Y. Wei, W. D. Zhang, L. G. Huang, D. Mao, F. Gao, T. Mei, and J. L. Zhao, “Generation of cylindrical vector beams and optical vortex by two acoustically induced fiber gratings with orthogonal vibration directions,” Opt. Express 25(3), 2733–2741 (2017).
    [Crossref]
  9. H. Chen, J. Hao, B. F. Zhang, J. Xu, J. Ding, and H. T. Wang, “Generation of vector beam with space-variant distribution of both polarization and phase,” Opt. Lett. 36(16), 3179–3181 (2011).
    [Crossref] [PubMed]
  10. C. Loussert and E. Brasselet, “Efficient scalar and vectorial singular beam shaping using homogeneous anisotropic media,” Opt. Lett. 35(1), 7–9 (2010).
    [Crossref] [PubMed]
  11. V. G. Shvedov, C. Hnatovsky, N. Shostka, and W. Krolikowski, “Generation of vector bottle beams with a uniaxial crystal,” J. Opt. Soc. Am. B 30(1), 1–6 (2013).
    [Crossref]
  12. X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
    [Crossref] [PubMed]
  13. S. A. Schulz, T. Machula, E. Karimi, and R. W. Boyd, “Integrated multi vector vortex beam generator,” Opt. Express 21(13), 16130–16141 (2013).
    [Crossref] [PubMed]
  14. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
    [Crossref] [PubMed]
  15. Y. Kozawa and S. Sato, “Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams,” Opt. Express 18(10), 10828–10833 (2010).
    [Crossref] [PubMed]
  16. L. Huang, H. Guo, J. Li, L. Ling, B. Feng, and Z. Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett. 37(10), 1694–1696 (2012).
    [Crossref] [PubMed]
  17. A. F. Abouraddy and K. C. Toussaint., “Three-dimensional polarization control in microscopy,” Phys. Rev. Lett. 96(15), 153901 (2006).
    [Crossref] [PubMed]
  18. G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
    [Crossref] [PubMed]
  19. X. Xie, Y. Chen, K. Yang, and J. Zhou, “Harnessing the point-spread function for high-resolution far-field optical microscopy,” Phys. Rev. Lett. 113(26), 263901 (2014).
    [Crossref] [PubMed]
  20. J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Remote preparation of single-photon “hybrid” entangled and vector-polarization States,” Phys. Rev. Lett. 105(3), 030407 (2010).
    [Crossref] [PubMed]
  21. V. Parigi, V. Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, “Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory,” Nat. Commun. 6, 7706 (2015).
    [Crossref] [PubMed]
  22. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  23. T. Chung, S. Y. Lee, H. Yun, S. W. Cho, Y. J. Lim, I. M. Lee, and B. Lee, “Plasmonics in Nanoslit for Manipulation of Light,” IEEE Access 1, 371–383 (2013).
    [Crossref]
  24. P. Yu, J. X. Li, C. C. Tang, H. Cheng, Z. C. Liu, Z. C. Li, Z. Liu, C. Z. Gu, J. J. Li, S. Q. Chen, and J. G. Tian, “Controllable optical activity with non-chiral plasmonic metasurfaces,” Light Sci. Appl. 5(7), e16096 (2016).
    [Crossref]
  25. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
    [Crossref] [PubMed]
  26. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
    [Crossref] [PubMed]
  27. D. C. Abeysinghe, Q. Zhan, R. L. Nelson, and Q. W. Zhan, “Spiral Plasmonic Lens as Miniature Circular Polarization Analyzer,” Opt. Lett. 34(20), 3047–3049 (2010).
    [PubMed]
  28. Y. Gorodetski, E. Lombard, A. Drezet, C. Genet, and T. W. Ebbesen, “A perfect plasmonic quarter-wave plate,” Appl. Phys. Lett. 101(20), 201103 (2012).
    [Crossref]
  29. B. Yang, W. M. Ye, X. D. Yuan, Z. H. Zhu, and C. Zeng, “Design of ultrathin plasmonic quarter-wave plate based on period coupling,” Opt. Lett. 38(5), 679–681 (2013).
    [Crossref] [PubMed]
  30. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
    [Crossref] [PubMed]
  31. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
    [Crossref] [PubMed]
  32. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10(6), 2075–2079 (2010).
    [Crossref] [PubMed]
  33. Q. Zhang, P. Y. Li, Y. Y. Li, X. R. Ren, and S. Y. Teng, “A universal plasmonic polarization state analyzer,” Plasmonics. in press.
  34. X. Yu, L. Li, and G. M. Shi, “Dual-polarization and dual-mode orbital angular momentum radio vortex beam generated by using reflective metasurface,” Appl. Phys. Express 9(8), 082202 (2016).
    [Crossref]
  35. P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
    [Crossref]
  36. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

