Abstract

In recent years, the compound eye imaging system has attracted great attention due to its fascinating optical features such as large field of view (FOV), small volume and high acuity to moving objects. However, it is still a big challenge to fabricate such a whole system due to the mismatch between the spherical compound eye imaging element and the planar imaging sensor. In this work, we demonstrate a kind of hemispherical compound eye camera (SCECam) which analogs the eye of the fruit fly. The SCECam consists of three sub-systems, a hemispherical compound eye, an optical relay system and a commercial CMOS imaging sensor. By introducing an intermediate optical relay system, the curved focal plane after the compound eye can be transformed and projected onto the planar focal plane of the imaging sensor. In this way, the SCECam can realize a large FOV (up to 122.4°) with 4400 ommatidia, which makes it possible to detect and locate fast moving objects at a very fast speed. It is calculated that the recognition speed of the SCECam is two to three orders of magnitude higher than those conventional methods such as the Canny and Log edge-detection methods.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
COMPU-EYE: a high resolution computational compound eye

Woong-Bi Lee, Hwanchol Jang, Sangjun Park, Young Min Song, and Heung-No Lee
Opt. Express 24(3) 2013-2026 (2016)

Bionic compound eye for 3D motion detection using an optical freeform surface

Kuo Pang, Fengzhou Fang, Le Song, Yue Zhang, and Haoyang Zhang
J. Opt. Soc. Am. B 34(5) B28-B35 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. F. Land and R. D. Fernald, “The Evolution of Eyes,” Annu. Rev. Neurosci. 15, 1–29 (1992).
    [PubMed]
  2. K. Moses, “Evolutionary biology: Fly eyes get the whole picture,” Nature 443(7112), 638–639 (2006).
    [PubMed]
  3. L. P. Lee and R. Szema, “Inspirations from biological optics for advanced photonic systems,” Science 310(5751), 1148–1150 (2005).
    [PubMed]
  4. K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
    [PubMed]
  5. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin Observation Module by Bound Optics (TOMBO): Concept and Experimental Verification,” Appl. Opt. 40(11), 1806–1813 (2001).
    [PubMed]
  6. J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Artificial apposition compound eye fabricated by micro-optics technology,” Appl. Opt. 43(22), 4303–4310 (2004).
    [PubMed]
  7. K. Venkataraman, D. Lelescu, J. Duparre, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “PiCam: An Ultra-Thin High Performance Monolithic Camera Array,” ACM Trans. Graph. 32, 166 (2013).
  8. H. W. Liu, F. Chen, Q. Yang, P. B. Qu, S. G. He, X. H. Wang, J. H. Si, and X. Hou, “Fabrication of bioinspired omnidirectional and gapless microlens array for wide field-of-view detections,” Appl. Phys. Lett. 100, 133701 (2012).
  9. W. K. Kuo, G. F. Kuo, S. Y. Lin, and H. H. Yu, “Fabrication and characterization of artificial miniaturized insect compound eyes for imaging,” Bioinspir. Biomim. 10(5), 056010 (2015).
    [PubMed]
  10. J. Chen, J. Cheng, D. Zhang, and S.-C. Chen, “Precision UV imprinting system for parallel fabrication of large-area micro-lens arrays on non-planar surfaces,” Precis. Eng. 44, 70–74 (2016).
  11. Z. Deng, F. Chen, Q. Yang, H. Bian, G. Du, J. Yong, C. Shan, and X. Hou, “Dragonfly-Eye-Inspired Artificial Compound Eyes with Sophisticated Imaging,” Adv. Funct. Mater. 26, 1995–2001 (2016).
  12. J. Chen, H. H. Lee, D. Wang, S. Di, and S. C. Chen, “Hybrid imprinting process to fabricate a multi-layer compound eye for multispectral imaging,” Opt. Express 25(4), 4180–4189 (2017).
    [PubMed]
  13. J. Huang, X. Wang, and Z. L. Wang, “Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes,” Nanotechnology 19(2), 025602 (2008).
    [PubMed]
  14. J. W. Leem and J. S. Yu, “Artificial inverted compound eye structured polymer films with light-harvesting and self-cleaning functions for encapsulated III–V solar cell applications,” RSC Advances 5, 60804–60813 (2015).
  15. L. Wang, H. Liu, W. Jiang, R. Li, F. Li, Z. Yang, L. Yin, Y. Shi, and B. Chen, “Capillary number encouraged the construction of smart biomimetic eyes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 5896–5902 (2015).
  16. Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
    [PubMed]
  17. D. Floreano, R. Pericet-Camara, S. Viollet, F. Ruffier, A. Brückner, R. Leitel, W. Buss, M. Menouni, F. Expert, R. Juston, M. K. Dobrzynski, G. L’Eplattenier, F. Recktenwald, H. A. Mallot, and N. Franceschini, “Miniature curved artificial compound eyes,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9267–9272 (2013).
    [PubMed]
  18. A. Kapustjansky, L. Chittka, and J. Spaethe, “Bees use three-dimensional information to improve target detection,” Naturwissenschaften 97(2), 229–233 (2010).
    [PubMed]
  19. M. Giurfa, G. Zaccardi, and M. Vorobyev, “How bees detect coloured targets using different regions of their compound eyes,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 185, 591–600 (1999).
  20. K. Nordström, P. D. Barnett, and D. C. O’Carroll, “Insect detection of small targets moving in visual clutter,” PLoS Biol. 4(3), e54 (2006).
    [PubMed]
  21. J. Plett, A. Bahl, M. Buss, K. Kühnlenz, and A. Borst, “Bio-inspired visual ego-rotation sensor for MAVs,” Biol. Cybern. 106(1), 51–63 (2012).
    [PubMed]
  22. E. Baird and M. Dacke, “Visual flight control in naturalistic and artificial environments,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 198(12), 869–876 (2012).
    [PubMed]
  23. N. Linander, M. Dacke, and E. Baird, “Bumblebees measure optic flow for position and speed control flexibly within the frontal visual field,” J. Exp. Biol. 218(Pt 7), 1051–1059 (2015).
    [PubMed]
  24. T. Reber, A. Vähäkainu, E. Baird, M. Weckström, E. Warrant, and M. Dacke, “Effect of light intensity on flight control and temporal properties of photoreceptors in bumblebees,” J. Exp. Biol. 218(Pt 9), 1339–1346 (2015).
    [PubMed]
  25. M. J. Wang, T. S. Wang, H. H. Shen, J. L. Zhao, Z. Y. Zhang, J. L. Du, and W. X. Yu, “Subtle control on hierarchic reflow for the simple and massive fabrication of biomimetic compound eye arrays in polymers for imaging at a large field of view,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4, 108–112 (2016).
  26. K. Nordström, “Neural specializations for small target detection in insects,” Curr. Opin. Neurobiol. 22(2), 272–278 (2012).
    [PubMed]
  27. B. R. Geurten, K. Nordström, J. D. Sprayberry, D. M. Bolzon, and D. C. O’Carroll, “Neural mechanisms underlying target detection in a dragonfly centrifugal neuron,” J. Exp. Biol. 210(Pt 18), 3277–3284 (2007).
    [PubMed]
  28. S. D. Wiederman, P. A. Shoemaker, and D. C. O’Carroll, “A model for the detection of moving targets in visual clutter inspired by insect physiology,” PLoS One 3(7), e2784 (2008).
    [PubMed]

