Abstract

We report a compact triple-band tunable perfect terahertz metamaterial absorber (TMA) at the subwavelength scale of thickness, which is composed of a planar metallic disk resonator array above a conductive ground plane separated with liquid crystal (LC) mixture. The calculations of terahertz absorption spectra demonstrate triple near-unity absorption bands in the gap plasmonic resonance coupling regime. Three resonance frequencies of the absorber exhibit continuous linear-tunability as changing the refractive index of LC. Remarkably, each peak absorbance of the triple bands maintains at a level of beyond 99% in the whole tuning operation, and the absorbance can remain more than 90% over a wide range of incident angles. Our work suggests that the LC tunable absorber scheme has the potential to overcome the basic difficulty to perform simultaneously multiband spectral tuning and near-unity absorbance with wide angle of incidence and weak polarization dependence. The proposed LC-tunable multiband perfect TMA is promising in the application of biomolecular spectra-selective terahertz imaging and sensing.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

12 December 2017: Typographical corrections were made to the body text.


OSA Recommended Articles
Dual-band tunable perfect metamaterial absorber based on graphene

Fengling Wang, Sha Huang, Ling Li, Weidong Chen, and Zhengwei Xie
Appl. Opt. 57(24) 6916-6922 (2018)

Intensity-modulating graphene metamaterial for multiband terahertz absorption

Run-Mei Gao, Zong-Cheng Xu, Chun-Feng Ding, and Jian-Quan Yao
Appl. Opt. 55(8) 1929-1933 (2016)

