Abstract

We implement Gaussian to flat-top beam shaping in a master oscillator power amplifier (MOPA) laser system by directing a Gaussian seed laser beam into a side-pumped laser amplifier via traveling-wave amplification. In theory, one can modulate the cross-sectional gain distribution of the working material in a laser amplifier by controlling its absorption coefficient and the distance between its center and a laser diode bar. In this work, this idea is realized using a side-pumped amplifier with a 15-mm-diameter Nd:YAG rod as the working material and 15 laser diode bars arranged around the rod as the pump. With this apparatus, a near-Gaussian signal laser beam, after being subjected to dual-pass amplification, was shaped to an eighth-order super-Gaussian flat-top distribution beam, while simultaneously amplifying the signal laser power from 10.7 mJ to 72.3 mJ.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-energy, high-repetition-rate picosecond pulses from a quasi-CW diode-pumped Nd:YAG system

Daniel W. E. Noom, Stefan Witte, Jonas Morgenweg, Robert K. Altmann, and Kjeld S. E. Eikema
Opt. Lett. 38(16) 3021-3023 (2013)

Compact diode stack end pumped Nd:YAG amplifier using core doped ceramics

Thomas Denis, Sven Hahn, Sandra Mebben, Ralf Wilhelm, Christian Kolleck, Jörg Neumann, and Dietmar Kracht
Appl. Opt. 49(5) 811-816 (2010)

Beam intensity reshaping by pump modification in a laser amplifier

Igor A. Litvin, Oliver J. P. Collet, Gary King, and Hencharl Strauss
Opt. Express 23(23) 30165-30176 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. Voelkel, U. Vogler, A. Bich, P. Pernet, K. J. Weible, M. Hornung, R. Zoberbier, E. Cullmann, L. Stuerzebecher, T. Harzendorf, and U. D. Zeitner, “Advanced mask aligner lithography: new illumination system,” Opt. Express 18(20), 20968–20978 (2010).
    [PubMed]
  2. V. V. Kotlyar, A. A. Kovalev, R. V. Skidanov, S. N. Khonina, and J. Turunen, “Generating hypergeometric laser beams with a diffractive optical element,” Appl. Opt. 47(32), 6124–6133 (2008).
    [PubMed]
  3. K. L. Baker, D. Homoelle, E. Utternback, E. A. Stappaerts, C. W. Siders, and C. P. J. Barty, “Interferometric adaptive optics testbed for laser pointing, wave-front control and phasing,” Opt. Express 17(19), 16696–16709 (2009).
    [PubMed]
  4. D. L. Shealy and S. H. Chao, “Design of GRIN laser beam shaping system,” Proc. SPIE 5525, 138–147 (2004).
  5. C. Wang and D. L. Shealy, “Design of gradient-index lens systems for laser beam reshaping,” Appl. Opt. 32(25), 4763–4769 (1993).
    [PubMed]
  6. J. A. Hoffnagle and C. M. Jefferson, “Design and performance of a refractive optical system that converts a Gaussian to a flattop beam,” Appl. Opt. 39(30), 5488–5499 (2000).
    [PubMed]
  7. J. J. Yang and M. R. Wang, “Analysis and optimization on single-zone binary flat-top beam shaper,” Opt. Eng. 42(11), 3106–3113 (2003).
  8. M. R. Taghizadeh, P. Blair, K. Balluder, A. J. Waddie, P. Rudman, and N. Ross, “Design and fabrication of diffractive elements for laser material processing applications,” Opt. Lasers Eng. 34(4–6), 289–307 (2000).
  9. T. Z. Zhao, J. Yu, C. Y. Li, K. Huang, Y. M. Ma, X. X. Tang, and Z. W. Fan, “Beam shaping and compensation for high-gain Nd:glass amplification,” J. Mod. Opt. 60(2), 109–115 (2012).
  10. A. Piccardi, U. Bortolozzo, S. Residori, and G. Assanto, “Spatial solitons in liquid-crystal light valves,” Opt. Lett. 34(6), 737–739 (2009).
    [PubMed]
  11. Y.-X. Ren, M. Li, K. Huang, J.-G. Wu, H.-F. Gao, Z.-Q. Wang, and Y.-M. Li, “Experimental generation of Laguerre-Gaussian beam using digital micromirror device,” Appl. Opt. 49(10), 1838–1844 (2010).
    [PubMed]
  12. Y. Park, M. Kulishov, R. Slavík, and J. Azaña, “Picosecond and sub-picosecond flat-top pulse generation using uniform long-period fiber gratings,” Opt. Express 14(26), 12670–12678 (2006).
    [PubMed]
  13. H. T. Eyyuboglu, C. Arpali, and Y. K. Baykal, “Flat topped beams and their characteristics in turbulent media,” Opt. Express 14(10), 4196–4207 (2006).
    [PubMed]
  14. I. A. Litvin, O. J. P. Collet, G. King, and H. Strauss, “Beam intensity reshaping by pump modification in a laser amplifier,” Opt. Express 23(23), 30165–30176 (2015).
    [PubMed]
  15. T. Z. Zhao, H. Xiao, K. Huang, and Z. W. Fan, “Simulation and experimental implement of beam-shaping in a side-pumped Nd:YAG amplifier,” Proc. SPIE 9673, 967303 (2015).
  16. W. Koechner, Solid-State Laser Engineering, 5th Edition (Berlin, Springer, 1999).
  17. Y. J. Kaufman and U. P. Oppenheim, “Rate Equations of High Gain Lasers and Determination of Laser Parameters,” Appl. Opt. 13(2), 374–378 (1974).
    [PubMed]
  18. Z. Xiang, D. Wang, S. Pan, Y. Dong, Z. Zhao, T. Li, J. Ge, C. Liu, and J. Chen, “Beam quality improvement by gain guiding effect in end-pumped Nd:YVO4 laser amplifiers,” Opt. Express 19(21), 21060–21073 (2011).
    [PubMed]

