Abstract

Interferenceless coded aperture correlation holography is a recently developed technique for indirect 3D imaging of objects without two-wave interference. In such systems, the intensity response to a point is first recorded by modulating the light diffracted from a point object by a pseudorandom coded phase mask (CPM). The object intensity response is recorded under identical conditions and with the same CPM by mounting an object at the same axial location as of the point object. The image of the object is reconstructed by a cross-correlation between the above two responses. In the present study, the imaging capabilities of a system with partial apertures are demonstrated by synthesizing the CPM in the shape of a ring. The partial aperture system demonstrates 3D imaging capabilities with an area as low as 1.4% of the total aperture area, which is beyond the limits of a regular imaging system. These superior imaging capabilities of the new technique might be useful for imaging with ground and space telescopes.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Coded aperture correlation holography–a new type of incoherent digital holograms

A. Vijayakumar, Yuval Kashter, Roy Kelner, and Joseph Rosen
Opt. Express 24(11) 12430-12441 (2016)

Extending the field of view by a scattering window in an I-COACH system

Mani Ratnam Rai, A. Vijayakumar, and Joseph Rosen
Opt. Lett. 43(5) 1043-1046 (2018)

References

  • View by:
  • |
  • |
  • |

  1. O. Darrigol, A History of Optics from Greek Antiquity to the Nineteenth Century (OUP Oxford, 2012).
  2. G. S. Spagnolo and D. Ambrosini, “Successful pinhole photography,” Am. J. Phys. 65(3), 256–257 (1997).
  3. J. C. Marron and K. S. Schroeder, “Three-dimensional lensless imaging using laser frequency diversity,” Appl. Opt. 31(2), 255–262 (1992).
    [PubMed]
  4. A. Greenbaum, W. Luo, T.-W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
    [PubMed]
  5. J. Cheng, “Ghost imaging through turbulent atmosphere,” Opt. Express 17(10), 7916–7921 (2009).
    [PubMed]
  6. H. B. Edwards, “Lensless scanning telescope,” Appl. Opt. 19(4), 504–507 (1980).
    [PubMed]
  7. R. A. Hyde, “Eyeglass. 1. Very large aperture diffractive telescopes,” Appl. Opt. 38(19), 4198–4212 (1999).
    [PubMed]
  8. J. E. Harvey and C. Ftaclas, “Field-of-view limitations of phased telescope arrays,” Appl. Opt. 34(25), 5787–5798 (1995).
    [PubMed]
  9. J. E. Harvey, A. B. Wissinger, and A. N. Bunner, “A parametric study of various synthetic aperture telescope configurations for coherent imaging applications,” in Infrared, Adaptive, and Synthetic Aperture Optical Systems, J. S. Fender, R. B. Johnson, W. L. Wolfe, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 643, 194–207 (1986).
  10. A. A. Michelson, “On the application of interference methods to astronomical measurements,” Proc. Natl. Acad. Sci. U.S.A. 6(8), 474–475 (1920).
    [PubMed]
  11. R. Okayasu, M. Inoue, N. Kawaguchi, S. Kameno, K. Shibata, and Y. Asaki, “Space VLBI spacecraft HALCA and its engineering accomplishments,” Acta Astronaut. 50(5), 301–309 (2002).
  12. Y. Kashter, Y. Rivenson, A. Stern, and J. Rosen, “Sparse synthetic aperture with Fresnel elements (S-SAFE) using digital incoherent holograms,” Opt. Express 23(16), 20941–20960 (2015).
    [PubMed]
  13. B. Katz and J. Rosen, “Could SAFE concept be applied for designing a new synthetic aperture telescope?” Opt. Express 19(6), 4924–4936 (2011).
    [PubMed]
  14. J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32(8), 912–914 (2007).
    [PubMed]
  15. J. Rosen, N. Siegel, and G. Brooker, “Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging,” Opt. Express 19(27), 26249–26268 (2011).
    [PubMed]
  16. A. Vijayakumar, Y. Kashter, R. Kelner, and J. Rosen, “Coded aperture correlation holography-a new type of incoherent digital holograms,” Opt. Express 24(11), 12430–12441 (2016).
    [PubMed]
  17. A. Vijayakumar and J. Rosen, “Spectrum and space resolved 4D imaging by coded aperture correlation holography (COACH) with diffractive objective lens,” Opt. Lett. 42(5), 947–950 (2017).
    [PubMed]
  18. Y. Kashter, A. Vijayakumar, and J. Rosen, “Resolving images by blurring - a new superresolution method using a scattering mask between the observed objects and the hologram recorder,” Optica 4(8), 932–939 (2017).
  19. A. Vijayakumar and J. Rosen, “Interferenceless coded aperture correlation holography-a new technique for recording incoherent digital holograms without two-wave interference,” Opt. Express 25(12), 13883–13896 (2017).
    [PubMed]
  20. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 227–246 (1972).
  21. M. Kumar, A. Vijayakumar, and J. Rosen, “Incoherent digital holograms acquired by interferenceless coded aperture correlation holography system without refractive lenses,” Sci. Rep. 7(1), 11555 (2017).
    [PubMed]
  22. M. Ratnam Rai, A. Vijayakumar, and J. Rosen, “Single camera shot interferenceless coded aperture correlation holography,” Opt. Lett. 42(19), 3992–3995 (2017).
    [PubMed]
  23. A. Vijayakumar, Y. Kashter, R. Kelner, and J. Rosen, “Coded aperture correlation holography system with improved performance [Invited],” Appl. Opt. 56(13), F67–F77 (2017).
    [PubMed]
  24. Y. N. Sulai and A. Dubra, “Adaptive optics scanning ophthalmoscopy with annular pupils,” Biomed. Opt. Express 3(7), 1647–1661 (2012).
    [PubMed]
  25. C. J. R. Sheppard and T. Wilson, “Imaging properties of annular lenses,” Appl. Opt. 18(22), 3764–3769 (1979).
    [PubMed]
  26. Y. Horikawa, “Resolution of annular-pupil optical systems,” J. Opt. Soc. Am. A 11(7), 1985–1992 (1994).
    [PubMed]
  27. W. T. Welford, “Use of annular apertures to increase focal depth,” J. Opt. Soc. Am. 50(8), 749–753 (1960).
  28. I. L. Goldberg and A. W. McCulloch, “Annular aperture diffracted energy distribution for an extended source,” Appl. Opt. 8(7), 1451–1458 (1969).
    [PubMed]
  29. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
    [PubMed]