2017 (1)

2016 (3)

J. Chen, J. Cheng, D. Zhang, and S.-C. Chen, “Precision UV imprinting system for parallel fabrication of large-area micro-lens arrays on non-planar surfaces,” Precis. Eng. 44, 70–74 (2016).

Z. Deng, F. Chen, Q. Yang, H. Bian, G. Du, J. Yong, C. Shan, and X. Hou, “Dragonfly-Eye-Inspired Artificial Compound Eyes with Sophisticated Imaging,” Adv. Funct. Mater. 26, 1995–2001 (2016).

M. J. Wang, T. S. Wang, H. H. Shen, J. L. Zhao, Z. Y. Zhang, J. L. Du, and W. X. Yu, “Subtle control on hierarchic reflow for the simple and massive fabrication of biomimetic compound eye arrays in polymers for imaging at a large field of view,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4, 108–112 (2016).

2015 (5)

N. Linander, M. Dacke, and E. Baird, “Bumblebees measure optic flow for position and speed control flexibly within the frontal visual field,” J. Exp. Biol. 218(Pt 7), 1051–1059 (2015).
[PubMed]

T. Reber, A. Vähäkainu, E. Baird, M. Weckström, E. Warrant, and M. Dacke, “Effect of light intensity on flight control and temporal properties of photoreceptors in bumblebees,” J. Exp. Biol. 218(Pt 9), 1339–1346 (2015).
[PubMed]

W. K. Kuo, G. F. Kuo, S. Y. Lin, and H. H. Yu, “Fabrication and characterization of artificial miniaturized insect compound eyes for imaging,” Bioinspir. Biomim. 10(5), 056010 (2015).
[PubMed]

J. W. Leem and J. S. Yu, “Artificial inverted compound eye structured polymer films with light-harvesting and self-cleaning functions for encapsulated III–V solar cell applications,” RSC Advances 5, 60804–60813 (2015).

L. Wang, H. Liu, W. Jiang, R. Li, F. Li, Z. Yang, L. Yin, Y. Shi, and B. Chen, “Capillary number encouraged the construction of smart biomimetic eyes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 5896–5902 (2015).

2013 (3)

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[PubMed]

D. Floreano, R. Pericet-Camara, S. Viollet, F. Ruffier, A. Brückner, R. Leitel, W. Buss, M. Menouni, F. Expert, R. Juston, M. K. Dobrzynski, G. L’Eplattenier, F. Recktenwald, H. A. Mallot, and N. Franceschini, “Miniature curved artificial compound eyes,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9267–9272 (2013).
[PubMed]

K. Venkataraman, D. Lelescu, J. Duparre, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “PiCam: An Ultra-Thin High Performance Monolithic Camera Array,” ACM Trans. Graph. 32, 166 (2013).

2012 (4)

H. W. Liu, F. Chen, Q. Yang, P. B. Qu, S. G. He, X. H. Wang, J. H. Si, and X. Hou, “Fabrication of bioinspired omnidirectional and gapless microlens array for wide field-of-view detections,” Appl. Phys. Lett. 100, 133701 (2012).

J. Plett, A. Bahl, M. Buss, K. Kühnlenz, and A. Borst, “Bio-inspired visual ego-rotation sensor for MAVs,” Biol. Cybern. 106(1), 51–63 (2012).
[PubMed]

E. Baird and M. Dacke, “Visual flight control in naturalistic and artificial environments,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 198(12), 869–876 (2012).
[PubMed]

K. Nordström, “Neural specializations for small target detection in insects,” Curr. Opin. Neurobiol. 22(2), 272–278 (2012).
[PubMed]

2010 (1)

A. Kapustjansky, L. Chittka, and J. Spaethe, “Bees use three-dimensional information to improve target detection,” Naturwissenschaften 97(2), 229–233 (2010).
[PubMed]

2008 (2)

J. Huang, X. Wang, and Z. L. Wang, “Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes,” Nanotechnology 19(2), 025602 (2008).
[PubMed]

S. D. Wiederman, P. A. Shoemaker, and D. C. O’Carroll, “A model for the detection of moving targets in visual clutter inspired by insect physiology,” PLoS One 3(7), e2784 (2008).
[PubMed]

2007 (1)

B. R. Geurten, K. Nordström, J. D. Sprayberry, D. M. Bolzon, and D. C. O’Carroll, “Neural mechanisms underlying target detection in a dragonfly centrifugal neuron,” J. Exp. Biol. 210(Pt 18), 3277–3284 (2007).
[PubMed]

2006 (3)

K. Nordström, P. D. Barnett, and D. C. O’Carroll, “Insect detection of small targets moving in visual clutter,” PLoS Biol. 4(3), e54 (2006).
[PubMed]

K. Moses, “Evolutionary biology: Fly eyes get the whole picture,” Nature 443(7112), 638–639 (2006).
[PubMed]

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
[PubMed]

2005 (1)

L. P. Lee and R. Szema, “Inspirations from biological optics for advanced photonic systems,” Science 310(5751), 1148–1150 (2005).
[PubMed]

2004 (1)

2001 (1)

1999 (1)

M. Giurfa, G. Zaccardi, and M. Vorobyev, “How bees detect coloured targets using different regions of their compound eyes,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 185, 591–600 (1999).

1992 (1)

M. F. Land and R. D. Fernald, “The Evolution of Eyes,” Annu. Rev. Neurosci. 15, 1–29 (1992).
[PubMed]

Bahl, A.

J. Plett, A. Bahl, M. Buss, K. Kühnlenz, and A. Borst, “Bio-inspired visual ego-rotation sensor for MAVs,” Biol. Cybern. 106(1), 51–63 (2012).
[PubMed]

Baird, E.