Tunable terahertz metamaterial absorber based on Dirac semimetal films

Tongling Wang, Maoyong Cao, Huiyun Zhang, and Yuping Zhang
Appl. Opt. 57(32) 9555-9561 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  2. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
    [PubMed]
  3. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
    [Crossref] [PubMed]
  4. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
    [Crossref] [PubMed]
  5. S. Hussain, J. Min Woo, and J.-H. Jang, “J. Min Woo, and J. H. Jang, “Dual-band terahertz metamaterials based on nested split ring resonators,” Appl. Phys. Lett. 101(9), 091103 (2012).
    [Crossref]
  6. S. Liu, H. B. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
    [Crossref]
  7. L. Wang, S. Ge, W. Hu, M. Nakajima, and Y. Lu, “Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber,” Opt. Express 25(20), 23873–23879 (2017).
    [Crossref] [PubMed]
  8. B. X. Wang, G. Z. Wang, and H. X. Zhu, “Quad-band terahertz absorption enabled using a rectangle-shaped resonator cut with an air gap,” RSC Advances 7(43), 26888–26893 (2017).
    [Crossref]
  9. Y. T. Zhao, B. Wu, B. J. Huang, and Q. Cheng, “Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface,” Opt. Express 25(7), 7161–7169 (2017).
    [Crossref] [PubMed]
  10. L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
    [Crossref] [PubMed]
  11. K. B. Fan and W. J. Padilla, “Dynamic electromagnetic metamaterials,” Mater. Today 18(1), 39–50 (2015).
    [Crossref]
  12. J. H. Son, Terahertz Biomedical Science and Technology (Chemical Rubber Company, 2014).
  13. X. P. Shen, Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
    [Crossref]
  14. G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
    [Crossref] [PubMed]
  15. M. T. Reiten, D. R. Chowdhury, J. Zhou, A. J. Taylor, J. F. O’Hara, and A. K. Azad, “Resonance tuning behavior in closely spaced inhomogeneous bilayer metamaterials,” Appl. Phys. Lett. 98(13), 131105 (2011).
    [Crossref]
  16. S. X. Xia, X. Zhai, L. L. Wang, Q. Lin, and S. C. Wen, “Excitation of crest and trough surface plasmon modes in in-plane bended graphene nanoribbons,” Opt. Express 24(1), 427–436 (2016).
    [Crossref] [PubMed]
  17. S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017).
    [Crossref] [PubMed]
  18. F. Alves, D. Grbovic, B. Kearney, and G. Karunasiri, “Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber,” Opt. Lett. 37(11), 1886–1888 (2012).
    [Crossref] [PubMed]
  19. F. R. Hu, N. N. Xu, W. M. Wang, Y. Wang, W. Zhang, J. Han, and W. Zhang, “A dynamically tunable terahertz metamaterial absorber based on an electrostatic MEMS actuator and electrical dipole resonator array,” J. Micromech. Microeng. 26(2), 025006 (2016).
    [Crossref]
  20. F. R. Hu, Y. X. Qian, Z. Li, J. H. Niu, K. Nie, X. M. Xiong, W. T. Zhang, and Z. Y. Peng, “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array,” J. Opt. 15(5), 055101 (2013).
    [Crossref]
  21. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
    [Crossref] [PubMed]
  22. S. Ke, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Plasmonic absorption enhancement in periodic cross-shaped graphene arrays,” Opt. Express 23(7), 8888–8900 (2015).
    [Crossref] [PubMed]
  23. S. X. Xia, X. Zhai, L. L. Wang, Q. Lin, and S. C. Wen, “Localized plasmonic field enhancement in shaped graphene nanoribbons,” Opt. Express 24(15), 16336–16348 (2016).
    [Crossref] [PubMed]
  24. S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24(16), 17886–17899 (2016).
    [Crossref] [PubMed]
  25. S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Graphene surface plasmons with dielectric metasurfaces,” J. Lightwave Technol. 35(20), 4553–4558 (2017).
    [Crossref]
  26. H. R. Seren, G. R. Keiser, L. Y. Cao, J. D. Zhang, A. C. Strikwerda, K. B. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Optical Mater. 2(12), 1221–1226 (2014).
    [Crossref]
  27. H. R. Seren, J. D. Zhang, G. R. Keiser, S. J. Maddox, X. G. Zhao, K. B. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light Sci. Appl. 5(5), e16078 (2016).
    [Crossref]
  28. I. Escorcia, J. Grant, J. Gough, and D. R. S. Cumming, “Uncooled CMOS terahertz imager using a metamaterial absorber and pn diode,” Opt. Lett. 41(14), 3261–3264 (2016).
    [Crossref] [PubMed]
  29. Y. Du, H. Tian, X. Cui, H. Wang, and Z. X. Zhou, “Electrically tunable liquid crystal terahertz phase shifter driven by transparent polymer electrodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(19), 4138–4142 (2016).
    [Crossref]
  30. Y. Wu, X. Z. Ruan, C.-H. Chen, Y. J. Shin, Y. Lee, J. Niu, J. Liu, Y. Chen, K.-L. Yang, X. Zhang, J.-H. Ahn, and H. Yang, “Graphene/liquid crystal based terahertz phase shifters,” Opt. Express 21(18), 21395–21402 (2013).
    [Crossref] [PubMed]
  31. C. S. Yang, T. T. Tang, P. H. Chen, R. P. Pan, P. Yu, and C. L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter with indium-tin-oxide nanowhiskers as transparent electrodes,” Opt. Lett. 39(8), 2511–2513 (2014).
    [Crossref] [PubMed]
  32. L. Wang, S. J. Ge, W. Hu, M. Nakajima, and Y. Q. Lu, “Tunable reflective liquid crystal terahertz waveplates,” Opt. Mater. Express 7(6), 2023–2029 (2017).
    [Crossref]
  33. L. Yang, F. Fan, M. Chen, X. Z. Zhang, and S. J. Chang, “Active terahertz metamaterials based on liquid-crystal induced transparency and absorption,” Opt. Commun. 382, 42–48 (2017).
    [Crossref]
  34. D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
    [Crossref] [PubMed]
  35. S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Optical Mater. 2(3), 275–279 (2014).
    [Crossref]
  36. G. Isić, B. Vasić, D. C. Zografopoulos, R. Beccherelli, and R. Gajić, “Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals,” Phys. Rev. Appl. 3(6), 064007 (2015).
    [Crossref]
  37. M. P. Hokmabadi, A. Tareki, E. Rivera, P. Kung, R. G. Lindquist, and S. M. Kim, “Investigation of tunable terahertz metamaterial perfect absorber with anisotropic dielectric liquid crystal,” AIP Adv. 7(1), 015102 (2017).
    [Crossref]
  38. Y. Du, H. Tian, X. Cui, X. Wang, J. Lu, and Z. Zhou, “Super terahertz transparent electrodes,” Opt. Express 24(6), 6359–6366 (2016).
    [Crossref] [PubMed]
  39. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  40. X. Hu, G. Q. Xu, L. Wen, H. C. Wang, Y. C. Zhao, Y. X. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
    [Crossref]
  41. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24(24), 4493–4499 (1985).
    [Crossref] [PubMed]
  42. M. Reuter, N. Vieweg, B. M. Fischer, M. Mikulicz, M. Koch, K. Garbat, and R. Dabrowski, “Highly birefringent, low-loss liquid crystals for terahertz applications,” APL Mater. 1(1), 012107 (2013).
    [Crossref]
  43. M. P. Hokmabadi, D. S. Wilbert, P. Kung, and S. M. Kim, “Polarization-dependent, frequency-selective THz stereometamaterial perfect absorber,” Phys. Rev. Appl. 1(4), 044003 (2014).
    [Crossref]
  44. N. Chikhi, M. Lisitskiy, G. Papari, V. Tkachenko, and A. Andreone, “A hybrid tunable THz metadevice using a high birefringence liquid crystal,” Sci. Rep. 6(1), 34536 (2016).
    [Crossref] [PubMed]