2017 (6)

2016 (1)

2015 (1)

2012 (2)

A. Greenbaum, W. Luo, T.-W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[PubMed]

Y. N. Sulai and A. Dubra, “Adaptive optics scanning ophthalmoscopy with annular pupils,” Biomed. Opt. Express 3(7), 1647–1661 (2012).
[PubMed]

2011 (2)

2009 (1)

2007 (1)

2004 (1)

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
[PubMed]

2002 (1)

R. Okayasu, M. Inoue, N. Kawaguchi, S. Kameno, K. Shibata, and Y. Asaki, “Space VLBI spacecraft HALCA and its engineering accomplishments,” Acta Astronaut. 50(5), 301–309 (2002).

1999 (1)

1997 (1)

G. S. Spagnolo and D. Ambrosini, “Successful pinhole photography,” Am. J. Phys. 65(3), 256–257 (1997).

1995 (1)

1994 (1)

1992 (1)

1980 (1)

1979 (1)

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 227–246 (1972).

1969 (1)

1960 (1)

1920 (1)

A. A. Michelson, “On the application of interference methods to astronomical measurements,” Proc. Natl. Acad. Sci. U.S.A. 6(8), 474–475 (1920).
[PubMed]

Ambrosini, D.

G. S. Spagnolo and D. Ambrosini, “Successful pinhole photography,” Am. J. Phys. 65(3), 256–257 (1997).

Asaki, Y.

R. Okayasu, M. Inoue, N. Kawaguchi, S. Kameno, K. Shibata, and Y. Asaki, “Space VLBI spacecraft HALCA and its engineering accomplishments,” Acta Astronaut. 50(5), 301–309 (2002).