N. Linander, M. Dacke, and E. Baird, “Bumblebees measure optic flow for position and speed control flexibly within the frontal visual field,” J. Exp. Biol. 218(Pt 7), 1051–1059 (2015).
[PubMed]

T. Reber, A. Vähäkainu, E. Baird, M. Weckström, E. Warrant, and M. Dacke, “Effect of light intensity on flight control and temporal properties of photoreceptors in bumblebees,” J. Exp. Biol. 218(Pt 9), 1339–1346 (2015).
[PubMed]

E. Baird and M. Dacke, “Visual flight control in naturalistic and artificial environments,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 198(12), 869–876 (2012).
[PubMed]

Barnett, P. D.

K. Nordström, P. D. Barnett, and D. C. O’Carroll, “Insect detection of small targets moving in visual clutter,” PLoS Biol. 4(3), e54 (2006).
[PubMed]

Bian, H.

Z. Deng, F. Chen, Q. Yang, H. Bian, G. Du, J. Yong, C. Shan, and X. Hou, “Dragonfly-Eye-Inspired Artificial Compound Eyes with Sophisticated Imaging,” Adv. Funct. Mater. 26, 1995–2001 (2016).

Bolzon, D. M.

B. R. Geurten, K. Nordström, J. D. Sprayberry, D. M. Bolzon, and D. C. O’Carroll, “Neural mechanisms underlying target detection in a dragonfly centrifugal neuron,” J. Exp. Biol. 210(Pt 18), 3277–3284 (2007).
[PubMed]

Borst, A.

J. Plett, A. Bahl, M. Buss, K. Kühnlenz, and A. Borst, “Bio-inspired visual ego-rotation sensor for MAVs,” Biol. Cybern. 106(1), 51–63 (2012).
[PubMed]

Bräuer, A.

Brückner, A.

D. Floreano, R. Pericet-Camara, S. Viollet, F. Ruffier, A. Brückner, R. Leitel, W. Buss, M. Menouni, F. Expert, R. Juston, M. K. Dobrzynski, G. L’Eplattenier, F. Recktenwald, H. A. Mallot, and N. Franceschini, “Miniature curved artificial compound eyes,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9267–9272 (2013).
[PubMed]

Buss, M.

J. Plett, A. Bahl, M. Buss, K. Kühnlenz, and A. Borst, “Bio-inspired visual ego-rotation sensor for MAVs,” Biol. Cybern. 106(1), 51–63 (2012).
[PubMed]

Buss, W.

D. Floreano, R. Pericet-Camara, S. Viollet, F. Ruffier, A. Brückner, R. Leitel, W. Buss, M. Menouni, F. Expert, R. Juston, M. K. Dobrzynski, G. L’Eplattenier, F. Recktenwald, H. A. Mallot, and N. Franceschini, “Miniature curved artificial compound eyes,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9267–9272 (2013).
[PubMed]

Chatterjee, P.

K. Venkataraman, D. Lelescu, J. Duparre, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “PiCam: An Ultra-Thin High Performance Monolithic Camera Array,” ACM Trans. Graph. 32, 166 (2013).

Chen, B.

L. Wang, H. Liu, W. Jiang, R. Li, F. Li, Z. Yang, L. Yin, Y. Shi, and B. Chen, “Capillary number encouraged the construction of smart biomimetic eyes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 5896–5902 (2015).

Chen, F.

Z. Deng, F. Chen, Q. Yang, H. Bian, G. Du, J. Yong, C. Shan, and X. Hou, “Dragonfly-Eye-Inspired Artificial Compound Eyes with Sophisticated Imaging,” Adv. Funct. Mater. 26, 1995–2001 (2016).

H. W. Liu, F. Chen, Q. Yang, P. B. Qu, S. G. He, X. H. Wang, J. H. Si, and X. Hou, “Fabrication of bioinspired omnidirectional and gapless microlens array for wide field-of-view detections,” Appl. Phys. Lett. 100, 133701 (2012).

Chen, J.

J. Chen, H. H. Lee, D. Wang, S. Di, and S. C. Chen, “Hybrid imprinting process to fabricate a multi-layer compound eye for multispectral imaging,” Opt. Express 25(4), 4180–4189 (2017).
[PubMed]

J. Chen, J. Cheng, D. Zhang, and S.-C. Chen, “Precision UV imprinting system for parallel fabrication of large-area micro-lens arrays on non-planar surfaces,” Precis. Eng. 44, 70–74 (2016).

Chen, S. C.

Chen, S.-C.

J. Chen, J. Cheng, D. Zhang, and S.-C. Chen, “Precision UV imprinting system for parallel fabrication of large-area micro-lens arrays on non-planar surfaces,” Precis. Eng. 44, 70–74 (2016).

Cheng, J.

J. Chen, J. Cheng, D. Zhang, and S.-C. Chen, “Precision UV imprinting system for parallel fabrication of large-area micro-lens arrays on non-planar surfaces,” Precis. Eng. 44, 70–74 (2016).

Chittka, L.

A. Kapustjansky, L. Chittka, and J. Spaethe, “Bees use three-dimensional information to improve target detection,” Naturwissenschaften 97(2), 229–233 (2010).
[PubMed]

Choi, K. J.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[PubMed]

Crozier, K. B.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[PubMed]

Dacke, M.

N. Linander, M. Dacke, and E. Baird, “Bumblebees measure optic flow for position and speed control flexibly within the frontal visual field,” J. Exp. Biol. 218(Pt 7), 1051–1059 (2015).
[PubMed]

T. Reber, A. Vähäkainu, E. Baird, M. Weckström, E. Warrant, and M. Dacke, “Effect of light intensity on flight control and temporal properties of photoreceptors in bumblebees,” J. Exp. Biol. 218(Pt 9), 1339–1346 (2015).
[PubMed]

E. Baird and M. Dacke, “Visual flight control in naturalistic and artificial environments,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 198(12), 869–876 (2012).
[PubMed]

Dannberg, P.

Deng, Z.

Z. Deng, F. Chen, Q. Yang, H. Bian, G. Du, J. Yong, C. Shan, and X. Hou, “Dragonfly-Eye-Inspired Artificial Compound Eyes with Sophisticated Imaging,” Adv. Funct. Mater. 26, 1995–2001 (2016).

Di, S.

Dobrzynski, M. K.

D. Floreano, R. Pericet-Camara, S. Viollet, F. Ruffier, A. Brückner, R. Leitel, W. Buss, M. Menouni, F. Expert, R. Juston, M. K. Dobrzynski, G. L’Eplattenier, F. Recktenwald, H. A. Mallot, and N. Franceschini, “Miniature curved artificial compound eyes,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9267–9272 (2013).
[PubMed]

Du, G.