2015 (2)

I. A. Litvin, O. J. P. Collet, G. King, and H. Strauss, “Beam intensity reshaping by pump modification in a laser amplifier,” Opt. Express 23(23), 30165–30176 (2015).
[PubMed]

T. Z. Zhao, H. Xiao, K. Huang, and Z. W. Fan, “Simulation and experimental implement of beam-shaping in a side-pumped Nd:YAG amplifier,” Proc. SPIE 9673, 967303 (2015).

2012 (1)

T. Z. Zhao, J. Yu, C. Y. Li, K. Huang, Y. M. Ma, X. X. Tang, and Z. W. Fan, “Beam shaping and compensation for high-gain Nd:glass amplification,” J. Mod. Opt. 60(2), 109–115 (2012).

2011 (1)

2010 (2)

2009 (2)

2008 (1)

2006 (2)

2004 (1)

D. L. Shealy and S. H. Chao, “Design of GRIN laser beam shaping system,” Proc. SPIE 5525, 138–147 (2004).

2003 (1)

J. J. Yang and M. R. Wang, “Analysis and optimization on single-zone binary flat-top beam shaper,” Opt. Eng. 42(11), 3106–3113 (2003).

2000 (2)

M. R. Taghizadeh, P. Blair, K. Balluder, A. J. Waddie, P. Rudman, and N. Ross, “Design and fabrication of diffractive elements for laser material processing applications,” Opt. Lasers Eng. 34(4–6), 289–307 (2000).

J. A. Hoffnagle and C. M. Jefferson, “Design and performance of a refractive optical system that converts a Gaussian to a flattop beam,” Appl. Opt. 39(30), 5488–5499 (2000).
[PubMed]

1993 (1)

1974 (1)

Arpali, C.

Assanto, G.

Azaña, J.

Baker, K. L.

Balluder, K.

M. R. Taghizadeh, P. Blair, K. Balluder, A. J. Waddie, P. Rudman, and N. Ross, “Design and fabrication of diffractive elements for laser material processing applications,” Opt. Lasers Eng. 34(4–6), 289–307 (2000).

