Abstract

Simple structures are always a pursuit but sometimes not easily attainable. It took researchers nearly two decades for conceiving the structure of single-ring hollow-core negative curvature fiber (NCF). Recently NCF eventually approaches to the centre of intense study in fiber optics. The reason behind this slow-pace development is, undoubtfully, its inexplicit guidance mechanism. This paper aims at gaining a clear physical insight into the optical guidance mechanism in NCF. To clarify the origins of light confinement, we boldly disassemble the NCF structure into several layers and develop a multi-layered model. Four physical origins, namely single-path Fresnel transmission through cascaded interfaces, near-grazing incidence, multi-path interference caused by Fresnel reflection, and glass wall shape are revealed and their individual contributions are quantified for the first time. Such an elegant model could not only elucidate the optical guidance in existing types of hollow-core fibers but also assist in design of novel structure for new functions.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid transmission bands and large birefringence in hollow-core anti-resonant fibers

Wei Ding and Ying-Ying Wang
Opt. Express 23(16) 21165-21174 (2015)

Characterization of a liquid-filled nodeless anti-resonant fiber for biochemical sensing

Xiao-lu Liu, Wei Ding, Ying-ying Wang, Shou-fei Gao, Ling Cao, Xian Feng, and Pu Wang
Opt. Lett. 42(4) 863-866 (2017)

Thin chalcogenide capillaries as efficient waveguides from mid-infrared to terahertz