Z. Deng, F. Chen, Q. Yang, H. Bian, G. Du, J. Yong, C. Shan, and X. Hou, “Dragonfly-Eye-Inspired Artificial Compound Eyes with Sophisticated Imaging,” Adv. Funct. Mater. 26, 1995–2001 (2016).

Du, J. L.

M. J. Wang, T. S. Wang, H. H. Shen, J. L. Zhao, Z. Y. Zhang, J. L. Du, and W. X. Yu, “Subtle control on hierarchic reflow for the simple and massive fabrication of biomimetic compound eye arrays in polymers for imaging at a large field of view,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4, 108–112 (2016).

Duparre, J.

K. Venkataraman, D. Lelescu, J. Duparre, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “PiCam: An Ultra-Thin High Performance Monolithic Camera Array,” ACM Trans. Graph. 32, 166 (2013).

Duparré, J.

Expert, F.

D. Floreano, R. Pericet-Camara, S. Viollet, F. Ruffier, A. Brückner, R. Leitel, W. Buss, M. Menouni, F. Expert, R. Juston, M. K. Dobrzynski, G. L’Eplattenier, F. Recktenwald, H. A. Mallot, and N. Franceschini, “Miniature curved artificial compound eyes,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9267–9272 (2013).
[PubMed]

Fernald, R. D.

M. F. Land and R. D. Fernald, “The Evolution of Eyes,” Annu. Rev. Neurosci. 15, 1–29 (1992).
[PubMed]

Floreano, D.

D. Floreano, R. Pericet-Camara, S. Viollet, F. Ruffier, A. Brückner, R. Leitel, W. Buss, M. Menouni, F. Expert, R. Juston, M. K. Dobrzynski, G. L’Eplattenier, F. Recktenwald, H. A. Mallot, and N. Franceschini, “Miniature curved artificial compound eyes,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9267–9272 (2013).
[PubMed]

Franceschini, N.

D. Floreano, R. Pericet-Camara, S. Viollet, F. Ruffier, A. Brückner, R. Leitel, W. Buss, M. Menouni, F. Expert, R. Juston, M. K. Dobrzynski, G. L’Eplattenier, F. Recktenwald, H. A. Mallot, and N. Franceschini, “Miniature curved artificial compound eyes,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9267–9272 (2013).
[PubMed]

Geurten, B. R.

B. R. Geurten, K. Nordström, J. D. Sprayberry, D. M. Bolzon, and D. C. O’Carroll, “Neural mechanisms underlying target detection in a dragonfly centrifugal neuron,” J. Exp. Biol. 210(Pt 18), 3277–3284 (2007).
[PubMed]

Giurfa, M.

M. Giurfa, G. Zaccardi, and M. Vorobyev, “How bees detect coloured targets using different regions of their compound eyes,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 185, 591–600 (1999).

He, S. G.

H. W. Liu, F. Chen, Q. Yang, P. B. Qu, S. G. He, X. H. Wang, J. H. Si, and X. Hou, “Fabrication of bioinspired omnidirectional and gapless microlens array for wide field-of-view detections,” Appl. Phys. Lett. 100, 133701 (2012).

Hou, X.

Z. Deng, F. Chen, Q. Yang, H. Bian, G. Du, J. Yong, C. Shan, and X. Hou, “Dragonfly-Eye-Inspired Artificial Compound Eyes with Sophisticated Imaging,” Adv. Funct. Mater. 26, 1995–2001 (2016).

H. W. Liu, F. Chen, Q. Yang, P. B. Qu, S. G. He, X. H. Wang, J. H. Si, and X. Hou, “Fabrication of bioinspired omnidirectional and gapless microlens array for wide field-of-view detections,” Appl. Phys. Lett. 100, 133701 (2012).

Huang, J.

J. Huang, X. Wang, and Z. L. Wang, “Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes,” Nanotechnology 19(2), 025602 (2008).
[PubMed]

Huang, Y.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[PubMed]

Ichioka, Y.

Ishida, K.

Jeong, K. H.

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
[PubMed]

Jiang, W.

L. Wang, H. Liu, W. Jiang, R. Li, F. Li, Z. Yang, L. Yin, Y. Shi, and B. Chen, “Capillary number encouraged the construction of smart biomimetic eyes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 5896–5902 (2015).

Jung, I.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[PubMed]

Juston, R.

D. Floreano, R. Pericet-Camara, S. Viollet, F. Ruffier, A. Brückner, R. Leitel, W. Buss, M. Menouni, F. Expert, R. Juston, M. K. Dobrzynski, G. L’Eplattenier, F. Recktenwald, H. A. Mallot, and N. Franceschini, “Miniature curved artificial compound eyes,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9267–9272 (2013).
[PubMed]

Kapustjansky, A.

A. Kapustjansky, L. Chittka, and J. Spaethe, “Bees use three-dimensional information to improve target detection,” Naturwissenschaften 97(2), 229–233 (2010).
[PubMed]

Kim, J.

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
[PubMed]

Kim, R. H.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[PubMed]

Kondou, N.

Kühnlenz, K.

J. Plett, A. Bahl, M. Buss, K. Kühnlenz, and A. Borst, “Bio-inspired visual ego-rotation sensor for MAVs,” Biol. Cybern. 106(1), 51–63 (2012).
[PubMed]

Kumagai, T.

Kuo, G. F.

W. K. Kuo, G. F. Kuo, S. Y. Lin, and H. H. Yu, “Fabrication and characterization of artificial miniaturized insect compound eyes for imaging,” Bioinspir. Biomim. 10(5), 056010 (2015).
[PubMed]

Kuo, W. K.

W. K. Kuo, G. F. Kuo, S. Y. Lin, and H. H. Yu, “Fabrication and characterization of artificial miniaturized insect compound eyes for imaging,” Bioinspir. Biomim. 10(5), 056010 (2015).
[PubMed]

L’Eplattenier, G.

D. Floreano, R. Pericet-Camara, S. Viollet, F. Ruffier, A. Brückner, R. Leitel, W. Buss, M. Menouni, F. Expert, R. Juston, M. K. Dobrzynski, G. L’Eplattenier, F. Recktenwald, H. A. Mallot, and N. Franceschini, “Miniature curved artificial compound eyes,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9267–9272 (2013).
[PubMed]

Land, M. F.