Barty, C. P. J.

Baykal, Y. K.

Bich, A.

Blair, P.

M. R. Taghizadeh, P. Blair, K. Balluder, A. J. Waddie, P. Rudman, and N. Ross, “Design and fabrication of diffractive elements for laser material processing applications,” Opt. Lasers Eng. 34(4–6), 289–307 (2000).

Bortolozzo, U.

Chao, S. H.

D. L. Shealy and S. H. Chao, “Design of GRIN laser beam shaping system,” Proc. SPIE 5525, 138–147 (2004).

Chen, J.

Collet, O. J. P.

Cullmann, E.

Dong, Y.

Eyyuboglu, H. T.

Fan, Z. W.

T. Z. Zhao, H. Xiao, K. Huang, and Z. W. Fan, “Simulation and experimental implement of beam-shaping in a side-pumped Nd:YAG amplifier,” Proc. SPIE 9673, 967303 (2015).

T. Z. Zhao, J. Yu, C. Y. Li, K. Huang, Y. M. Ma, X. X. Tang, and Z. W. Fan, “Beam shaping and compensation for high-gain Nd:glass amplification,” J. Mod. Opt. 60(2), 109–115 (2012).

Gao, H.-F.

Ge, J.

Harzendorf, T.

Hoffnagle, J. A.

Homoelle, D.

Hornung, M.

Huang, K.

T. Z. Zhao, H. Xiao, K. Huang, and Z. W. Fan, “Simulation and experimental implement of beam-shaping in a side-pumped Nd:YAG amplifier,” Proc. SPIE 9673, 967303 (2015).

T. Z. Zhao, J. Yu, C. Y. Li, K. Huang, Y. M. Ma, X. X. Tang, and Z. W. Fan, “Beam shaping and compensation for high-gain Nd:glass amplification,” J. Mod. Opt. 60(2), 109–115 (2012).

Y.-X. Ren, M. Li, K. Huang, J.-G. Wu, H.-F. Gao, Z.-Q. Wang, and Y.-M. Li, “Experimental generation of Laguerre-Gaussian beam using digital micromirror device,” Appl. Opt. 49(10), 1838–1844 (2010).
[PubMed]

Jefferson, C. M.

Kaufman, Y. J.

Khonina, S. N.

King, G.

Kotlyar, V. V.

Kovalev, A. A.

Kulishov, M.

Li, C. Y.

T. Z. Zhao, J. Yu, C. Y. Li, K. Huang, Y. M. Ma, X. X. Tang, and Z. W. Fan, “Beam shaping and compensation for high-gain Nd:glass amplification,” J. Mod. Opt. 60(2), 109–115 (2012).

Li, M.

Li, T.

Li, Y.-M.

Litvin, I. A.

Liu, C.

Ma, Y. M.

T. Z. Zhao, J. Yu, C. Y. Li, K. Huang, Y. M. Ma, X. X. Tang, and Z. W. Fan, “Beam shaping and compensation for high-gain Nd:glass amplification,” J. Mod. Opt. 60(2), 109–115 (2012).

Oppenheim, U. P.

Pan, S.

Park, Y.

Pernet, P.

Piccardi, A.

Ren, Y.-X.

Residori, S.

Ross, N.

M. R. Taghizadeh, P. Blair, K. Balluder, A. J. Waddie, P. Rudman, and N. Ross, “Design and fabrication of diffractive elements for laser material processing applications,” Opt. Lasers Eng. 34(4–6), 289–307 (2000).

Rudman, P.

M. R. Taghizadeh, P. Blair, K. Balluder, A. J. Waddie, P. Rudman, and N. Ross, “Design and fabrication of diffractive elements for laser material processing applications,” Opt. Lasers Eng. 34(4–6), 289–307 (2000).

Shealy, D. L.

D. L. Shealy and S. H. Chao, “Design of GRIN laser beam shaping system,” Proc. SPIE 5525, 138–147 (2004).

C. Wang and D. L. Shealy, “Design of gradient-index lens systems for laser beam reshaping,” Appl. Opt. 32(25), 4763–4769 (1993).
[PubMed]

Siders, C. W.