Anna Mazhorova, Andrey Markov, Bora Ung, Mathieu Rozé, Stepan Gorgutsa, and Maksim Skorobogatiy
J. Opt. Soc. Am. B 29(8) 2116-2123 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
    [Crossref] [PubMed]
  2. P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
    [Crossref] [PubMed]
  3. B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4(2), 209–217 (2017).
    [Crossref]
  4. P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, and P. St. J. Russell, “Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes,” Opt. Lett. 41(9), 1961–1964 (2016).
    [Crossref] [PubMed]
  5. J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightwave Technol. 35(3), 437–442 (2017).
    [Crossref]
  6. M. Michieletto, J. K. Lyngsø, C. Jakobsen, J. Lægsgaard, O. Bang, and T. T. Alkeskjold, “Hollow-core fibers for high power pulse delivery,” Opt. Express 24(7), 7103–7119 (2016).
    [Crossref] [PubMed]
  7. S. F. Gao, Y. Y. Wang, X. L. Liu, C. Hong, S. Gu, and P. Wang, “Nodeless hollow-core fiber for the visible spectral range,” Opt. Lett. 42(1), 61–64 (2017).
    [Crossref] [PubMed]
  8. P. Jaworski, F. Yu, R. R. J. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications,” Opt. Express 21(19), 22742–22753 (2013).
    [Crossref] [PubMed]
  9. Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gérôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
    [Crossref]
  10. U. Elu, M. Baudisch, H. Pires, F. Tani, M. H. Frosz, F. Köttig, A. Ermolov, P. St. J. Russell, and J. Biegert, “High average power and single-cycle pulses from a mid-IR optical parametric chirped pulse amplifier,” Optica 4, 1024–1029 (2017).
    [Crossref]
  11. T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gérôme, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
    [Crossref] [PubMed]
  12. F. Köttig, F. Tani, C. M. Biersach, J. C. Travers, and P. St. J. Russell, “Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates,” Optica 4(10), 1272–1276 (2017).
    [Crossref]
  13. F. Amrani, F. Delahaye, B. Debord, L. L. Alves, F. Gerome, and F. Benabid, “Gas mixture for deep-UV plasma emission in a hollow-core photonic crystal fiber,” Opt. Lett. 42(17), 3363–3366 (2017).
    [Crossref] [PubMed]
  14. M. R. A. Hassan, F. Yu, W. J. Wadsworth, and J. C. Knight, “Cavity-based mid-IR fiber gas laser pumped by a diode laser,” Optica 3(3), 218–221 (2016).
    [Crossref]
  15. A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst (Lond.) 142(6), 925–929 (2017).
    [Crossref] [PubMed]
  16. X. L. Liu, W. Ding, Y. Y. Wang, S. F. Gao, L. Cao, X. Feng, and P. Wang, “Characterization of a liquid-filled nodeless anti-resonant fiber for biochemical sensing,” Opt. Lett. 42(4), 863–866 (2017).
    [Crossref] [PubMed]
  17. S. Okaba, T. Takano, F. Benabid, T. Bradley, L. Vincetti, Z. Maizelis, V. Yampol’skii, F. Nori, and H. Katori, “Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre,” Nat. Commun. 5, 4096 (2014).
    [Crossref] [PubMed]
  18. R. R. Gattass, D. Rhonehouse, D. Gibson, C. C. McClain, R. Thapa, V. Q. Nguyen, S. S. Bayya, R. J. Weiblen, C. R. Menyuk, L. B. Shaw, and J. S. Sanghera, “Infrared glass-based negative-curvature anti-resonant fibers fabricated through extrusion,” Opt. Express 24(22), 25697–25703 (2016).
    [Crossref] [PubMed]
  19. J. Yang, J. Zhao, C. Gong, H. Tian, L. Sun, P. Chen, L. Lin, and W. Liu, “3D printed low-loss THz waveguide based on Kagome photonic crystal structure,” Opt. Express 24(20), 22454–22460 (2016).
    [Crossref] [PubMed]
  20. F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
    [Crossref] [PubMed]
  21. T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-d photonic bandgaps in silica/air structures,” Electron. Lett. 31(22), 1941–1943 (1995).
    [Crossref]
  22. P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
    [Crossref] [PubMed]
  23. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
    [Crossref] [PubMed]
  24. F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58(2), 87–124 (2011).
    [Crossref]
  25. Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shape Kagome hollow-core PCF,” in Conference on Lasers and Electro-Optics (CLEO, 2010), paper CPDB4.
    [Crossref]
  26. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
    [Crossref] [PubMed]
  27. Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37(15), 3111–3113 (2012).
    [Crossref] [PubMed]
  28. B. Debord, M. Maurel, A. Amsanpally, M. Adnan, B. Beaudou, J. M. Blondy, L. Vincetti, F. Gerome, and F. Benabid, “Ultra-low loss (8.5 dB/km @ Yb-laser wavelength range) inhibited-coupling Kagome HC-PCF for laser beam delivery applications,” Proc. SPIE 10094, 100941M (2017).
    [Crossref]
  29. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
    [Crossref] [PubMed]
  30. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
    [Crossref] [PubMed]
  31. A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
    [Crossref] [PubMed]
  32. A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Hollow-core revolver fibre with a double-capillary reflective cladding,” Quantum Electron. 46(3), 267–270 (2016).
    [Crossref]
  33. A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Double antiresonant hollow core fiber--guidance in the deep ultraviolet by modified tunneling leaky modes,” Opt. Express 22(16), 19131–19140 (2014).
    [Crossref] [PubMed]
  34. E. Marcatili and R. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
    [Crossref]
  35. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68(9), 1196–1201 (1978).
    [Crossref]
  36. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
    [Crossref] [PubMed]
  37. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
    [Crossref] [PubMed]
  38. L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010).
    [Crossref] [PubMed]
  39. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St. J. Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15(20), 12680–12685 (2007).
    [Crossref] [PubMed]
  40. W. Ding and Y. Wang, “Analytic model for light guidance in single-wall hollow-core anti-resonant fibers,” Opt. Express 22(22), 27242–27256 (2014).
    [Crossref] [PubMed]
  41. W. Ding and Y. Wang, “Semi-analytical model for hollow-core anti-resonant fibers,” Front. Phys. 3, 16 (2015).
    [Crossref]
  42. A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Double antiresonant hollow core fiber-guidance in the deep ultraviolet by modified tunneling leaky modes,” Opt. Express 22(16), 19131–19140 (2014).
    [Crossref] [PubMed]
  43. A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Origins of modal loss of antiresonant hollow-core optical fibers in the ultraviolet,” Opt. Express 23(3), 2557–2565 (2015).
    [Crossref] [PubMed]
  44. D. Bird, “Attenuation of model hollow-core, anti-resonant fibres,” Opt. Express 25(19), 23215–23237 (2017).
    [Crossref] [PubMed]
  45. M. Zeisberger and M. A. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Sci. Rep. 7(1), 11761 (2017).
    [Crossref] [PubMed]
  46. S. F. Gao, Y. Y. Wang, X. L. Liu, W. Ding, and P. Wang, “Bending loss characterization in nodeless hollow-core anti-resonant fiber,” Opt. Express 24(13), 14801–14811 (2016).
    [Crossref] [PubMed]
  47. D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, 1991).
  48. J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photonics 1(1), 58–106 (2009).
    [Crossref]
  49. J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23(2), 1289–1299 (2015).
    [Crossref] [PubMed]
  50. W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22(8), 10091–10096 (2014).
    [Crossref] [PubMed]
  51. C. Wei, C. R. Menyuk, and J. Hu, “Impact of cladding tubes in chalcogenide negative curvature fibers,” IEEE Photonics J. 8(3), 2200509 (2016).
    [Crossref]
  52. S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
    [Crossref]
  53. L. Vincetti and V. Setti, “Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes,” Opt. Express 20(13), 14350–14361 (2012).
    [Crossref] [PubMed]
  54. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed. (Cambridge University, 1999).
  55. W. Ding and Y. Y. Wang, “Hybrid transmission bands and large birefringence in hollow-core anti-resonant fibers,” Opt. Express 23(16), 21165–21174 (2015).
    [Crossref] [PubMed]
  56. M. I. Hasan, N. Akhmediev, and W. Chang, “Positive and negative curvatures nested in an antiresonant hollow-core fiber,” Opt. Lett. 42(4), 703–706 (2017).
    [Crossref] [PubMed]
  57. M. S. Habib, O. Bang, and M. Bache, “Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements,” Opt. Express 24(8), 8429–8436 (2016).
    [Crossref] [PubMed]
  58. F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 7100211 (2017).
    [Crossref]

2017 (13)

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4(2), 209–217 (2017).
[Crossref]

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightwave Technol. 35(3), 437–442 (2017).
[Crossref]

S. F. Gao, Y. Y. Wang, X. L. Liu, C. Hong, S. Gu, and P. Wang, “Nodeless hollow-core fiber for the visible spectral range,” Opt. Lett. 42(1), 61–64 (2017).
[Crossref] [PubMed]