2017 (1)

2016 (2)

P. Yu, J. X. Li, C. C. Tang, H. Cheng, Z. C. Liu, Z. C. Li, Z. Liu, C. Z. Gu, J. J. Li, S. Q. Chen, and J. G. Tian, “Controllable optical activity with non-chiral plasmonic metasurfaces,” Light Sci. Appl. 5(7), e16096 (2016).
[Crossref]

X. Yu, L. Li, and G. M. Shi, “Dual-polarization and dual-mode orbital angular momentum radio vortex beam generated by using reflective metasurface,” Appl. Phys. Express 9(8), 082202 (2016).
[Crossref]

2015 (1)

V. Parigi, V. Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, “Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory,” Nat. Commun. 6, 7706 (2015).
[Crossref] [PubMed]

2014 (1)

X. Xie, Y. Chen, K. Yang, and J. Zhou, “Harnessing the point-spread function for high-resolution far-field optical microscopy,” Phys. Rev. Lett. 113(26), 263901 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (5)

L. Huang, H. Guo, J. Li, L. Ling, B. Feng, and Z. Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett. 37(10), 1694–1696 (2012).
[Crossref] [PubMed]

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Y. Gorodetski, E. Lombard, A. Drezet, C. Genet, and T. W. Ebbesen, “A perfect plasmonic quarter-wave plate,” Appl. Phys. Lett. 101(20), 201103 (2012).
[Crossref]

2011 (1)

2010 (6)

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10(6), 2075–2079 (2010).
[Crossref] [PubMed]

D. C. Abeysinghe, Q. Zhan, R. L. Nelson, and Q. W. Zhan, “Spiral Plasmonic Lens as Miniature Circular Polarization Analyzer,” Opt. Lett. 34(20), 3047–3049 (2010).
[PubMed]

C. Loussert and E. Brasselet, “Efficient scalar and vectorial singular beam shaping using homogeneous anisotropic media,” Opt. Lett. 35(1), 7–9 (2010).
[Crossref] [PubMed]

Y. Kozawa and S. Sato, “Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams,” Opt. Express 18(10), 10828–10833 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Remote preparation of single-photon “hybrid” entangled and vector-polarization States,” Phys. Rev. Lett. 105(3), 030407 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (2)

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

A. F. Abouraddy and K. C. Toussaint., “Three-dimensional polarization control in microscopy,” Phys. Rev. Lett. 96(15), 153901 (2006).
[Crossref] [PubMed]

2005 (2)

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

2004 (2)

2002 (2)

2001 (1)

Abeysinghe, D. C.

D. C. Abeysinghe, Q. Zhan, R. L. Nelson, and Q. W. Zhan, “Spiral Plasmonic Lens as Miniature Circular Polarization Analyzer,” Opt. Lett. 34(20), 3047–3049 (2010).
[PubMed]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10(6), 2075–2079 (2010).
[Crossref] [PubMed]

Abouraddy, A. F.

A. F. Abouraddy and K. C. Toussaint., “Three-dimensional polarization control in microscopy,” Phys. Rev. Lett. 96(15), 153901 (2006).
[Crossref] [PubMed]

Aieta, F.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Ambrosio, V.

V. Parigi, V. Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, “Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory,” Nat. Commun. 6, 7706 (2015).
[Crossref] [PubMed]

Arnold, C.

V. Parigi, V. Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, “Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory,” Nat. Commun. 6, 7706 (2015).
[Crossref] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Barreiro, J. T.