2017 (9)

L. Wang, S. Ge, W. Hu, M. Nakajima, and Y. Lu, “Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber,” Opt. Express 25(20), 23873–23879 (2017).
[Crossref] [PubMed]

B. X. Wang, G. Z. Wang, and H. X. Zhu, “Quad-band terahertz absorption enabled using a rectangle-shaped resonator cut with an air gap,” RSC Advances 7(43), 26888–26893 (2017).
[Crossref]

Y. T. Zhao, B. Wu, B. J. Huang, and Q. Cheng, “Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface,” Opt. Express 25(7), 7161–7169 (2017).
[Crossref] [PubMed]

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
[Crossref] [PubMed]

S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017).
[Crossref] [PubMed]

S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Graphene surface plasmons with dielectric metasurfaces,” J. Lightwave Technol. 35(20), 4553–4558 (2017).
[Crossref]

L. Wang, S. J. Ge, W. Hu, M. Nakajima, and Y. Q. Lu, “Tunable reflective liquid crystal terahertz waveplates,” Opt. Mater. Express 7(6), 2023–2029 (2017).
[Crossref]

L. Yang, F. Fan, M. Chen, X. Z. Zhang, and S. J. Chang, “Active terahertz metamaterials based on liquid-crystal induced transparency and absorption,” Opt. Commun. 382, 42–48 (2017).
[Crossref]

M. P. Hokmabadi, A. Tareki, E. Rivera, P. Kung, R. G. Lindquist, and S. M. Kim, “Investigation of tunable terahertz metamaterial perfect absorber with anisotropic dielectric liquid crystal,” AIP Adv. 7(1), 015102 (2017).
[Crossref]

2016 (11)

Y. Du, H. Tian, X. Cui, X. Wang, J. Lu, and Z. Zhou, “Super terahertz transparent electrodes,” Opt. Express 24(6), 6359–6366 (2016).
[Crossref] [PubMed]

X. Hu, G. Q. Xu, L. Wen, H. C. Wang, Y. C. Zhao, Y. X. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

N. Chikhi, M. Lisitskiy, G. Papari, V. Tkachenko, and A. Andreone, “A hybrid tunable THz metadevice using a high birefringence liquid crystal,” Sci. Rep. 6(1), 34536 (2016).
[Crossref] [PubMed]

S. X. Xia, X. Zhai, L. L. Wang, Q. Lin, and S. C. Wen, “Excitation of crest and trough surface plasmon modes in in-plane bended graphene nanoribbons,” Opt. Express 24(1), 427–436 (2016).
[Crossref] [PubMed]

S. X. Xia, X. Zhai, L. L. Wang, Q. Lin, and S. C. Wen, “Localized plasmonic field enhancement in shaped graphene nanoribbons,” Opt. Express 24(15), 16336–16348 (2016).
[Crossref] [PubMed]

S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24(16), 17886–17899 (2016).
[Crossref] [PubMed]