U. Elu, M. Baudisch, H. Pires, F. Tani, M. H. Frosz, F. Köttig, A. Ermolov, P. St. J. Russell, and J. Biegert, “High average power and single-cycle pulses from a mid-IR optical parametric chirped pulse amplifier,” Optica 4, 1024–1029 (2017).
[Crossref]

F. Köttig, F. Tani, C. M. Biersach, J. C. Travers, and P. St. J. Russell, “Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates,” Optica 4(10), 1272–1276 (2017).
[Crossref]

F. Amrani, F. Delahaye, B. Debord, L. L. Alves, F. Gerome, and F. Benabid, “Gas mixture for deep-UV plasma emission in a hollow-core photonic crystal fiber,” Opt. Lett. 42(17), 3363–3366 (2017).
[Crossref] [PubMed]

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst (Lond.) 142(6), 925–929 (2017).
[Crossref] [PubMed]

X. L. Liu, W. Ding, Y. Y. Wang, S. F. Gao, L. Cao, X. Feng, and P. Wang, “Characterization of a liquid-filled nodeless anti-resonant fiber for biochemical sensing,” Opt. Lett. 42(4), 863–866 (2017).
[Crossref] [PubMed]

B. Debord, M. Maurel, A. Amsanpally, M. Adnan, B. Beaudou, J. M. Blondy, L. Vincetti, F. Gerome, and F. Benabid, “Ultra-low loss (8.5 dB/km @ Yb-laser wavelength range) inhibited-coupling Kagome HC-PCF for laser beam delivery applications,” Proc. SPIE 10094, 100941M (2017).
[Crossref]

D. Bird, “Attenuation of model hollow-core, anti-resonant fibres,” Opt. Express 25(19), 23215–23237 (2017).
[Crossref] [PubMed]

M. Zeisberger and M. A. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Sci. Rep. 7(1), 11761 (2017).
[Crossref] [PubMed]

M. I. Hasan, N. Akhmediev, and W. Chang, “Positive and negative curvatures nested in an antiresonant hollow-core fiber,” Opt. Lett. 42(4), 703–706 (2017).
[Crossref] [PubMed]

F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 7100211 (2017).
[Crossref]

2016 (9)

M. S. Habib, O. Bang, and M. Bache, “Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements,” Opt. Express 24(8), 8429–8436 (2016).
[Crossref] [PubMed]

S. F. Gao, Y. Y. Wang, X. L. Liu, W. Ding, and P. Wang, “Bending loss characterization in nodeless hollow-core anti-resonant fiber,” Opt. Express 24(13), 14801–14811 (2016).
[Crossref] [PubMed]

C. Wei, C. R. Menyuk, and J. Hu, “Impact of cladding tubes in chalcogenide negative curvature fibers,” IEEE Photonics J. 8(3), 2200509 (2016).
[Crossref]

A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Hollow-core revolver fibre with a double-capillary reflective cladding,” Quantum Electron. 46(3), 267–270 (2016).
[Crossref]

M. R. A. Hassan, F. Yu, W. J. Wadsworth, and J. C. Knight, “Cavity-based mid-IR fiber gas laser pumped by a diode laser,” Optica 3(3), 218–221 (2016).
[Crossref]

R. R. Gattass, D. Rhonehouse, D. Gibson, C. C. McClain, R. Thapa, V. Q. Nguyen, S. S. Bayya, R. J. Weiblen, C. R. Menyuk, L. B. Shaw, and J. S. Sanghera, “Infrared glass-based negative-curvature anti-resonant fibers fabricated through extrusion,” Opt. Express 24(22), 25697–25703 (2016).
[Crossref] [PubMed]

J. Yang, J. Zhao, C. Gong, H. Tian, L. Sun, P. Chen, L. Lin, and W. Liu, “3D printed low-loss THz waveguide based on Kagome photonic crystal structure,” Opt. Express 24(20), 22454–22460 (2016).
[Crossref] [PubMed]

M. Michieletto, J. K. Lyngsø, C. Jakobsen, J. Lægsgaard, O. Bang, and T. T. Alkeskjold, “Hollow-core fibers for high power pulse delivery,” Opt. Express 24(7), 7103–7119 (2016).
[Crossref] [PubMed]

P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, and P. St. J. Russell, “Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes,” Opt. Lett. 41(9), 1961–1964 (2016).
[Crossref] [PubMed]

2015 (5)

2014 (6)

2013 (3)

2012 (3)

2011 (3)

2010 (1)

2009 (1)

J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photonics 1(1), 58–106 (2009).
[Crossref]

2007 (2)

G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St. J. Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15(20), 12680–12685 (2007).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

2005 (1)

2003 (1)

P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

2002 (2)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
[Crossref] [PubMed]

2001 (1)

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[Crossref]

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

1995 (1)

T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-d photonic bandgaps in silica/air structures,” Electron. Lett. 31(22), 1941–1943 (1995).
[Crossref]

1978 (1)

1964 (1)

E. Marcatili and R. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Abeeluck, A. K.

Abokhamis, M. S.

Adnan, M.

B. Debord, M. Maurel, A. Amsanpally, M. Adnan, B. Beaudou, J. M. Blondy, L. Vincetti, F. Gerome, and F. Benabid, “Ultra-low loss (8.5 dB/km @ Yb-laser wavelength range) inhibited-coupling Kagome HC-PCF for laser beam delivery applications,” Proc. SPIE 10094, 100941M (2017).
[Crossref]

Ahmed, G.