Bovik, A. C.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
[PubMed]

Brooker, G.

Cheng, J.

Coskun, A. F.

A. Greenbaum, W. Luo, T.-W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[PubMed]

Dubra, A.

Edwards, H. B.

Ftaclas, C.

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 227–246 (1972).

Goldberg, I. L.

Göröcs, Z.

A. Greenbaum, W. Luo, T.-W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[PubMed]

Greenbaum, A.

A. Greenbaum, W. Luo, T.-W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[PubMed]

Harvey, J. E.

Horikawa, Y.

Hyde, R. A.

Inoue, M.

R. Okayasu, M. Inoue, N. Kawaguchi, S. Kameno, K. Shibata, and Y. Asaki, “Space VLBI spacecraft HALCA and its engineering accomplishments,” Acta Astronaut. 50(5), 301–309 (2002).

Isikman, S. O.

A. Greenbaum, W. Luo, T.-W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[PubMed]

Kameno, S.

R. Okayasu, M. Inoue, N. Kawaguchi, S. Kameno, K. Shibata, and Y. Asaki, “Space VLBI spacecraft HALCA and its engineering accomplishments,” Acta Astronaut. 50(5), 301–309 (2002).

Kashter, Y.

Katz, B.

Kawaguchi, N.

R. Okayasu, M. Inoue, N. Kawaguchi, S. Kameno, K. Shibata, and Y. Asaki, “Space VLBI spacecraft HALCA and its engineering accomplishments,” Acta Astronaut. 50(5), 301–309 (2002).

Kelner, R.

Kumar, M.

M. Kumar, A. Vijayakumar, and J. Rosen, “Incoherent digital holograms acquired by interferenceless coded aperture correlation holography system without refractive lenses,” Sci. Rep. 7(1), 11555 (2017).
[PubMed]

Luo, W.

A. Greenbaum, W. Luo, T.-W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[PubMed]

Marron, J. C.

McCulloch, A. W.

Michelson, A. A.

A. A. Michelson, “On the application of interference methods to astronomical measurements,” Proc. Natl. Acad. Sci. U.S.A. 6(8), 474–475 (1920).
[PubMed]

Mudanyali, O.

A. Greenbaum, W. Luo, T.-W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[PubMed]

Okayasu, R.

R. Okayasu, M. Inoue, N. Kawaguchi, S. Kameno, K. Shibata, and Y. Asaki, “Space VLBI spacecraft HALCA and its engineering accomplishments,” Acta Astronaut. 50(5), 301–309 (2002).

Ozcan, A.

A. Greenbaum, W. Luo, T.-W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[PubMed]

Ratnam Rai, M.

Rivenson, Y.

Rosen, J.

M. Ratnam Rai, A. Vijayakumar, and J. Rosen, “Single camera shot interferenceless coded aperture correlation holography,” Opt. Lett. 42(19), 3992–3995 (2017).
[PubMed]

Y. Kashter, A. Vijayakumar, and J. Rosen, “Resolving images by blurring - a new superresolution method using a scattering mask between the observed objects and the hologram recorder,” Optica 4(8), 932–939 (2017).

A. Vijayakumar and J. Rosen, “Spectrum and space resolved 4D imaging by coded aperture correlation holography (COACH) with diffractive objective lens,” Opt. Lett. 42(5), 947–950 (2017).
[PubMed]

A. Vijayakumar and J. Rosen, “Interferenceless coded aperture correlation holography-a new technique for recording incoherent digital holograms without two-wave interference,” Opt. Express 25(12), 13883–13896 (2017).
[PubMed]

M. Kumar, A. Vijayakumar, and J. Rosen, “Incoherent digital holograms acquired by interferenceless coded aperture correlation holography system without refractive lenses,” Sci. Rep. 7(1), 11555 (2017).
[PubMed]

A. Vijayakumar, Y. Kashter, R. Kelner, and J. Rosen, “Coded aperture correlation holography system with improved performance [Invited],” Appl. Opt. 56(13), F67–F77 (2017).
[PubMed]