H. R. Seren, J. D. Zhang, G. R. Keiser, S. J. Maddox, X. G. Zhao, K. B. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light Sci. Appl. 5(5), e16078 (2016).
[Crossref]

I. Escorcia, J. Grant, J. Gough, and D. R. S. Cumming, “Uncooled CMOS terahertz imager using a metamaterial absorber and pn diode,” Opt. Lett. 41(14), 3261–3264 (2016).
[Crossref] [PubMed]

Y. Du, H. Tian, X. Cui, H. Wang, and Z. X. Zhou, “Electrically tunable liquid crystal terahertz phase shifter driven by transparent polymer electrodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(19), 4138–4142 (2016).
[Crossref]

F. R. Hu, N. N. Xu, W. M. Wang, Y. Wang, W. Zhang, J. Han, and W. Zhang, “A dynamically tunable terahertz metamaterial absorber based on an electrostatic MEMS actuator and electrical dipole resonator array,” J. Micromech. Microeng. 26(2), 025006 (2016).
[Crossref]

G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
[Crossref] [PubMed]

2015 (4)

S. Liu, H. B. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

K. B. Fan and W. J. Padilla, “Dynamic electromagnetic metamaterials,” Mater. Today 18(1), 39–50 (2015).
[Crossref]

G. Isić, B. Vasić, D. C. Zografopoulos, R. Beccherelli, and R. Gajić, “Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals,” Phys. Rev. Appl. 3(6), 064007 (2015).
[Crossref]

S. Ke, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Plasmonic absorption enhancement in periodic cross-shaped graphene arrays,” Opt. Express 23(7), 8888–8900 (2015).
[Crossref] [PubMed]

2014 (5)

C. S. Yang, T. T. Tang, P. H. Chen, R. P. Pan, P. Yu, and C. L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter with indium-tin-oxide nanowhiskers as transparent electrodes,” Opt. Lett. 39(8), 2511–2513 (2014).
[Crossref] [PubMed]

H. R. Seren, G. R. Keiser, L. Y. Cao, J. D. Zhang, A. C. Strikwerda, K. B. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Optical Mater. 2(12), 1221–1226 (2014).
[Crossref]

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Optical Mater. 2(3), 275–279 (2014).
[Crossref]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
[Crossref] [PubMed]

M. P. Hokmabadi, D. S. Wilbert, P. Kung, and S. M. Kim, “Polarization-dependent, frequency-selective THz stereometamaterial perfect absorber,” Phys. Rev. Appl. 1(4), 044003 (2014).
[Crossref]

2013 (4)

M. Reuter, N. Vieweg, B. M. Fischer, M. Mikulicz, M. Koch, K. Garbat, and R. Dabrowski, “Highly birefringent, low-loss liquid crystals for terahertz applications,” APL Mater. 1(1), 012107 (2013).
[Crossref]

Y. Wu, X. Z. Ruan, C.-H. Chen, Y. J. Shin, Y. Lee, J. Niu, J. Liu, Y. Chen, K.-L. Yang, X. Zhang, J.-H. Ahn, and H. Yang, “Graphene/liquid crystal based terahertz phase shifters,” Opt. Express 21(18), 21395–21402 (2013).
[Crossref] [PubMed]

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

F. R. Hu, Y. X. Qian, Z. Li, J. H. Niu, K. Nie, X. M. Xiong, W. T. Zhang, and Z. Y. Peng, “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array,” J. Opt. 15(5), 055101 (2013).
[Crossref]

2012 (4)

F. Alves, D. Grbovic, B. Kearney, and G. Karunasiri, “Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber,” Opt. Lett. 37(11), 1886–1888 (2012).
[Crossref] [PubMed]

S. Hussain, J. Min Woo, and J.-H. Jang, “J. Min Woo, and J. H. Jang, “Dual-band terahertz metamaterials based on nested split ring resonators,” Appl. Phys. Lett. 101(9), 091103 (2012).
[Crossref]

X. P. Shen, Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

2011 (2)

Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
[Crossref] [PubMed]

M. T. Reiten, D. R. Chowdhury, J. Zhou, A. J. Taylor, J. F. O’Hara, and A. K. Azad, “Resonance tuning behavior in closely spaced inhomogeneous bilayer metamaterials,” Appl. Phys. Lett. 98(13), 131105 (2011).
[Crossref]

2008 (2)

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

1985 (1)

Ahn, J.-H.