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Remote preparation of single-photon “hybrid” entangled and vector-polarization States,” Phys. Rev. Lett. 105(3), 030407 (2010).
[Crossref] [PubMed]

Bautista, G.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

Biener, G.

Blanchard, R.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Bogy, D. B.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

Bomzon, Z.

Boyd, R. W.

Brasselet, E.

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Cai, X.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Capasso, F.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Chen, H.

Chen, S. Q.

P. Yu, J. X. Li, C. C. Tang, H. Cheng, Z. C. Liu, Z. C. Li, Z. Liu, C. Z. Gu, J. J. Li, S. Q. Chen, and J. G. Tian, “Controllable optical activity with non-chiral plasmonic metasurfaces,” Light Sci. Appl. 5(7), e16096 (2016).
[Crossref]

Chen, W.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10(6), 2075–2079 (2010).
[Crossref] [PubMed]

Chen, Y.

X. Xie, Y. Chen, K. Yang, and J. Zhou, “Harnessing the point-spread function for high-resolution far-field optical microscopy,” Phys. Rev. Lett. 113(26), 263901 (2014).
[Crossref] [PubMed]

Cheng, H.

P. Yu, J. X. Li, C. C. Tang, H. Cheng, Z. C. Liu, Z. C. Li, Z. Liu, C. Z. Gu, J. J. Li, S. Q. Chen, and J. G. Tian, “Controllable optical activity with non-chiral plasmonic metasurfaces,” Light Sci. Appl. 5(7), e16096 (2016).
[Crossref]

Cho, S. W.

T. Chung, S. Y. Lee, H. Yun, S. W. Cho, Y. J. Lim, I. M. Lee, and B. Lee, “Plasmonics in Nanoslit for Manipulation of Light,” IEEE Access 1, 371–383 (2013).
[Crossref]

Chung, T.

T. Chung, S. Y. Lee, H. Yun, S. W. Cho, Y. J. Lim, I. M. Lee, and B. Lee, “Plasmonics in Nanoslit for Manipulation of Light,” IEEE Access 1, 371–383 (2013).
[Crossref]

Ding, J.

Drezet, A.

Y. Gorodetski, E. Lombard, A. Drezet, C. Genet, and T. W. Ebbesen, “A perfect plasmonic quarter-wave plate,” Appl. Phys. Lett. 101(20), 201103 (2012).
[Crossref]

Ebbesen, T. W.

Y. Gorodetski, E. Lombard, A. Drezet, C. Genet, and T. W. Ebbesen, “A perfect plasmonic quarter-wave plate,” Appl. Phys. Lett. 101(20), 201103 (2012).
[Crossref]

Feng, B.

Gaburro, Z.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Gao, F.

Genet, C.

Y. Gorodetski, E. Lombard, A. Drezet, C. Genet, and T. W. Ebbesen, “A perfect plasmonic quarter-wave plate,” Appl. Phys. Lett. 101(20), 201103 (2012).
[Crossref]

Genevet, P.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Gorodetski, Y.

Y. Gorodetski, E. Lombard, A. Drezet, C. Genet, and T. W. Ebbesen, “A perfect plasmonic quarter-wave plate,” Appl. Phys. Lett. 101(20), 201103 (2012).
[Crossref]

Gu, C. Z.

P. Yu, J. X. Li, C. C. Tang, H. Cheng, Z. C. Liu, Z. C. Li, Z. Liu, C. Z. Gu, J. J. Li, S. Q. Chen, and J. G. Tian, “Controllable optical activity with non-chiral plasmonic metasurfaces,” Light Sci. Appl. 5(7), e16096 (2016).
[Crossref]

Guo, H.

Halterman, K.

Hao, J.

Hasman, E.

Hnatovsky, C.

Huang, L.

Huang, L. G.

Huttunen, M. J.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

Johnson-Morris, B.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Karimi, E.

Kats, M. A.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Kauranen, M.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

Kleiner, V.

Kontio, J. M.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

Kozawa, Y.

Krolikowski, W.

Kurti, R. S.

Kwiat, P. G.

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Remote preparation of single-photon “hybrid” entangled and vector-polarization States,” Phys. Rev. Lett. 105(3), 030407 (2010).
[Crossref] [PubMed]

Laurat, J.