Skidanov, R. V.

Slavík, R.

Stappaerts, E. A.

Strauss, H.

Stuerzebecher, L.

Taghizadeh, M. R.

M. R. Taghizadeh, P. Blair, K. Balluder, A. J. Waddie, P. Rudman, and N. Ross, “Design and fabrication of diffractive elements for laser material processing applications,” Opt. Lasers Eng. 34(4–6), 289–307 (2000).

Tang, X. X.

T. Z. Zhao, J. Yu, C. Y. Li, K. Huang, Y. M. Ma, X. X. Tang, and Z. W. Fan, “Beam shaping and compensation for high-gain Nd:glass amplification,” J. Mod. Opt. 60(2), 109–115 (2012).

Turunen, J.

Utternback, E.

Voelkel, R.

Vogler, U.

Waddie, A. J.

M. R. Taghizadeh, P. Blair, K. Balluder, A. J. Waddie, P. Rudman, and N. Ross, “Design and fabrication of diffractive elements for laser material processing applications,” Opt. Lasers Eng. 34(4–6), 289–307 (2000).

Wang, C.

Wang, D.

Wang, M. R.

J. J. Yang and M. R. Wang, “Analysis and optimization on single-zone binary flat-top beam shaper,” Opt. Eng. 42(11), 3106–3113 (2003).

Wang, Z.-Q.

Weible, K. J.

Wu, J.-G.

Xiang, Z.

Xiao, H.

T. Z. Zhao, H. Xiao, K. Huang, and Z. W. Fan, “Simulation and experimental implement of beam-shaping in a side-pumped Nd:YAG amplifier,” Proc. SPIE 9673, 967303 (2015).

Yang, J. J.

J. J. Yang and M. R. Wang, “Analysis and optimization on single-zone binary flat-top beam shaper,” Opt. Eng. 42(11), 3106–3113 (2003).

Yu, J.

T. Z. Zhao, J. Yu, C. Y. Li, K. Huang, Y. M. Ma, X. X. Tang, and Z. W. Fan, “Beam shaping and compensation for high-gain Nd:glass amplification,” J. Mod. Opt. 60(2), 109–115 (2012).

Zeitner, U. D.

Zhao, T. Z.

T. Z. Zhao, H. Xiao, K. Huang, and Z. W. Fan, “Simulation and experimental implement of beam-shaping in a side-pumped Nd:YAG amplifier,” Proc. SPIE 9673, 967303 (2015).

T. Z. Zhao, J. Yu, C. Y. Li, K. Huang, Y. M. Ma, X. X. Tang, and Z. W. Fan, “Beam shaping and compensation for high-gain Nd:glass amplification,” J. Mod. Opt. 60(2), 109–115 (2012).

Zhao, Z.

Zoberbier, R.

Appl. Opt. (5)

J. Mod. Opt. (1)

T. Z. Zhao, J. Yu, C. Y. Li, K. Huang, Y. M. Ma, X. X. Tang, and Z. W. Fan, “Beam shaping and compensation for high-gain Nd:glass amplification,” J. Mod. Opt. 60(2), 109–115 (2012).

Opt. Eng. (1)

J. J. Yang and M. R. Wang, “Analysis and optimization on single-zone binary flat-top beam shaper,” Opt. Eng. 42(11), 3106–3113 (2003).

Opt. Express (6)

Opt. Lasers Eng. (1)

M. R. Taghizadeh, P. Blair, K. Balluder, A. J. Waddie, P. Rudman, and N. Ross, “Design and fabrication of diffractive elements for laser material processing applications,” Opt. Lasers Eng. 34(4–6), 289–307 (2000).

Opt. Lett. (1)

Proc. SPIE (2)

D. L. Shealy and S. H. Chao, “Design of GRIN laser beam shaping system,” Proc. SPIE 5525, 138–147 (2004).

T. Z. Zhao, H. Xiao, K. Huang, and Z. W. Fan, “Simulation and experimental implement of beam-shaping in a side-pumped Nd:YAG amplifier,” Proc. SPIE 9673, 967303 (2015).