Alexander, R. W.

Alves, F.

Andreone, A.

N. Chikhi, M. Lisitskiy, G. Papari, V. Tkachenko, and A. Andreone, “A hybrid tunable THz metadevice using a high birefringence liquid crystal,” Sci. Rep. 6(1), 34536 (2016).
[Crossref] [PubMed]

Averitt, R. D.

H. R. Seren, J. D. Zhang, G. R. Keiser, S. J. Maddox, X. G. Zhao, K. B. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light Sci. Appl. 5(5), e16078 (2016).
[Crossref]

H. R. Seren, G. R. Keiser, L. Y. Cao, J. D. Zhang, A. C. Strikwerda, K. B. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Optical Mater. 2(12), 1221–1226 (2014).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Azad, A. K.

M. T. Reiten, D. R. Chowdhury, J. Zhou, A. J. Taylor, J. F. O’Hara, and A. K. Azad, “Resonance tuning behavior in closely spaced inhomogeneous bilayer metamaterials,” Appl. Phys. Lett. 98(13), 131105 (2011).
[Crossref]

Bank, S. R.

H. R. Seren, J. D. Zhang, G. R. Keiser, S. J. Maddox, X. G. Zhao, K. B. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light Sci. Appl. 5(5), e16078 (2016).
[Crossref]

Beccherelli, R.

G. Isić, B. Vasić, D. C. Zografopoulos, R. Beccherelli, and R. Gajić, “Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals,” Phys. Rev. Appl. 3(6), 064007 (2015).
[Crossref]

Bell, R. J.

Bingham, C. M.

Cai, G.

Cao, L. Y.

H. R. Seren, G. R. Keiser, L. Y. Cao, J. D. Zhang, A. C. Strikwerda, K. B. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Optical Mater. 2(12), 1221–1226 (2014).
[Crossref]

Chang, S. J.

L. Yang, F. Fan, M. Chen, X. Z. Zhang, and S. J. Chang, “Active terahertz metamaterials based on liquid-crystal induced transparency and absorption,” Opt. Commun. 382, 42–48 (2017).
[Crossref]

Chen, C.-H.

Chen, H. B.

S. Liu, H. B. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

Chen, M.

L. Yang, F. Fan, M. Chen, X. Z. Zhang, and S. J. Chang, “Active terahertz metamaterials based on liquid-crystal induced transparency and absorption,” Opt. Commun. 382, 42–48 (2017).
[Crossref]

Chen, P. H.

Chen, Q.

X. Hu, G. Q. Xu, L. Wen, H. C. Wang, Y. C. Zhao, Y. X. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
[Crossref] [PubMed]

Chen, W. C.

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Chen, Y.

Cheng, Q.

Chikhi, N.

N. Chikhi, M. Lisitskiy, G. Papari, V. Tkachenko, and A. Andreone, “A hybrid tunable THz metadevice using a high birefringence liquid crystal,” Sci. Rep. 6(1), 34536 (2016).
[Crossref] [PubMed]

Chowdhury, D. R.

M. T. Reiten, D. R. Chowdhury, J. Zhou, A. J. Taylor, J. F. O’Hara, and A. K. Azad, “Resonance tuning behavior in closely spaced inhomogeneous bilayer metamaterials,” Appl. Phys. Lett. 98(13), 131105 (2011).
[Crossref]

Cui, T. J.

S. Liu, H. B. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

X. P. Shen, Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Cui, X.

Y. Du, H. Tian, X. Cui, H. Wang, and Z. X. Zhou, “Electrically tunable liquid crystal terahertz phase shifter driven by transparent polymer electrodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(19), 4138–4142 (2016).
[Crossref]

Y. Du, H. Tian, X. Cui, X. Wang, J. Lu, and Z. Zhou, “Super terahertz transparent electrodes,” Opt. Express 24(6), 6359–6366 (2016).
[Crossref] [PubMed]

Cumming, D. R. S.

Dabrowski, R.