V. Parigi, V. Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, “Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory,” Nat. Commun. 6, 7706 (2015).
[Crossref] [PubMed]

Lee, B.

T. Chung, S. Y. Lee, H. Yun, S. W. Cho, Y. J. Lim, I. M. Lee, and B. Lee, “Plasmonics in Nanoslit for Manipulation of Light,” IEEE Access 1, 371–383 (2013).
[Crossref]

Lee, I. M.

T. Chung, S. Y. Lee, H. Yun, S. W. Cho, Y. J. Lim, I. M. Lee, and B. Lee, “Plasmonics in Nanoslit for Manipulation of Light,” IEEE Access 1, 371–383 (2013).
[Crossref]

Lee, S. Y.

T. Chung, S. Y. Lee, H. Yun, S. W. Cho, Y. J. Lim, I. M. Lee, and B. Lee, “Plasmonics in Nanoslit for Manipulation of Light,” IEEE Access 1, 371–383 (2013).
[Crossref]

Leger, J.

Li, J.

Li, J. J.

P. Yu, J. X. Li, C. C. Tang, H. Cheng, Z. C. Liu, Z. C. Li, Z. Liu, C. Z. Gu, J. J. Li, S. Q. Chen, and J. G. Tian, “Controllable optical activity with non-chiral plasmonic metasurfaces,” Light Sci. Appl. 5(7), e16096 (2016).
[Crossref]

Li, J. X.

P. Yu, J. X. Li, C. C. Tang, H. Cheng, Z. C. Liu, Z. C. Li, Z. Liu, C. Z. Gu, J. J. Li, S. Q. Chen, and J. G. Tian, “Controllable optical activity with non-chiral plasmonic metasurfaces,” Light Sci. Appl. 5(7), e16096 (2016).
[Crossref]

Li, L.

X. Yu, L. Li, and G. M. Shi, “Dual-polarization and dual-mode orbital angular momentum radio vortex beam generated by using reflective metasurface,” Appl. Phys. Express 9(8), 082202 (2016).
[Crossref]

Li, P. Y.

Q. Zhang, P. Y. Li, Y. Y. Li, X. R. Ren, and S. Y. Teng, “A universal plasmonic polarization state analyzer,” Plasmonics. in press.

Li, Y. Y.

Q. Zhang, P. Y. Li, Y. Y. Li, X. R. Ren, and S. Y. Teng, “A universal plasmonic polarization state analyzer,” Plasmonics. in press.

Li, Z. C.

P. Yu, J. X. Li, C. C. Tang, H. Cheng, Z. C. Liu, Z. C. Li, Z. Liu, C. Z. Gu, J. J. Li, S. Q. Chen, and J. G. Tian, “Controllable optical activity with non-chiral plasmonic metasurfaces,” Light Sci. Appl. 5(7), e16096 (2016).
[Crossref]

Li, Z. Y.

Lieb, M. A.

Lim, Y. J.

T. Chung, S. Y. Lee, H. Yun, S. W. Cho, Y. J. Lim, I. M. Lee, and B. Lee, “Plasmonics in Nanoslit for Manipulation of Light,” IEEE Access 1, 371–383 (2013).
[Crossref]

Lin, J.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Ling, L.

Liu, Z.

P. Yu, J. X. Li, C. C. Tang, H. Cheng, Z. C. Liu, Z. C. Li, Z. Liu, C. Z. Gu, J. J. Li, S. Q. Chen, and J. G. Tian, “Controllable optical activity with non-chiral plasmonic metasurfaces,” Light Sci. Appl. 5(7), e16096 (2016).
[Crossref]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Liu, Z. C.

P. Yu, J. X. Li, C. C. Tang, H. Cheng, Z. C. Liu, Z. C. Li, Z. Liu, C. Z. Gu, J. J. Li, S. Q. Chen, and J. G. Tian, “Controllable optical activity with non-chiral plasmonic metasurfaces,” Light Sci. Appl. 5(7), e16096 (2016).
[Crossref]

Lombard, E.

Y. Gorodetski, E. Lombard, A. Drezet, C. Genet, and T. W. Ebbesen, “A perfect plasmonic quarter-wave plate,” Appl. Phys. Lett. 101(20), 201103 (2012).
[Crossref]

Loussert, C.