Akhmediev, N.

Alagashev, G. K.

A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Hollow-core revolver fibre with a double-capillary reflective cladding,” Quantum Electron. 46(3), 267–270 (2016).
[Crossref]

Alharbi, M.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gérôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37(15), 3111–3113 (2012).
[Crossref] [PubMed]

Alkeskjold, T. T.

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Alves, L. L.

Amrani, F.

Amsanpally, A.

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4(2), 209–217 (2017).
[Crossref]

B. Debord, M. Maurel, A. Amsanpally, M. Adnan, B. Beaudou, J. M. Blondy, L. Vincetti, F. Gerome, and F. Benabid, “Ultra-low loss (8.5 dB/km @ Yb-laser wavelength range) inhibited-coupling Kagome HC-PCF for laser beam delivery applications,” Proc. SPIE 10094, 100941M (2017).
[Crossref]

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Atkin, D. M.

T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-d photonic bandgaps in silica/air structures,” Electron. Lett. 31(22), 1941–1943 (1995).
[Crossref]

Bache, M.

Baddela, N. K.

Balciunas, T.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gérôme, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

Baltuska, A.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gérôme, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

Bang, O.

Baudisch, M.

Bayya, S. S.

Baz, A.

Beaudou, B.

B. Debord, M. Maurel, A. Amsanpally, M. Adnan, B. Beaudou, J. M. Blondy, L. Vincetti, F. Gerome, and F. Benabid, “Ultra-low loss (8.5 dB/km @ Yb-laser wavelength range) inhibited-coupling Kagome HC-PCF for laser beam delivery applications,” Proc. SPIE 10094, 100941M (2017).
[Crossref]

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gérôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

Belardi, W.

Benabid, F.

B. Debord, M. Maurel, A. Amsanpally, M. Adnan, B. Beaudou, J. M. Blondy, L. Vincetti, F. Gerome, and F. Benabid, “Ultra-low loss (8.5 dB/km @ Yb-laser wavelength range) inhibited-coupling Kagome HC-PCF for laser beam delivery applications,” Proc. SPIE 10094, 100941M (2017).
[Crossref]

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4(2), 209–217 (2017).
[Crossref]

F. Amrani, F. Delahaye, B. Debord, L. L. Alves, F. Gerome, and F. Benabid, “Gas mixture for deep-UV plasma emission in a hollow-core photonic crystal fiber,” Opt. Lett. 42(17), 3363–3366 (2017).
[Crossref] [PubMed]

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gérôme, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

S. Okaba, T. Takano, F. Benabid, T. Bradley, L. Vincetti, Z. Maizelis, V. Yampol’skii, F. Nori, and H. Katori, “Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre,” Nat. Commun. 5, 4096 (2014).
[Crossref] [PubMed]

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gérôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37(15), 3111–3113 (2012).
[Crossref] [PubMed]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58(2), 87–124 (2011).
[Crossref]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Biegert, J.

Bierlich, J.

Biersach, C. M.

Bird, D.

Biriukov, A. S.

Birks, T.

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-d photonic bandgaps in silica/air structures,” Electron. Lett. 31(22), 1941–1943 (1995).
[Crossref]

Biryukov, A. S.

A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Hollow-core revolver fibre with a double-capillary reflective cladding,” Quantum Electron. 46(3), 267–270 (2016).
[Crossref]

Blondy, J. M.

B. Debord, M. Maurel, A. Amsanpally, M. Adnan, B. Beaudou, J. M. Blondy, L. Vincetti, F. Gerome, and F. Benabid, “Ultra-low loss (8.5 dB/km @ Yb-laser wavelength range) inhibited-coupling Kagome HC-PCF for laser beam delivery applications,” Proc. SPIE 10094, 100941M (2017).
[Crossref]

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4(2), 209–217 (2017).
[Crossref]

Booth, T.

Bradley, T.

S. Okaba, T. Takano, F. Benabid, T. Bradley, L. Vincetti, Z. Maizelis, V. Yampol’skii, F. Nori, and H. Katori, “Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre,” Nat. Commun. 5, 4096 (2014).
[Crossref] [PubMed]

Bradley, T. D.

Bufetov, I. A.

A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Hollow-core revolver fibre with a double-capillary reflective cladding,” Quantum Electron. 46(3), 267–270 (2016).
[Crossref]

Burger, S.

Cao, L.

Chafer, M.

Chang, W.

Chen, P.

Chen, Y.

Couny, F.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Cubillas, A. M.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst (Lond.) 142(6), 925–929 (2017).
[Crossref] [PubMed]

Cucinotta, A.

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[Crossref]

Debord, B.

F. Amrani, F. Delahaye, B. Debord, L. L. Alves, F. Gerome, and F. Benabid, “Gas mixture for deep-UV plasma emission in a hollow-core photonic crystal fiber,” Opt. Lett. 42(17), 3363–3366 (2017).
[Crossref] [PubMed]

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4(2), 209–217 (2017).
[Crossref]

B. Debord, M. Maurel, A. Amsanpally, M. Adnan, B. Beaudou, J. M. Blondy, L. Vincetti, F. Gerome, and F. Benabid, “Ultra-low loss (8.5 dB/km @ Yb-laser wavelength range) inhibited-coupling Kagome HC-PCF for laser beam delivery applications,” Proc. SPIE 10094, 100941M (2017).
[Crossref]

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gérôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

Delahaye, F.