M. Reuter, N. Vieweg, B. M. Fischer, M. Mikulicz, M. Koch, K. Garbat, and R. Dabrowski, “Highly birefringent, low-loss liquid crystals for terahertz applications,” APL Mater. 1(1), 012107 (2013).
[Crossref]

Du, Y.

Y. Du, H. Tian, X. Cui, X. Wang, J. Lu, and Z. Zhou, “Super terahertz transparent electrodes,” Opt. Express 24(6), 6359–6366 (2016).
[Crossref] [PubMed]

Y. Du, H. Tian, X. Cui, H. Wang, and Z. X. Zhou, “Electrically tunable liquid crystal terahertz phase shifter driven by transparent polymer electrodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(19), 4138–4142 (2016).
[Crossref]

Escorcia, I.

Fan, F.

L. Yang, F. Fan, M. Chen, X. Z. Zhang, and S. J. Chang, “Active terahertz metamaterials based on liquid-crystal induced transparency and absorption,” Opt. Commun. 382, 42–48 (2017).
[Crossref]

Fan, K. B.

H. R. Seren, J. D. Zhang, G. R. Keiser, S. J. Maddox, X. G. Zhao, K. B. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light Sci. Appl. 5(5), e16078 (2016).
[Crossref]

K. B. Fan and W. J. Padilla, “Dynamic electromagnetic metamaterials,” Mater. Today 18(1), 39–50 (2015).
[Crossref]

H. R. Seren, G. R. Keiser, L. Y. Cao, J. D. Zhang, A. C. Strikwerda, K. B. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Optical Mater. 2(12), 1221–1226 (2014).
[Crossref]

Feng, Y.

Fischer, B. M.

M. Reuter, N. Vieweg, B. M. Fischer, M. Mikulicz, M. Koch, K. Garbat, and R. Dabrowski, “Highly birefringent, low-loss liquid crystals for terahertz applications,” APL Mater. 1(1), 012107 (2013).
[Crossref]

Gajic, R.

G. Isić, B. Vasić, D. C. Zografopoulos, R. Beccherelli, and R. Gajić, “Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals,” Phys. Rev. Appl. 3(6), 064007 (2015).
[Crossref]

Garbat, K.

M. Reuter, N. Vieweg, B. M. Fischer, M. Mikulicz, M. Koch, K. Garbat, and R. Dabrowski, “Highly birefringent, low-loss liquid crystals for terahertz applications,” APL Mater. 1(1), 012107 (2013).
[Crossref]

Ge, S.

Ge, S. J.

Gough, J.

Grant, J.

Grbovic, D.

Gu, J. Q.

X. P. Shen, Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Han, J.

F. R. Hu, N. N. Xu, W. M. Wang, Y. Wang, W. Zhang, J. Han, and W. Zhang, “A dynamically tunable terahertz metamaterial absorber based on an electrostatic MEMS actuator and electrical dipole resonator array,” J. Micromech. Microeng. 26(2), 025006 (2016).
[Crossref]

Han, J. G.

X. P. Shen, Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Hokmabadi, M. P.

M. P. Hokmabadi, A. Tareki, E. Rivera, P. Kung, R. G. Lindquist, and S. M. Kim, “Investigation of tunable terahertz metamaterial perfect absorber with anisotropic dielectric liquid crystal,” AIP Adv. 7(1), 015102 (2017).
[Crossref]

M. P. Hokmabadi, D. S. Wilbert, P. Kung, and S. M. Kim, “Polarization-dependent, frequency-selective THz stereometamaterial perfect absorber,” Phys. Rev. Appl. 1(4), 044003 (2014).
[Crossref]

Hu, F. R.

F. R. Hu, N. N. Xu, W. M. Wang, Y. Wang, W. Zhang, J. Han, and W. Zhang, “A dynamically tunable terahertz metamaterial absorber based on an electrostatic MEMS actuator and electrical dipole resonator array,” J. Micromech. Microeng. 26(2), 025006 (2016).
[Crossref]

F. R. Hu, Y. X. Qian, Z. Li, J. H. Niu, K. Nie, X. M. Xiong, W. T. Zhang, and Z. Y. Peng, “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array,” J. Opt. 15(5), 055101 (2013).
[Crossref]

Hu, W.

Hu, X.