Machula, T.

Mäkitalo, J.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

Mao, D.

Marrucci, L.

V. Parigi, V. Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, “Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory,” Nat. Commun. 6, 7706 (2015).
[Crossref] [PubMed]

Mei, T.

Nelson, R. L.

D. C. Abeysinghe, Q. Zhan, R. L. Nelson, and Q. W. Zhan, “Spiral Plasmonic Lens as Miniature Circular Polarization Analyzer,” Opt. Lett. 34(20), 3047–3049 (2010).
[PubMed]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10(6), 2075–2079 (2010).
[Crossref] [PubMed]

Novotny, L.

O’Brien, J. L.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Pan, L.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

Parigi, V.

V. Parigi, V. Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, “Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory,” Nat. Commun. 6, 7706 (2015).
[Crossref] [PubMed]

Pikus, Y.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Ren, X. R.

Q. Zhang, P. Y. Li, Y. Y. Li, X. R. Ren, and S. Y. Teng, “A universal plasmonic polarization state analyzer,” Plasmonics. in press.

Sato, S.

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Schulz, S. A.

Sciarrino, F.

V. Parigi, V. Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, “Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory,” Nat. Commun. 6, 7706 (2015).
[Crossref] [PubMed]

Scully, M. O.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Sheppard, C. J.

Shi, G. M.

X. Yu, L. Li, and G. M. Shi, “Dual-polarization and dual-mode orbital angular momentum radio vortex beam generated by using reflective metasurface,” Appl. Phys. Express 9(8), 082202 (2016).
[Crossref]

Shori, R. K.

Shostka, N.

Shvedov, V. G.

Simonen, J.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

Sorel, M.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Srituravanich, W.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Steele, J. M.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Strain, M. J.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Sun, C.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Tang, C. C.

P. Yu, J. X. Li, C. C. Tang, H. Cheng, Z. C. Liu, Z. C. Li, Z. Liu, C. Z. Gu, J. J. Li, S. Q. Chen, and J. G. Tian, “Controllable optical activity with non-chiral plasmonic metasurfaces,” Light Sci. Appl. 5(7), e16096 (2016).
[Crossref]

Teng, S. Y.

Q. Zhang, P. Y. Li, Y. Y. Li, X. R. Ren, and S. Y. Teng, “A universal plasmonic polarization state analyzer,” Plasmonics. in press.

Thompson, M. G.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Tian, J. G.

P. Yu, J. X. Li, C. C. Tang, H. Cheng, Z. C. Liu, Z. C. Li, Z. Liu, C. Z. Gu, J. J. Li, S. Q. Chen, and J. G. Tian, “Controllable optical activity with non-chiral plasmonic metasurfaces,” Light Sci. Appl. 5(7), e16096 (2016).
[Crossref]

Toussaint, K. C.

A. F. Abouraddy and K. C. Toussaint., “Three-dimensional polarization control in microscopy,” Phys. Rev. Lett. 96(15), 153901 (2006).
[Crossref] [PubMed]

Wang, H. T.

Wang, J.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Wang, Y.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

Wardlaw, M. J.

Wei, K. Y.

Wei, T. C.

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Remote preparation of single-photon “hybrid” entangled and vector-polarization States,” Phys. Rev. Lett. 105(3), 030407 (2010).
[Crossref] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Xie, X.

X. Xie, Y. Chen, K. Yang, and J. Zhou, “Harnessing the point-spread function for high-resolution far-field optical microscopy,” Phys. Rev. Lett. 113(26), 263901 (2014).
[Crossref] [PubMed]

Xu, J.

Yang, B.

Yang, K.

X. Xie, Y. Chen, K. Yang, and J. Zhou, “Harnessing the point-spread function for high-resolution far-field optical microscopy,” Phys. Rev. Lett. 113(26), 263901 (2014).
[Crossref] [PubMed]

Ye, W. M.

Yew, E. Y.

Yu, N. F.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Yu, P.