Dianov, E. M.

Ding, W.

Dutin, C. F.

Edavalath, N. N.

Eggleton, B. J.

Elu, U.

Ermolov, A.

Etzold, B. J. M.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst (Lond.) 142(6), 925–929 (2017).
[Crossref] [PubMed]

Euser, T. G.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst (Lond.) 142(6), 925–929 (2017).
[Crossref] [PubMed]

Fan, G.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gérôme, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

Farr, L.

Feng, X.

Fokoua, E. N.

Fourcade-Dutin, C.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gérôme, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gérôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

Frosch, T.

Frosz, M. H.

Gao, S. F.

Gattass, R. R.

Gerome, F.

F. Amrani, F. Delahaye, B. Debord, L. L. Alves, F. Gerome, and F. Benabid, “Gas mixture for deep-UV plasma emission in a hollow-core photonic crystal fiber,” Opt. Lett. 42(17), 3363–3366 (2017).
[Crossref] [PubMed]

B. Debord, M. Maurel, A. Amsanpally, M. Adnan, B. Beaudou, J. M. Blondy, L. Vincetti, F. Gerome, and F. Benabid, “Ultra-low loss (8.5 dB/km @ Yb-laser wavelength range) inhibited-coupling Kagome HC-PCF for laser beam delivery applications,” Proc. SPIE 10094, 100941M (2017).
[Crossref]

Gérôme, F.

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4(2), 209–217 (2017).
[Crossref]

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gérôme, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gérôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37(15), 3111–3113 (2012).
[Crossref] [PubMed]

Gibson, D.

Gong, C.

Gouveia, M. A.

Gu, S.

Günendi, M. C.

Habib, M. S.

Hand, D. P.

Hartung, A.

Hasan, M. I.

Hassan, M. R. A.

Hayes, J. R.

Headley, C.

Hong, C.

Hu, J.

C. Wei, C. R. Menyuk, and J. Hu, “Impact of cladding tubes in chalcogenide negative curvature fibers,” IEEE Photonics J. 8(3), 2200509 (2016).
[Crossref]

J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photonics 1(1), 58–106 (2009).
[Crossref]

Hu, M.

F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 7100211 (2017).
[Crossref]

Hugonnot, E.

Jakobsen, C.

Jasion, G.

Jaworski, P.

Jiang, X.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst (Lond.) 142(6), 925–929 (2017).
[Crossref] [PubMed]

Katori, H.

S. Okaba, T. Takano, F. Benabid, T. Bradley, L. Vincetti, Z. Maizelis, V. Yampol’skii, F. Nori, and H. Katori, “Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre,” Nat. Commun. 5, 4096 (2014).
[Crossref] [PubMed]

Knight, J.

Knight, J. C.

Kobelke, J.

Kolyadin, A. N.

A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Hollow-core revolver fibre with a double-capillary reflective cladding,” Quantum Electron. 46(3), 267–270 (2016).
[Crossref]

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
[Crossref] [PubMed]

Kosolapov, A. F.

Köttig, F.

Lægsgaard, J.

Li, Y.

F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 7100211 (2017).
[Crossref]

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Lin, L.

Litchinitser, N. M.

Liu, B.

F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 7100211 (2017).
[Crossref]

Liu, W.

Liu, X. L.

Liu, Z.

Lyngsø, J. K.

Maier, R. R. J.

Maizelis, Z.

S. Okaba, T. Takano, F. Benabid, T. Bradley, L. Vincetti, Z. Maizelis, V. Yampol’skii, F. Nori, and H. Katori, “Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre,” Nat. Commun. 5, 4096 (2014).
[Crossref] [PubMed]

Mangan, B.

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Marcatili, E.

E. Marcatili and R. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Marom, E.

Mason, M.

Maurel, M.

B. Debord, M. Maurel, A. Amsanpally, M. Adnan, B. Beaudou, J. M. Blondy, L. Vincetti, F. Gerome, and F. Benabid, “Ultra-low loss (8.5 dB/km @ Yb-laser wavelength range) inhibited-coupling Kagome HC-PCF for laser beam delivery applications,” Proc. SPIE 10094, 100941M (2017).
[Crossref]

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4(2), 209–217 (2017).
[Crossref]

McClain, C. C.

Ménard, J.-M.

Meng, F.

F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 7100211 (2017).
[Crossref]

Menyuk, C. R.

C. Wei, C. R. Menyuk, and J. Hu, “Impact of cladding tubes in chalcogenide negative curvature fibers,” IEEE Photonics J. 8(3), 2200509 (2016).
[Crossref]

R. R. Gattass, D. Rhonehouse, D. Gibson, C. C. McClain, R. Thapa, V. Q. Nguyen, S. S. Bayya, R. J. Weiblen, C. R. Menyuk, L. B. Shaw, and J. S. Sanghera, “Infrared glass-based negative-curvature anti-resonant fibers fabricated through extrusion,” Opt. Express 24(22), 25697–25703 (2016).
[Crossref] [PubMed]

J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photonics 1(1), 58–106 (2009).
[Crossref]

Michieletto, M.

Mielke, M.

Nguyen, V. Q.

Nori, F.

S. Okaba, T. Takano, F. Benabid, T. Bradley, L. Vincetti, Z. Maizelis, V. Yampol’skii, F. Nori, and H. Katori, “Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre,” Nat. Commun. 5, 4096 (2014).
[Crossref] [PubMed]

Okaba, S.