M. F. Land and R. D. Fernald, “The Evolution of Eyes,” Annu. Rev. Neurosci. 15, 1–29 (1992).
[PubMed]

Lee, H. H.

Lee, L. P.

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
[PubMed]

L. P. Lee and R. Szema, “Inspirations from biological optics for advanced photonic systems,” Science 310(5751), 1148–1150 (2005).
[PubMed]

Leem, J. W.

J. W. Leem and J. S. Yu, “Artificial inverted compound eye structured polymer films with light-harvesting and self-cleaning functions for encapsulated III–V solar cell applications,” RSC Advances 5, 60804–60813 (2015).

Leitel, R.

D. Floreano, R. Pericet-Camara, S. Viollet, F. Ruffier, A. Brückner, R. Leitel, W. Buss, M. Menouni, F. Expert, R. Juston, M. K. Dobrzynski, G. L’Eplattenier, F. Recktenwald, H. A. Mallot, and N. Franceschini, “Miniature curved artificial compound eyes,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9267–9272 (2013).
[PubMed]

Lelescu, D.

K. Venkataraman, D. Lelescu, J. Duparre, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “PiCam: An Ultra-Thin High Performance Monolithic Camera Array,” ACM Trans. Graph. 32, 166 (2013).

Li, F.

L. Wang, H. Liu, W. Jiang, R. Li, F. Li, Z. Yang, L. Yin, Y. Shi, and B. Chen, “Capillary number encouraged the construction of smart biomimetic eyes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 5896–5902 (2015).

Li, R.

L. Wang, H. Liu, W. Jiang, R. Li, F. Li, Z. Yang, L. Yin, Y. Shi, and B. Chen, “Capillary number encouraged the construction of smart biomimetic eyes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 5896–5902 (2015).

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[PubMed]

Lin, S. Y.

W. K. Kuo, G. F. Kuo, S. Y. Lin, and H. H. Yu, “Fabrication and characterization of artificial miniaturized insect compound eyes for imaging,” Bioinspir. Biomim. 10(5), 056010 (2015).
[PubMed]

Linander, N.

N. Linander, M. Dacke, and E. Baird, “Bumblebees measure optic flow for position and speed control flexibly within the frontal visual field,” J. Exp. Biol. 218(Pt 7), 1051–1059 (2015).
[PubMed]

Liu, H.

L. Wang, H. Liu, W. Jiang, R. Li, F. Li, Z. Yang, L. Yin, Y. Shi, and B. Chen, “Capillary number encouraged the construction of smart biomimetic eyes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 5896–5902 (2015).

Liu, H. W.

H. W. Liu, F. Chen, Q. Yang, P. B. Qu, S. G. He, X. H. Wang, J. H. Si, and X. Hou, “Fabrication of bioinspired omnidirectional and gapless microlens array for wide field-of-view detections,” Appl. Phys. Lett. 100, 133701 (2012).

Liu, Z.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[PubMed]

Lu, C.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[PubMed]

Mallot, H. A.

D. Floreano, R. Pericet-Camara, S. Viollet, F. Ruffier, A. Brückner, R. Leitel, W. Buss, M. Menouni, F. Expert, R. Juston, M. K. Dobrzynski, G. L’Eplattenier, F. Recktenwald, H. A. Mallot, and N. Franceschini, “Miniature curved artificial compound eyes,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9267–9272 (2013).
[PubMed]

Malyarchuk, V.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[PubMed]

McMahon, A.

K. Venkataraman, D. Lelescu, J. Duparre, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “PiCam: An Ultra-Thin High Performance Monolithic Camera Array,” ACM Trans. Graph. 32, 166 (2013).

Menouni, M.

D. Floreano, R. Pericet-Camara, S. Viollet, F. Ruffier, A. Brückner, R. Leitel, W. Buss, M. Menouni, F. Expert, R. Juston, M. K. Dobrzynski, G. L’Eplattenier, F. Recktenwald, H. A. Mallot, and N. Franceschini, “Miniature curved artificial compound eyes,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9267–9272 (2013).
[PubMed]

Miyatake, S.

Miyazaki, D.

Molina, G.

K. Venkataraman, D. Lelescu, J. Duparre, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “PiCam: An Ultra-Thin High Performance Monolithic Camera Array,” ACM Trans. Graph. 32, 166 (2013).

Morimoto, T.

Moses, K.

K. Moses, “Evolutionary biology: Fly eyes get the whole picture,” Nature 443(7112), 638–639 (2006).
[PubMed]

Mullis, R.

K. Venkataraman, D. Lelescu, J. Duparre, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “PiCam: An Ultra-Thin High Performance Monolithic Camera Array,” ACM Trans. Graph. 32, 166 (2013).

Nayar, S.

K. Venkataraman, D. Lelescu, J. Duparre, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “PiCam: An Ultra-Thin High Performance Monolithic Camera Array,” ACM Trans. Graph. 32, 166 (2013).

Nordström, K.

K. Nordström, “Neural specializations for small target detection in insects,” Curr. Opin. Neurobiol. 22(2), 272–278 (2012).
[PubMed]

B. R. Geurten, K. Nordström, J. D. Sprayberry, D. M. Bolzon, and D. C. O’Carroll, “Neural mechanisms underlying target detection in a dragonfly centrifugal neuron,” J. Exp. Biol. 210(Pt 18), 3277–3284 (2007).
[PubMed]

K. Nordström, P. D. Barnett, and D. C. O’Carroll, “Insect detection of small targets moving in visual clutter,” PLoS Biol. 4(3), e54 (2006).
[PubMed]

O’Carroll, D. C.

S. D. Wiederman, P. A. Shoemaker, and D. C. O’Carroll, “A model for the detection of moving targets in visual clutter inspired by insect physiology,” PLoS One 3(7), e2784 (2008).
[PubMed]

B. R. Geurten, K. Nordström, J. D. Sprayberry, D. M. Bolzon, and D. C. O’Carroll, “Neural mechanisms underlying target detection in a dragonfly centrifugal neuron,” J. Exp. Biol. 210(Pt 18), 3277–3284 (2007).
[PubMed]

K. Nordström, P. D. Barnett, and D. C. O’Carroll, “Insect detection of small targets moving in visual clutter,” PLoS Biol. 4(3), e54 (2006).
[PubMed]

Park, H.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[PubMed]

Pericet-Camara, R.

D. Floreano, R. Pericet-Camara, S. Viollet, F. Ruffier, A. Brückner, R. Leitel, W. Buss, M. Menouni, F. Expert, R. Juston, M. K. Dobrzynski, G. L’Eplattenier, F. Recktenwald, H. A. Mallot, and N. Franceschini, “Miniature curved artificial compound eyes,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9267–9272 (2013).
[PubMed]

Plett, J.