Other (1)

W. Koechner, Solid-State Laser Engineering, 5th Edition (Berlin, Springer, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental side-pump amplifier structure and beam shaping scheme. (a) Structure of 15 LD bars uniformly arranged side-pump amplifier; (b) Directly shaping a Gaussian seed laser beam into a flat-top output laser beam with the Nd:YAG amplifier.
Fig. 2
Fig. 2 Influence of absorption coefficient on absorbed pump energy distribution. Top row: cross-sectional absorbed pump energy distribution of the rod. Bottom row: absorbed pump energy density distribution through the center of the rod with the cross section located at the center of the rod along its length. Absorption coefficient and adoption concentration: (a) 0.230 mm−1, 0.4 at%; (b) 0.287 mm−1, 0.6 at%; (c) 0.361 mm−1, 0.8 at%; (d) 0.453 mm−1, 1.0 at%.
Fig. 3
Fig. 3 Simulation results of the absorbed pump energy distribution in the cross-section of a 15-mm-diameter, 1.0 at% Nd:YAG rod in a side pumped amplifier. Pump radii are: (a) 15 mm; (b) 19 mm; (c) 23 mm; (d) 27 mm.
Fig. 4
Fig. 4 Fluorescence distribution at different pump central wavelength. (a) 804 nm; (b) 805 nm; (c) 806 nm; (d) 807 nm; (e) 808 nm.
Fig. 5
Fig. 5 Experimental scheme of Gaussian to flat-top beam shaping with dual-pass amplification.
Fig. 6
Fig. 6 Experimental results of the near-field distribution for Gaussian to flat-top beam shaping with simultaneous amplification. Working current: (a) 0 A; (b) 125 A; (c) 150 A; (d) 175 A; (e) 200 A.
Fig. 7
Fig. 7 Fits of the cross-sectional distribution of (a) seed laser beam; (b) amplified beam with working current of 150 A.
Fig. 8
Fig. 8 Experimental results of the far-field spot for Gaussian to flat-top beam shaping with simultaneous amplification. (a) seed without amplification; (b) amplified beam with working current of 150 A.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

E in (r)= e 2( r 2 R 2 ) E in (0)
G(r)= E out (r) E in (r)
G(r)= E in (0) E in (r) G(0)
G(r)= E S E in (r) ln{ 1+[ exp( E in (r) E S )1 ] e g 0 (r)L }
E S = hν γσ = E ST (r) γ g 0 (r)
G(r) G(0) = E in (0)ln{ 1+[ exp( E in (r) E S )1 ] e g 0 (r)L } E in (r)ln{ 1+[ exp( E in (0) E S )1 ] e g 0 (0)L } = e 2( r 2 R 2 )
[ exp( E in (r) E S )1 ] e g 0 (r)L =[ exp( E in (0) E S )1 ] e g 0 (0)L
g 0 (r)= 1 L ln[ exp( E in (0) E S )1 exp( E in (r) E S )1 ]+ g 0 (0)
E in (r) E S <<1
G(r) e g 0 (r)L
G(r) G(0) = e [ g 0 (r) g 0 (0)]L = e 2( r 2 R 2 )
g 0 (r)= 2 L ( r 2 R 2 )+ g 0 (0)
E ST (r)= η T η A η S η Q η B η ST η ASE τ f ρ P (r)
ρ P (r)= dP dV
g 0 (r)= η T η A η S η Q η B η ST η ASE τ f E S γ ρ P (r)
ρ P (r)= E S γ η T η A η S η Q η B η ST η ASE τ f 1 L ln[ exp( E in (0) E S )1 exp( E in (r) E S )1 ]+ ρ P (0)
ρ P (r)= E S γ η T η A η S η Q η B η ST η ASE τ f 2 L ( r 2 R 2 )+ ρ P (0)
y=a e ( xb c ) n

Metrics