A. Vijayakumar, Y. Kashter, R. Kelner, and J. Rosen, “Coded aperture correlation holography-a new type of incoherent digital holograms,” Opt. Express 24(11), 12430–12441 (2016).
[PubMed]

Y. Kashter, Y. Rivenson, A. Stern, and J. Rosen, “Sparse synthetic aperture with Fresnel elements (S-SAFE) using digital incoherent holograms,” Opt. Express 23(16), 20941–20960 (2015).
[PubMed]

B. Katz and J. Rosen, “Could SAFE concept be applied for designing a new synthetic aperture telescope?” Opt. Express 19(6), 4924–4936 (2011).
[PubMed]

J. Rosen, N. Siegel, and G. Brooker, “Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging,” Opt. Express 19(27), 26249–26268 (2011).
[PubMed]

J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32(8), 912–914 (2007).
[PubMed]

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 227–246 (1972).

Schroeder, K. S.

Sheikh, H. R.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
[PubMed]

Sheppard, C. J. R.

Shibata, K.

R. Okayasu, M. Inoue, N. Kawaguchi, S. Kameno, K. Shibata, and Y. Asaki, “Space VLBI spacecraft HALCA and its engineering accomplishments,” Acta Astronaut. 50(5), 301–309 (2002).

Siegel, N.

Simoncelli, E. P.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
[PubMed]

Spagnolo, G. S.

G. S. Spagnolo and D. Ambrosini, “Successful pinhole photography,” Am. J. Phys. 65(3), 256–257 (1997).

Stern, A.

Su, T.-W.

A. Greenbaum, W. Luo, T.-W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[PubMed]

Sulai, Y. N.

Vijayakumar, A.

Wang, Z.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
[PubMed]

Welford, W. T.

Wilson, T.

Xue, L.

A. Greenbaum, W. Luo, T.-W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[PubMed]

Acta Astronaut. (1)

R. Okayasu, M. Inoue, N. Kawaguchi, S. Kameno, K. Shibata, and Y. Asaki, “Space VLBI spacecraft HALCA and its engineering accomplishments,” Acta Astronaut. 50(5), 301–309 (2002).

Am. J. Phys. (1)

G. S. Spagnolo and D. Ambrosini, “Successful pinhole photography,” Am. J. Phys. 65(3), 256–257 (1997).

Appl. Opt. (7)

Biomed. Opt. Express (1)

IEEE Trans. Image Process. (1)

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
[PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Nat. Methods (1)

A. Greenbaum, W. Luo, T.-W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[PubMed]

Opt. Express (6)

Opt. Lett. (3)

Optica (1)

Optik (Stuttg.) (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 227–246 (1972).

Proc. Natl. Acad. Sci. U.S.A. (1)

A. A. Michelson, “On the application of interference methods to astronomical measurements,” Proc. Natl. Acad. Sci. U.S.A. 6(8), 474–475 (1920).
[PubMed]

Sci. Rep. (1)

M. Kumar, A. Vijayakumar, and J. Rosen, “Incoherent digital holograms acquired by interferenceless coded aperture correlation holography system without refractive lenses,” Sci. Rep. 7(1), 11555 (2017).
[PubMed]

Other (2)