J. Plett, A. Bahl, M. Buss, K. Kühnlenz, and A. Borst, “Bio-inspired visual ego-rotation sensor for MAVs,” Biol. Cybern. 106(1), 51–63 (2012).
[PubMed]

Qu, P. B.

H. W. Liu, F. Chen, Q. Yang, P. B. Qu, S. G. He, X. H. Wang, J. H. Si, and X. Hou, “Fabrication of bioinspired omnidirectional and gapless microlens array for wide field-of-view detections,” Appl. Phys. Lett. 100, 133701 (2012).

Reber, T.

T. Reber, A. Vähäkainu, E. Baird, M. Weckström, E. Warrant, and M. Dacke, “Effect of light intensity on flight control and temporal properties of photoreceptors in bumblebees,” J. Exp. Biol. 218(Pt 9), 1339–1346 (2015).
[PubMed]

Recktenwald, F.

D. Floreano, R. Pericet-Camara, S. Viollet, F. Ruffier, A. Brückner, R. Leitel, W. Buss, M. Menouni, F. Expert, R. Juston, M. K. Dobrzynski, G. L’Eplattenier, F. Recktenwald, H. A. Mallot, and N. Franceschini, “Miniature curved artificial compound eyes,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9267–9272 (2013).
[PubMed]

Rogers, J. A.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[PubMed]

Ruffier, F.

D. Floreano, R. Pericet-Camara, S. Viollet, F. Ruffier, A. Brückner, R. Leitel, W. Buss, M. Menouni, F. Expert, R. Juston, M. K. Dobrzynski, G. L’Eplattenier, F. Recktenwald, H. A. Mallot, and N. Franceschini, “Miniature curved artificial compound eyes,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9267–9272 (2013).
[PubMed]

Schreiber, P.

Shan, C.

Z. Deng, F. Chen, Q. Yang, H. Bian, G. Du, J. Yong, C. Shan, and X. Hou, “Dragonfly-Eye-Inspired Artificial Compound Eyes with Sophisticated Imaging,” Adv. Funct. Mater. 26, 1995–2001 (2016).

Shen, H. H.

M. J. Wang, T. S. Wang, H. H. Shen, J. L. Zhao, Z. Y. Zhang, J. L. Du, and W. X. Yu, “Subtle control on hierarchic reflow for the simple and massive fabrication of biomimetic compound eye arrays in polymers for imaging at a large field of view,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4, 108–112 (2016).

Shi, Y.

L. Wang, H. Liu, W. Jiang, R. Li, F. Li, Z. Yang, L. Yin, Y. Shi, and B. Chen, “Capillary number encouraged the construction of smart biomimetic eyes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 5896–5902 (2015).

Shoemaker, P. A.

S. D. Wiederman, P. A. Shoemaker, and D. C. O’Carroll, “A model for the detection of moving targets in visual clutter inspired by insect physiology,” PLoS One 3(7), e2784 (2008).
[PubMed]

Si, J. H.

H. W. Liu, F. Chen, Q. Yang, P. B. Qu, S. G. He, X. H. Wang, J. H. Si, and X. Hou, “Fabrication of bioinspired omnidirectional and gapless microlens array for wide field-of-view detections,” Appl. Phys. Lett. 100, 133701 (2012).

Song, Y. M.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[PubMed]

Spaethe, J.

A. Kapustjansky, L. Chittka, and J. Spaethe, “Bees use three-dimensional information to improve target detection,” Naturwissenschaften 97(2), 229–233 (2010).
[PubMed]

Sprayberry, J. D.

B. R. Geurten, K. Nordström, J. D. Sprayberry, D. M. Bolzon, and D. C. O’Carroll, “Neural mechanisms underlying target detection in a dragonfly centrifugal neuron,” J. Exp. Biol. 210(Pt 18), 3277–3284 (2007).
[PubMed]

Szema, R.

L. P. Lee and R. Szema, “Inspirations from biological optics for advanced photonic systems,” Science 310(5751), 1148–1150 (2005).
[PubMed]

Tanida, J.

Tünnermann, A.

Vähäkainu, A.

T. Reber, A. Vähäkainu, E. Baird, M. Weckström, E. Warrant, and M. Dacke, “Effect of light intensity on flight control and temporal properties of photoreceptors in bumblebees,” J. Exp. Biol. 218(Pt 9), 1339–1346 (2015).
[PubMed]

Venkataraman, K.

K. Venkataraman, D. Lelescu, J. Duparre, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “PiCam: An Ultra-Thin High Performance Monolithic Camera Array,” ACM Trans. Graph. 32, 166 (2013).

Viollet, S.

D. Floreano, R. Pericet-Camara, S. Viollet, F. Ruffier, A. Brückner, R. Leitel, W. Buss, M. Menouni, F. Expert, R. Juston, M. K. Dobrzynski, G. L’Eplattenier, F. Recktenwald, H. A. Mallot, and N. Franceschini, “Miniature curved artificial compound eyes,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9267–9272 (2013).
[PubMed]

Vorobyev, M.

M. Giurfa, G. Zaccardi, and M. Vorobyev, “How bees detect coloured targets using different regions of their compound eyes,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 185, 591–600 (1999).

Wang, D.

Wang, L.

L. Wang, H. Liu, W. Jiang, R. Li, F. Li, Z. Yang, L. Yin, Y. Shi, and B. Chen, “Capillary number encouraged the construction of smart biomimetic eyes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 5896–5902 (2015).

Wang, M. J.

M. J. Wang, T. S. Wang, H. H. Shen, J. L. Zhao, Z. Y. Zhang, J. L. Du, and W. X. Yu, “Subtle control on hierarchic reflow for the simple and massive fabrication of biomimetic compound eye arrays in polymers for imaging at a large field of view,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4, 108–112 (2016).

Wang, T. S.

M. J. Wang, T. S. Wang, H. H. Shen, J. L. Zhao, Z. Y. Zhang, J. L. Du, and W. X. Yu, “Subtle control on hierarchic reflow for the simple and massive fabrication of biomimetic compound eye arrays in polymers for imaging at a large field of view,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4, 108–112 (2016).

Wang, X.

J. Huang, X. Wang, and Z. L. Wang, “Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes,” Nanotechnology 19(2), 025602 (2008).
[PubMed]

Wang, X. H.