S. Okaba, T. Takano, F. Benabid, T. Bradley, L. Vincetti, Z. Maizelis, V. Yampol’skii, F. Nori, and H. Katori, “Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre,” Nat. Commun. 5, 4096 (2014).
[Crossref] [PubMed]

Paulus, G. G.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gérôme, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

Pearce, G. J.

Peng, X.

Petrovich, M. N.

Pires, H.

Plotnichenko, V. G.

Poletti, F.

Popp, J.

Poulton, C. G.

Pryamikov, A. D.

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Rhonehouse, D.

Richardson, D. J.

Roberts, P.

Roberts, P. J.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58(2), 87–124 (2011).
[Crossref]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-d photonic bandgaps in silica/air structures,” Electron. Lett. 31(22), 1941–1943 (1995).
[Crossref]

Russell, P.

P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Russell, P. S. J.

T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-d photonic bandgaps in silica/air structures,” Electron. Lett. 31(22), 1941–1943 (1995).
[Crossref]

Russell, P. St. J.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst (Lond.) 142(6), 925–929 (2017).
[Crossref] [PubMed]

U. Elu, M. Baudisch, H. Pires, F. Tani, M. H. Frosz, F. Köttig, A. Ermolov, P. St. J. Russell, and J. Biegert, “High average power and single-cycle pulses from a mid-IR optical parametric chirped pulse amplifier,” Optica 4, 1024–1029 (2017).
[Crossref]

F. Köttig, F. Tani, C. M. Biersach, J. C. Travers, and P. St. J. Russell, “Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates,” Optica 4(10), 1272–1276 (2017).
[Crossref]

P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, and P. St. J. Russell, “Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes,” Opt. Lett. 41(9), 1961–1964 (2016).
[Crossref] [PubMed]

G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St. J. Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15(20), 12680–12685 (2007).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Sabert, H.

Sandoghchi, S. R.

Sanghera, J. S.

Schmeltzer, R.

E. Marcatili and R. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Schmidt, M. A.

Schwuchow, A.

Scol, F.

Selleri, S.

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[Crossref]

Semjonov, S. L.

Setti, V.

Shaw, L. B.

Shephard, J. D.

Shepherd, T. J.

T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-d photonic bandgaps in silica/air structures,” Electron. Lett. 31(22), 1941–1943 (1995).
[Crossref]

Slavik, R.

St J Russell, P.

Sun, L.

Taccardi, N.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst (Lond.) 142(6), 925–929 (2017).
[Crossref] [PubMed]

Takano, T.

S. Okaba, T. Takano, F. Benabid, T. Bradley, L. Vincetti, Z. Maizelis, V. Yampol’skii, F. Nori, and H. Katori, “Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre,” Nat. Commun. 5, 4096 (2014).
[Crossref] [PubMed]

Tani, F.

Thapa, R.

Tian, H.

Tomlinson, A.

Travers, J. C.

Uebel, P.

Vincetti, L.

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4(2), 209–217 (2017).
[Crossref]

B. Debord, M. Maurel, A. Amsanpally, M. Adnan, B. Beaudou, J. M. Blondy, L. Vincetti, F. Gerome, and F. Benabid, “Ultra-low loss (8.5 dB/km @ Yb-laser wavelength range) inhibited-coupling Kagome HC-PCF for laser beam delivery applications,” Proc. SPIE 10094, 100941M (2017).
[Crossref]

S. Okaba, T. Takano, F. Benabid, T. Bradley, L. Vincetti, Z. Maizelis, V. Yampol’skii, F. Nori, and H. Katori, “Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre,” Nat. Commun. 5, 4096 (2014).
[Crossref] [PubMed]

L. Vincetti and V. Setti, “Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes,” Opt. Express 20(13), 14350–14361 (2012).
[Crossref] [PubMed]

L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010).
[Crossref] [PubMed]

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[Crossref]

Voronin, A. A.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gérôme, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

Wadsworth, W. J.

Wang, C.

F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 7100211 (2017).
[Crossref]

Wang, P.

Wang, Y.

W. Ding and Y. Wang, “Semi-analytical model for hollow-core anti-resonant fibers,” Front. Phys. 3, 16 (2015).
[Crossref]

W. Ding and Y. Wang, “Analytic model for light guidance in single-wall hollow-core anti-resonant fibers,” Opt. Express 22(22), 27242–27256 (2014).
[Crossref] [PubMed]

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gérôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

Wang, Y. Y.

Wasserscheid, P.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst (Lond.) 142(6), 925–929 (2017).
[Crossref] [PubMed]

Wei, C.

C. Wei, C. R. Menyuk, and J. Hu, “Impact of cladding tubes in chalcogenide negative curvature fibers,” IEEE Photonics J. 8(3), 2200509 (2016).
[Crossref]

Weiblen, R. J.

Wheeler, N. V.

Wiederhecker, G. S.

Williams, D.

Witting, T.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gérôme, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

Wondraczek, K.

Yampol’skii, V.

S. Okaba, T. Takano, F. Benabid, T. Bradley, L. Vincetti, Z. Maizelis, V. Yampol’skii, F. Nori, and H. Katori, “Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre,” Nat. Commun. 5, 4096 (2014).
[Crossref] [PubMed]

Yang, J.