O. Darrigol, A History of Optics from Greek Antiquity to the Nineteenth Century (OUP Oxford, 2012).

J. E. Harvey, A. B. Wissinger, and A. N. Bunner, “A parametric study of various synthetic aperture telescope configurations for coherent imaging applications,” in Infrared, Adaptive, and Synthetic Aperture Optical Systems, J. S. Fender, R. B. Johnson, W. L. Wolfe, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 643, 194–207 (1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 A scheme for the proposed future space telescope.
Fig. 2
Fig. 2 Optical configuration of PAIS for recording objects and PSFs.
Fig. 3
Fig. 3 Schematic of the GSA.
Fig. 4
Fig. 4 Experimental setup of PAIS with two illumination channels.
Fig. 5
Fig. 5 Photograph of the experimental setup of PAIS.
Fig. 6
Fig. 6 Intensity patterns, magnitude and phase of the complex holograms for the pinhole and the object, their reconstructions and regular imaging for ring widths 40 μm, 80 μm,160 μm, 400 μm and 4.3 mm (full aperture).
Fig. 7
Fig. 7 Top line: part of phase masks with CPMs displayed on the SLM. Middle line: the averaged reconstruction results of PAIS with 21 independent reconstructions. Lower line: regular imaging results for ring widths 40 μm, 80 μm, 160 μm, 400 μm and full aperture when the two resolution charts are placed at the same axial location.
Fig. 8
Fig. 8 Plot of the MSE of averaged reconstruction results (21 CPM sets) of PAIS for various ring widths.
Fig. 9
Fig. 9 Top line: SSIM index maps of the averaged reconstruction results of PAIS with 21 independent reconstructions. Lower line: SSIM index maps of regular imaging results for ring widths 40 μm, 80 μm, 160 μm, 400 μm and full aperture when the two resolution charts are placed at the same axial location while considering full aperture regular imaging as reference image.
Fig. 10
Fig. 10 Plot of the mean SSIM values for PAIS and regular imaging for ring widths 40 μm, 80 μm, 160 μm, 400 μm and full aperture.
Fig. 11
Fig. 11 Plot of the visibility of the gratings on the resolution chart for regular imaging and PAIS for ring widths of 40 μm, 80 μm, 160 μm and 400 μm.
Fig. 12
Fig. 12 Comparison of the averaged reconstruction results of PAIS with 17 samples and regular imaging results for ring widths 40 μm, 80 μm, 160 μm, 400 μm and full aperture when the two objects are separated by a distance of 1 cm.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I k ( r ¯ 0 ; r ¯ s , z s )=| α I s C 0 Q( 1 z s )L( r ¯ s z s )Q( - 1 f 1 )P( r ¯ )exp[ i Φ k ( r ¯ ) ]Q( - 1 z h ) *Q( 1 z h )| 2
I k ( r ¯ 0 ; r ¯ s , z s )= | ν[ 1 λ z h ] { α I s C 0 L( r ¯ s z s )Q( 1 z 1 )P( r ¯ )exp[ i Φ k ( r ¯ ) ] } | 2 = I k ( r ¯ 0 z h z s r ¯ s ;0, z s ),
o( r ¯ s )= j N a j δ( r ¯ s r ¯ j ) ,
I OBJ,k ( r ¯ 0 ; z s )= j a j I k ( r ¯ 0 z h z s r ¯ j ;0, z s ) ,
H PSF ( r ¯ 0 ; z s )= k=1 K I k ( r ¯ 0 ; z s )exp( i θ k ) ,
H OBJ ( r ¯ 0 ; z s )= k=1 K I OBJ,k ( r ¯ 0 ; z s )exp( i θ k ) = k=1 K j a j I k ( r ¯ 0 z h z s r ¯ j ;0, z s ) exp( i θ k ) = j a j H PSF ( r ¯ 0 z h z s r ¯ j ; z s ) ,
O R ( r ¯ R )= H OBJ ( r ¯ 0 ; z s ) H ˜ PSF * ( r ¯ 0 r ¯ R ; z s )d r ¯ 0 = j a j H PSF ( r ¯ 0 z h z s r ¯ j ; z s ) H ˜ PSF * ( r ¯ 0 r ¯ R ; z s )d r ¯ 0 = j a j Λ( r ¯ R z h z s r ¯ j ) o( r ¯ s M T ).
I RI ( r ¯ 0 ; r ¯ s , z s )= | ν[ 1 λ z h ] { α I s C 0 L( r ¯ s z s )Q( 1 z 1 )P( r ¯ ) } | 2 .
MSE= 1 MN m=1 M n=1 N | O RI ( m,n )γ O R ( m,n ) | 2 ,
γ= m=1 M n=1 N O RI ( m,n ) O R ( m,n ) m=1 M n=1 N | O R ( m,n ) | 2
SSIM( I 1 , I 2 )= ( 2 μ I 1 μ I 2 + C 1 )( 2 σ I 1 I 2 + C 2 ) ( μ I 1 2 + μ I 2 2 + C 1 )( σ I 1 2 + σ I 2 2 + C 2 ) ,

Metrics