H. W. Liu, F. Chen, Q. Yang, P. B. Qu, S. G. He, X. H. Wang, J. H. Si, and X. Hou, “Fabrication of bioinspired omnidirectional and gapless microlens array for wide field-of-view detections,” Appl. Phys. Lett. 100, 133701 (2012).

Wang, Z. L.

J. Huang, X. Wang, and Z. L. Wang, “Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes,” Nanotechnology 19(2), 025602 (2008).
[PubMed]

Warrant, E.

T. Reber, A. Vähäkainu, E. Baird, M. Weckström, E. Warrant, and M. Dacke, “Effect of light intensity on flight control and temporal properties of photoreceptors in bumblebees,” J. Exp. Biol. 218(Pt 9), 1339–1346 (2015).
[PubMed]

Weckström, M.

T. Reber, A. Vähäkainu, E. Baird, M. Weckström, E. Warrant, and M. Dacke, “Effect of light intensity on flight control and temporal properties of photoreceptors in bumblebees,” J. Exp. Biol. 218(Pt 9), 1339–1346 (2015).
[PubMed]

Wiederman, S. D.

S. D. Wiederman, P. A. Shoemaker, and D. C. O’Carroll, “A model for the detection of moving targets in visual clutter inspired by insect physiology,” PLoS One 3(7), e2784 (2008).
[PubMed]

Xiao, J.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[PubMed]

Xie, Y.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[PubMed]

Yamada, K.

Yang, Q.

Z. Deng, F. Chen, Q. Yang, H. Bian, G. Du, J. Yong, C. Shan, and X. Hou, “Dragonfly-Eye-Inspired Artificial Compound Eyes with Sophisticated Imaging,” Adv. Funct. Mater. 26, 1995–2001 (2016).

H. W. Liu, F. Chen, Q. Yang, P. B. Qu, S. G. He, X. H. Wang, J. H. Si, and X. Hou, “Fabrication of bioinspired omnidirectional and gapless microlens array for wide field-of-view detections,” Appl. Phys. Lett. 100, 133701 (2012).

Yang, Z.

L. Wang, H. Liu, W. Jiang, R. Li, F. Li, Z. Yang, L. Yin, Y. Shi, and B. Chen, “Capillary number encouraged the construction of smart biomimetic eyes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 5896–5902 (2015).

Yin, L.

L. Wang, H. Liu, W. Jiang, R. Li, F. Li, Z. Yang, L. Yin, Y. Shi, and B. Chen, “Capillary number encouraged the construction of smart biomimetic eyes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 5896–5902 (2015).

Yong, J.

Z. Deng, F. Chen, Q. Yang, H. Bian, G. Du, J. Yong, C. Shan, and X. Hou, “Dragonfly-Eye-Inspired Artificial Compound Eyes with Sophisticated Imaging,” Adv. Funct. Mater. 26, 1995–2001 (2016).

Yu, H. H.

W. K. Kuo, G. F. Kuo, S. Y. Lin, and H. H. Yu, “Fabrication and characterization of artificial miniaturized insect compound eyes for imaging,” Bioinspir. Biomim. 10(5), 056010 (2015).
[PubMed]

Yu, J. S.

J. W. Leem and J. S. Yu, “Artificial inverted compound eye structured polymer films with light-harvesting and self-cleaning functions for encapsulated III–V solar cell applications,” RSC Advances 5, 60804–60813 (2015).

Yu, W. X.

M. J. Wang, T. S. Wang, H. H. Shen, J. L. Zhao, Z. Y. Zhang, J. L. Du, and W. X. Yu, “Subtle control on hierarchic reflow for the simple and massive fabrication of biomimetic compound eye arrays in polymers for imaging at a large field of view,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4, 108–112 (2016).

Zaccardi, G.

M. Giurfa, G. Zaccardi, and M. Vorobyev, “How bees detect coloured targets using different regions of their compound eyes,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 185, 591–600 (1999).

Zhang, D.

J. Chen, J. Cheng, D. Zhang, and S.-C. Chen, “Precision UV imprinting system for parallel fabrication of large-area micro-lens arrays on non-planar surfaces,” Precis. Eng. 44, 70–74 (2016).

Zhang, Z. Y.

M. J. Wang, T. S. Wang, H. H. Shen, J. L. Zhao, Z. Y. Zhang, J. L. Du, and W. X. Yu, “Subtle control on hierarchic reflow for the simple and massive fabrication of biomimetic compound eye arrays in polymers for imaging at a large field of view,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4, 108–112 (2016).

Zhao, J. L.

M. J. Wang, T. S. Wang, H. H. Shen, J. L. Zhao, Z. Y. Zhang, J. L. Du, and W. X. Yu, “Subtle control on hierarchic reflow for the simple and massive fabrication of biomimetic compound eye arrays in polymers for imaging at a large field of view,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4, 108–112 (2016).

ACM Trans. Graph. (1)

K. Venkataraman, D. Lelescu, J. Duparre, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “PiCam: An Ultra-Thin High Performance Monolithic Camera Array,” ACM Trans. Graph. 32, 166 (2013).

Adv. Funct. Mater. (1)

Z. Deng, F. Chen, Q. Yang, H. Bian, G. Du, J. Yong, C. Shan, and X. Hou, “Dragonfly-Eye-Inspired Artificial Compound Eyes with Sophisticated Imaging,” Adv. Funct. Mater. 26, 1995–2001 (2016).

Annu. Rev. Neurosci. (1)

M. F. Land and R. D. Fernald, “The Evolution of Eyes,” Annu. Rev. Neurosci. 15, 1–29 (1992).
[PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

H. W. Liu, F. Chen, Q. Yang, P. B. Qu, S. G. He, X. H. Wang, J. H. Si, and X. Hou, “Fabrication of bioinspired omnidirectional and gapless microlens array for wide field-of-view detections,” Appl. Phys. Lett. 100, 133701 (2012).

Bioinspir. Biomim. (1)

W. K. Kuo, G. F. Kuo, S. Y. Lin, and H. H. Yu, “Fabrication and characterization of artificial miniaturized insect compound eyes for imaging,” Bioinspir. Biomim. 10(5), 056010 (2015).
[PubMed]

Biol. Cybern. (1)

J. Plett, A. Bahl, M. Buss, K. Kühnlenz, and A. Borst, “Bio-inspired visual ego-rotation sensor for MAVs,” Biol. Cybern. 106(1), 51–63 (2012).
[PubMed]

Curr. Opin. Neurobiol. (1)

K. Nordström, “Neural specializations for small target detection in insects,” Curr. Opin. Neurobiol. 22(2), 272–278 (2012).
[PubMed]

J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. (2)

M. Giurfa, G. Zaccardi, and M. Vorobyev, “How bees detect coloured targets using different regions of their compound eyes,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 185, 591–600 (1999).