Yariv, A.

Yeh, P.

Yu, F.

Zeisberger, M.

M. Zeisberger and M. A. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Sci. Rep. 7(1), 11761 (2017).
[Crossref] [PubMed]

Zhao, J.

Zheltikov, A. M.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gérôme, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

Zoboli, M.

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[Crossref]

Adv. Opt. Photonics (1)

J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photonics 1(1), 58–106 (2009).
[Crossref]

Analyst (Lond.) (1)

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst (Lond.) 142(6), 925–929 (2017).
[Crossref] [PubMed]

Bell Syst. Tech. J. (1)

E. Marcatili and R. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Electron. Lett. (1)

T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-d photonic bandgaps in silica/air structures,” Electron. Lett. 31(22), 1941–1943 (1995).
[Crossref]

Front. Phys. (1)

W. Ding and Y. Wang, “Semi-analytical model for hollow-core anti-resonant fibers,” Front. Phys. 3, 16 (2015).
[Crossref]

High Power Laser Sci. Eng. (1)

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gérôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

IEEE Photonics J. (2)

C. Wei, C. R. Menyuk, and J. Hu, “Impact of cladding tubes in chalcogenide negative curvature fibers,” IEEE Photonics J. 8(3), 2200509 (2016).
[Crossref]

F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 7100211 (2017).
[Crossref]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58(2), 87–124 (2011).
[Crossref]

J. Opt. Soc. Am. (1)

Nat. Commun. (2)

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gérôme, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

S. Okaba, T. Takano, F. Benabid, T. Bradley, L. Vincetti, Z. Maizelis, V. Yampol’skii, F. Nori, and H. Katori, “Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre,” Nat. Commun. 5, 4096 (2014).
[Crossref] [PubMed]

Opt. Express (22)

R. R. Gattass, D. Rhonehouse, D. Gibson, C. C. McClain, R. Thapa, V. Q. Nguyen, S. S. Bayya, R. J. Weiblen, C. R. Menyuk, L. B. Shaw, and J. S. Sanghera, “Infrared glass-based negative-curvature anti-resonant fibers fabricated through extrusion,” Opt. Express 24(22), 25697–25703 (2016).
[Crossref] [PubMed]

J. Yang, J. Zhao, C. Gong, H. Tian, L. Sun, P. Chen, L. Lin, and W. Liu, “3D printed low-loss THz waveguide based on Kagome photonic crystal structure,” Opt. Express 24(20), 22454–22460 (2016).
[Crossref] [PubMed]

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
[Crossref] [PubMed]

M. Michieletto, J. K. Lyngsø, C. Jakobsen, J. Lægsgaard, O. Bang, and T. T. Alkeskjold, “Hollow-core fibers for high power pulse delivery,” Opt. Express 24(7), 7103–7119 (2016).
[Crossref] [PubMed]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
[Crossref] [PubMed]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref] [PubMed]

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
[Crossref] [PubMed]

P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[Crossref] [PubMed]

M. S. Habib, O. Bang, and M. Bache, “Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements,” Opt. Express 24(8), 8429–8436 (2016).
[Crossref] [PubMed]

W. Ding and Y. Y. Wang, “Hybrid transmission bands and large birefringence in hollow-core anti-resonant fibers,” Opt. Express 23(16), 21165–21174 (2015).
[Crossref] [PubMed]

L. Vincetti and V. Setti, “Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes,” Opt. Express 20(13), 14350–14361 (2012).
[Crossref] [PubMed]

J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23(2), 1289–1299 (2015).
[Crossref] [PubMed]

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22(8), 10091–10096 (2014).
[Crossref] [PubMed]

S. F. Gao, Y. Y. Wang, X. L. Liu, W. Ding, and P. Wang, “Bending loss characterization in nodeless hollow-core anti-resonant fiber,” Opt. Express 24(13), 14801–14811 (2016).
[Crossref] [PubMed]

A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Double antiresonant hollow core fiber-guidance in the deep ultraviolet by modified tunneling leaky modes,” Opt. Express 22(16), 19131–19140 (2014).
[Crossref] [PubMed]

A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Origins of modal loss of antiresonant hollow-core optical fibers in the ultraviolet,” Opt. Express 23(3), 2557–2565 (2015).
[Crossref] [PubMed]

D. Bird, “Attenuation of model hollow-core, anti-resonant fibres,” Opt. Express 25(19), 23215–23237 (2017).
[Crossref] [PubMed]

P. Jaworski, F. Yu, R. R. J. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications,” Opt. Express 21(19), 22742–22753 (2013).
[Crossref] [PubMed]

A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Double antiresonant hollow core fiber--guidance in the deep ultraviolet by modified tunneling leaky modes,” Opt. Express 22(16), 19131–19140 (2014).
[Crossref] [PubMed]

L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010).
[Crossref] [PubMed]

G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St. J. Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15(20), 12680–12685 (2007).
[Crossref] [PubMed]

W. Ding and Y. Wang, “Analytic model for light guidance in single-wall hollow-core anti-resonant fibers,” Opt. Express 22(22), 27242–27256 (2014).
[Crossref] [PubMed]

Opt. Lett. (8)

M. I. Hasan, N. Akhmediev, and W. Chang, “Positive and negative curvatures nested in an antiresonant hollow-core fiber,” Opt. Lett. 42(4), 703–706 (2017).
[Crossref] [PubMed]