P. Yu, J. X. Li, C. C. Tang, H. Cheng, Z. C. Liu, Z. C. Li, Z. Liu, C. Z. Gu, J. J. Li, S. Q. Chen, and J. G. Tian, “Controllable optical activity with non-chiral plasmonic metasurfaces,” Light Sci. Appl. 5(7), e16096 (2016).
[Crossref]

Yu, S.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Yu, X.

X. Yu, L. Li, and G. M. Shi, “Dual-polarization and dual-mode orbital angular momentum radio vortex beam generated by using reflective metasurface,” Appl. Phys. Express 9(8), 082202 (2016).
[Crossref]

Yuan, X. D.

Yun, H.

T. Chung, S. Y. Lee, H. Yun, S. W. Cho, Y. J. Lim, I. M. Lee, and B. Lee, “Plasmonics in Nanoslit for Manipulation of Light,” IEEE Access 1, 371–383 (2013).
[Crossref]

Zavislan, J. M.

Zeng, C.

Zhan, Q.

D. C. Abeysinghe, Q. Zhan, R. L. Nelson, and Q. W. Zhan, “Spiral Plasmonic Lens as Miniature Circular Polarization Analyzer,” Opt. Lett. 34(20), 3047–3049 (2010).
[PubMed]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10(6), 2075–2079 (2010).
[Crossref] [PubMed]

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 27(5), 899–910 (2009).

Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
[Crossref] [PubMed]

Q. Zhan and J. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
[Crossref] [PubMed]

Zhan, Q. W.

Zhang, B. F.

Zhang, Q.

Q. Zhang, P. Y. Li, Y. Y. Li, X. R. Ren, and S. Y. Teng, “A universal plasmonic polarization state analyzer,” Plasmonics. in press.

Zhang, W. D.

Zhang, X.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Zhao, J. L.

Zhou, J.

X. Xie, Y. Chen, K. Yang, and J. Zhou, “Harnessing the point-spread function for high-resolution far-field optical microscopy,” Phys. Rev. Lett. 113(26), 263901 (2014).
[Crossref] [PubMed]

Zhu, J.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Zhu, Z. H.

Adv. Opt. Photonics (1)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 27(5), 899–910 (2009).

Appl. Phys. Express (1)

X. Yu, L. Li, and G. M. Shi, “Dual-polarization and dual-mode orbital angular momentum radio vortex beam generated by using reflective metasurface,” Appl. Phys. Express 9(8), 082202 (2016).
[Crossref]

Appl. Phys. Lett. (2)

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Y. Gorodetski, E. Lombard, A. Drezet, C. Genet, and T. W. Ebbesen, “A perfect plasmonic quarter-wave plate,” Appl. Phys. Lett. 101(20), 201103 (2012).
[Crossref]

IEEE Access (1)

T. Chung, S. Y. Lee, H. Yun, S. W. Cho, Y. J. Lim, I. M. Lee, and B. Lee, “Plasmonics in Nanoslit for Manipulation of Light,” IEEE Access 1, 371–383 (2013).
[Crossref]

J. Opt. Soc. Am. B (2)

Light Sci. Appl. (1)

P. Yu, J. X. Li, C. C. Tang, H. Cheng, Z. C. Liu, Z. C. Li, Z. Liu, C. Z. Gu, J. J. Li, S. Q. Chen, and J. G. Tian, “Controllable optical activity with non-chiral plasmonic metasurfaces,” Light Sci. Appl. 5(7), e16096 (2016).
[Crossref]

Nano Lett. (4)

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10(6), 2075–2079 (2010).
[Crossref] [PubMed]

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

V. Parigi, V. Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, “Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory,” Nat. Commun. 6, 7706 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (8)

H. Chen, J. Hao, B. F. Zhang, J. Xu, J. Ding, and H. T. Wang, “Generation of vector beam with space-variant distribution of both polarization and phase,” Opt. Lett. 36(16), 3179–3181 (2011).
[Crossref] [PubMed]

C. Loussert and E. Brasselet, “Efficient scalar and vectorial singular beam shaping using homogeneous anisotropic media,” Opt. Lett. 35(1), 7–9 (2010).
[Crossref] [PubMed]