E. Baird and M. Dacke, “Visual flight control in naturalistic and artificial environments,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 198(12), 869–876 (2012).
[PubMed]

J. Exp. Biol. (3)

N. Linander, M. Dacke, and E. Baird, “Bumblebees measure optic flow for position and speed control flexibly within the frontal visual field,” J. Exp. Biol. 218(Pt 7), 1051–1059 (2015).
[PubMed]

T. Reber, A. Vähäkainu, E. Baird, M. Weckström, E. Warrant, and M. Dacke, “Effect of light intensity on flight control and temporal properties of photoreceptors in bumblebees,” J. Exp. Biol. 218(Pt 9), 1339–1346 (2015).
[PubMed]

B. R. Geurten, K. Nordström, J. D. Sprayberry, D. M. Bolzon, and D. C. O’Carroll, “Neural mechanisms underlying target detection in a dragonfly centrifugal neuron,” J. Exp. Biol. 210(Pt 18), 3277–3284 (2007).
[PubMed]

J. Mater. Chem. C Mater. Opt. Electron. Devices (2)

M. J. Wang, T. S. Wang, H. H. Shen, J. L. Zhao, Z. Y. Zhang, J. L. Du, and W. X. Yu, “Subtle control on hierarchic reflow for the simple and massive fabrication of biomimetic compound eye arrays in polymers for imaging at a large field of view,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4, 108–112 (2016).

L. Wang, H. Liu, W. Jiang, R. Li, F. Li, Z. Yang, L. Yin, Y. Shi, and B. Chen, “Capillary number encouraged the construction of smart biomimetic eyes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 5896–5902 (2015).

Nanotechnology (1)

J. Huang, X. Wang, and Z. L. Wang, “Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes,” Nanotechnology 19(2), 025602 (2008).
[PubMed]

Nature (2)

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[PubMed]

K. Moses, “Evolutionary biology: Fly eyes get the whole picture,” Nature 443(7112), 638–639 (2006).
[PubMed]

Naturwissenschaften (1)

A. Kapustjansky, L. Chittka, and J. Spaethe, “Bees use three-dimensional information to improve target detection,” Naturwissenschaften 97(2), 229–233 (2010).
[PubMed]

Opt. Express (1)

PLoS Biol. (1)

K. Nordström, P. D. Barnett, and D. C. O’Carroll, “Insect detection of small targets moving in visual clutter,” PLoS Biol. 4(3), e54 (2006).
[PubMed]

PLoS One (1)

S. D. Wiederman, P. A. Shoemaker, and D. C. O’Carroll, “A model for the detection of moving targets in visual clutter inspired by insect physiology,” PLoS One 3(7), e2784 (2008).
[PubMed]

Precis. Eng. (1)

J. Chen, J. Cheng, D. Zhang, and S.-C. Chen, “Precision UV imprinting system for parallel fabrication of large-area micro-lens arrays on non-planar surfaces,” Precis. Eng. 44, 70–74 (2016).

Proc. Natl. Acad. Sci. U.S.A. (1)

D. Floreano, R. Pericet-Camara, S. Viollet, F. Ruffier, A. Brückner, R. Leitel, W. Buss, M. Menouni, F. Expert, R. Juston, M. K. Dobrzynski, G. L’Eplattenier, F. Recktenwald, H. A. Mallot, and N. Franceschini, “Miniature curved artificial compound eyes,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9267–9272 (2013).
[PubMed]

RSC Advances (1)

J. W. Leem and J. S. Yu, “Artificial inverted compound eye structured polymer films with light-harvesting and self-cleaning functions for encapsulated III–V solar cell applications,” RSC Advances 5, 60804–60813 (2015).

Science (2)

L. P. Lee and R. Szema, “Inspirations from biological optics for advanced photonic systems,” Science 310(5751), 1148–1150 (2005).
[PubMed]

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Photograph of the SCECam (b) A fruit-fly’s compound eye (c) Illustration of the SCECam with a FOV of up to 122.4°.
Fig. 2
Fig. 2 Schematic illustration of the fabrication process for hemispherical micro-lens array by soft lithography and thermally embossing method. (a) ~(d) Fabrication of a planar micro-lens array by photolithography, (e) Replication of a reversed micro-lens array in PDMS, (f) Replication of micro-lens array into PMMA, (g) Formation of hemispherical micro-lens array by thermally embossing the PMMA film by using a glass doom.
Fig. 3
Fig. 3 Exploded view (a) and schematic illustration the optical structure (b) of the prototype SCECam.
Fig. 4
Fig. 4 (a) The hemispherical micro-lens array fabricated by soft lithography and thermal embossing technology. (b) Magnified image of the microlens array captured by a SEM (JSM 6390). (c) Illustration of the FOV of the hemispherical micro-lens array. (d) Illustration of the acceptance angle ∆φ for each ommatidium and the inter-ommatidial angle ∆Φ for neighboring ommatidia.
Fig. 5
Fig. 5 (a) Optical setup used for testing of the imaging ability of the hemispherical micro-lens array. (b) Image of the letter “a” formed by the hemispherical micro-lens array viewed from different FOVs of 0°, 30° and 60° respectively from top to bottom.
Fig. 6
Fig. 6 Operating principles of a SCECam and representative pictures. (a) Conceptual view of image formation, illustrated by quantitative ray-tracing results. Each micro-lens produces a small inverted image of a partial object. The optical relay system transforms this spherical compound eye image into a planar compound eye image. (b)-(d) Image reconstruction experiments and results for different symbols of cross line, pentagram and triangle captured by the prototype SCECam.
Fig. 7
Fig. 7 (a) Schematic illustration of the target located at different positions. (b) Demonstration for detecting objects placed on different directions with angles of −40° and 40°. (c) The images rendered on the sphere for objects located at different distances from the SCECam.
Fig. 8
Fig. 8 A comparison between the SCECam method and traditional methods. (a) The processing speed of different methods for the same object. (b) Raw image of symbol ‘ + ’ captured by SCECam (left) and the image obtained by edge detection based on SCECam method. (c) Raw image of symbol ‘ + ’ captured by one conventional camera with same resolution as the SCECam (left) and the image obtained by the Canny edge-detection method.

Tables (1)

Tables Icon

Table 1 Parameters of the prototype SCECam.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f= d 2 8h(n1) .

Metrics