X. L. Liu, W. Ding, Y. Y. Wang, S. F. Gao, L. Cao, X. Feng, and P. Wang, “Characterization of a liquid-filled nodeless anti-resonant fiber for biochemical sensing,” Opt. Lett. 42(4), 863–866 (2017).
[Crossref] [PubMed]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37(15), 3111–3113 (2012).
[Crossref] [PubMed]

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
[Crossref] [PubMed]

S. F. Gao, Y. Y. Wang, X. L. Liu, C. Hong, S. Gu, and P. Wang, “Nodeless hollow-core fiber for the visible spectral range,” Opt. Lett. 42(1), 61–64 (2017).
[Crossref] [PubMed]

P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, and P. St. J. Russell, “Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes,” Opt. Lett. 41(9), 1961–1964 (2016).
[Crossref] [PubMed]

F. Amrani, F. Delahaye, B. Debord, L. L. Alves, F. Gerome, and F. Benabid, “Gas mixture for deep-UV plasma emission in a hollow-core photonic crystal fiber,” Opt. Lett. 42(17), 3363–3366 (2017).
[Crossref] [PubMed]

Opt. Quantum Electron. (1)

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[Crossref]

Optica (4)

Proc. SPIE (1)

B. Debord, M. Maurel, A. Amsanpally, M. Adnan, B. Beaudou, J. M. Blondy, L. Vincetti, F. Gerome, and F. Benabid, “Ultra-low loss (8.5 dB/km @ Yb-laser wavelength range) inhibited-coupling Kagome HC-PCF for laser beam delivery applications,” Proc. SPIE 10094, 100941M (2017).
[Crossref]

Quantum Electron. (1)

A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Hollow-core revolver fibre with a double-capillary reflective cladding,” Quantum Electron. 46(3), 267–270 (2016).
[Crossref]

Sci. Rep. (1)

M. Zeisberger and M. A. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Sci. Rep. 7(1), 11761 (2017).
[Crossref] [PubMed]

Science (4)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Other (3)

Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shape Kagome hollow-core PCF,” in Conference on Lasers and Electro-Optics (CLEO, 2010), paper CPDB4.
[Crossref]

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed. (Cambridge University, 1999).

D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 A schematic drawing of multi-layered slab structures showing how the transmitted ray from the core to the outside is exponentially decayed. The outermost transmitted ray forms the attenuation of the core mode as it propagates in the z direction. N is the number of interfaces. θ z and Θ z stand for the glancing angles in the air and the glass layers respectively.
Fig. 2
Fig. 2 Figure-of-merit (FOM) of ARROW effect as a function of transverse normalized frequencies U glass and U air . In the first row the Y-axis is 2 1Re ( n eff ) 2 /λ . From the top to the bottom row, the maximum FOM is sequentially increased by roughly 6dB for each anti-resonant layer.
Fig. 3
Fig. 3 Calculated and simulated attenuation spectra of annular fiber and NCF with the interface numbers N = 1, 2, 3, 4 respectively. The geometrical parameters are list. For the NCF, the core diameter is measured as the maximum inscribed circle. The variations of loss figure are indicated at 800 nm. Note that one spectrum of NCF, the blue curve (N = 2), shows fast undulations from 1000 to 1400 nm due to the Fano resonances introduced at the breaking ends because of the truncation of the glass tube.
Fig. 4
Fig. 4 (a,c) Simulated phase contours of the electric field for different fiber structures and (b,d) their effects on CL. In (a), the color bar is from −120° to −180°. The phases inside the core regions are uniformly 0° and are left in white. One can see that the phase contours of −180° (in dark blue and at the edges of the white color regions) exactly follow the outermost boundaries of glass walls. (c) is plotted in similar way. In (b) and (d), the simulated attenuation spectra are given and all these structures have identical modal indices (not shown).
Fig. 5
Fig. 5 Comparison of annular fiber and NCF with the interface number N = 5. (a) and (c) denote the parameters d2 and g. (b) and (d) respectively show the cases of d2 = 0.3 μm for annular fiber and g = −0.24 μm for practical NCF when the 8 tubes merge into the jacket. (e) and (f) plot their attenuation spectra for varying d2 and g.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

{ T s I = T s ' T s = T s '' T s ' 4sin θ z 1 n 2 1 (sPol.) T p I = T p ' T p = T p '' T p ' 4sin θ z ( 1 n 2 1 + n 2 1 ) (pPol.) .
T ¯ I = T s + T p 2I ( 4sin θ z ) N 2 { ( 1 n 2 1 ) N + ( n 2 n 2 1 ) N }.
FOM(dB)=10 log 10 { α fiber α capillary ( 4sin θ z n 2 1 ) N+1 1+ n 2 1+ n 2N }.
n 1 sin i i = n 2 sin i 2 , { I s (r) I s = | sin( i 1 i 2 ) sin( i 1 + i 2 ) | 2 I p (r) I p = | tan( i 1 i 2 ) tan( i 1 + i 2 ) | 2 , { I s (t) I s =1 I s (r) I s I p (t) I p =1 I p (r) I p .
α[ dB/m ] 10 aln10 ( u 01 λ 2πa ) N+1 { ( 1 n 2 1 ) N + ( n 2 n 2 1 ) N } i=1 N1 1 sin 2 ϕ i .

Metrics