E. Y. Yew and C. J. Sheppard, “Tight focusing of radially polarized Gaussian and Bessel-Gauss beams,” Opt. Lett. 32(23), 3417–3419 (2007).
[Crossref] [PubMed]

Z. Bomzon, V. Kleiner, and E. Hasman, “Pancharatnam-Berry phase in space-variant polarization-state manipulations with subwavelength gratings,” Opt. Lett. 26(18), 1424–1426 (2001).
[Crossref] [PubMed]

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27(5), 285–287 (2002).
[Crossref] [PubMed]

L. Huang, H. Guo, J. Li, L. Ling, B. Feng, and Z. Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett. 37(10), 1694–1696 (2012).
[Crossref] [PubMed]

D. C. Abeysinghe, Q. Zhan, R. L. Nelson, and Q. W. Zhan, “Spiral Plasmonic Lens as Miniature Circular Polarization Analyzer,” Opt. Lett. 34(20), 3047–3049 (2010).
[PubMed]

B. Yang, W. M. Ye, X. D. Yuan, Z. H. Zhu, and C. Zeng, “Design of ultrathin plasmonic quarter-wave plate based on period coupling,” Opt. Lett. 38(5), 679–681 (2013).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

A. F. Abouraddy and K. C. Toussaint., “Three-dimensional polarization control in microscopy,” Phys. Rev. Lett. 96(15), 153901 (2006).
[Crossref] [PubMed]

X. Xie, Y. Chen, K. Yang, and J. Zhou, “Harnessing the point-spread function for high-resolution far-field optical microscopy,” Phys. Rev. Lett. 113(26), 263901 (2014).
[Crossref] [PubMed]

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Remote preparation of single-photon “hybrid” entangled and vector-polarization States,” Phys. Rev. Lett. 105(3), 030407 (2010).
[Crossref] [PubMed]

Science (1)

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Other (2)

Q. Zhang, P. Y. Li, Y. Y. Li, X. R. Ren, and S. Y. Teng, “A universal plasmonic polarization state analyzer,” Plasmonics. in press.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The polarization transformation of the light beam through a rectangular hole, (a) linear polarization into circular polarization, (b) circular polarization into linear polarization
Fig. 2
Fig. 2 Distribution curves of Re(Ex) and Re(Ey) of a rectangular hole illuminated by (a) 45° linear polarization light, (b) −45° linear polarization light, (c) RCP light and (d) LCP light, and their corresponding phase distributions (e-h)
Fig. 3
Fig. 3 Schematic diagrams of VB generator (left) and the magnified part (right)
Fig. 4
Fig. 4 The azimuthal polarization generator (a) and its electric field distributions (b)-(d) with RCP illumination, and the radial polarization generator (e) and its electric field distributions (f)-(h) with LCP illumination
Fig. 5
Fig. 5 Two samples of VB generators (a, b), the experiment setup for the verification of the vector beam(c), and the measured results (d-i)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

T(α)=( cosα sinα sinα cosα )( 1 0 0 i )( cosα sinα sinα cosα )=( cos 2 α+i sin 2 α sinαcosα(1i) sinαcosα(1i) sin 2 α+i cos 2 α )
α=θ+π/4
E LCP 0 = 1 2 ( 1 i ), E RCP 0 = 1 2 ( 1 i )
{ E LCP 1 = e i(θ+π/4) ( cosθ sinθ ) E RCP 1 = e i(θ+π/4) ( sinθ cosθ )
{ E LCP = 0 2π e i k spp (ρ-r) e i π 4 e iθ ( cosθ sinθ )dθ E RCP = 0 2π e i k spp (ρ-r) e i π 4 e iθ ( sinθ cosθ )dθ
{ E LCP = B 1 i m e imβ ( J m ( k spp ρ) e i2β J (m+2) ( k spp ρ) i e i2β J m ( k spp ρ)+i J (m+2) ( k spp ρ) ) E RCP = B 2 i m e imβ ( i e i2β J (m2) ( k spp ρ)i J m ( k spp ρ) J m ( k spp ρ)+ e i2β J (m2) ( k spp ρ) )
{ E LCP J 1 ( k spp ρ)( cosβ sinβ ) E RCP J 1 ( k spp ρ)( sinβ cosβ )

Metrics