X. Hu, G. Q. Xu, L. Wen, H. C. Wang, Y. C. Zhao, Y. X. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Huang, B. J.

Huang, H.

Huang, Y.

Hussain, S.

S. Hussain, J. Min Woo, and J.-H. Jang, “J. Min Woo, and J. H. Jang, “Dual-band terahertz metamaterials based on nested split ring resonators,” Appl. Phys. Lett. 101(9), 091103 (2012).
[Crossref]

Isic, G.

G. Isić, B. Vasić, D. C. Zografopoulos, R. Beccherelli, and R. Gajić, “Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals,” Phys. Rev. Appl. 3(6), 064007 (2015).
[Crossref]

Jang, J.-H.

S. Hussain, J. Min Woo, and J.-H. Jang, “J. Min Woo, and J. H. Jang, “Dual-band terahertz metamaterials based on nested split ring resonators,” Appl. Phys. Lett. 101(9), 091103 (2012).
[Crossref]

Ji, J.

Jiang, T.

Karunasiri, G.

Ke, S.

Kearney, B.

Keiser, G. R.

H. R. Seren, J. D. Zhang, G. R. Keiser, S. J. Maddox, X. G. Zhao, K. B. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light Sci. Appl. 5(5), e16078 (2016).
[Crossref]

H. R. Seren, G. R. Keiser, L. Y. Cao, J. D. Zhang, A. C. Strikwerda, K. B. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Optical Mater. 2(12), 1221–1226 (2014).
[Crossref]

Khalid, A.

Kim, S. M.

M. P. Hokmabadi, A. Tareki, E. Rivera, P. Kung, R. G. Lindquist, and S. M. Kim, “Investigation of tunable terahertz metamaterial perfect absorber with anisotropic dielectric liquid crystal,” AIP Adv. 7(1), 015102 (2017).
[Crossref]

M. P. Hokmabadi, D. S. Wilbert, P. Kung, and S. M. Kim, “Polarization-dependent, frequency-selective THz stereometamaterial perfect absorber,” Phys. Rev. Appl. 1(4), 044003 (2014).
[Crossref]

Koch, M.

M. Reuter, N. Vieweg, B. M. Fischer, M. Mikulicz, M. Koch, K. Garbat, and R. Dabrowski, “Highly birefringent, low-loss liquid crystals for terahertz applications,” APL Mater. 1(1), 012107 (2013).
[Crossref]

Kung, P.

M. P. Hokmabadi, A. Tareki, E. Rivera, P. Kung, R. G. Lindquist, and S. M. Kim, “Investigation of tunable terahertz metamaterial perfect absorber with anisotropic dielectric liquid crystal,” AIP Adv. 7(1), 015102 (2017).
[Crossref]

M. P. Hokmabadi, D. S. Wilbert, P. Kung, and S. M. Kim, “Polarization-dependent, frequency-selective THz stereometamaterial perfect absorber,” Phys. Rev. Appl. 1(4), 044003 (2014).
[Crossref]

Landy, N. I.

Lee, Y.

Li, Z.

F. R. Hu, Y. X. Qian, Z. Li, J. H. Niu, K. Nie, X. M. Xiong, W. T. Zhang, and Z. Y. Peng, “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array,” J. Opt. 15(5), 055101 (2013).
[Crossref]

Lin, Q.

Lindquist, R. G.

M. P. Hokmabadi, A. Tareki, E. Rivera, P. Kung, R. G. Lindquist, and S. M. Kim, “Investigation of tunable terahertz metamaterial perfect absorber with anisotropic dielectric liquid crystal,” AIP Adv. 7(1), 015102 (2017).
[Crossref]

Ling, F.

Lisitskiy, M.

N. Chikhi, M. Lisitskiy, G. Papari, V. Tkachenko, and A. Andreone, “A hybrid tunable THz metadevice using a high birefringence liquid crystal,” Sci. Rep. 6(1), 34536 (2016).
[Crossref] [PubMed]

Liu, J.

Liu, J. Q.

Liu, N.

Liu, Q. H.

Liu, S.

S. Liu, H. B. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

Long, H.

Long, L. L.

Lu, J.

Lu, P.

Lu, Y.

Lu, Y. Q.

Luo, C.

Ma, Y.

Maddox, S. J.

H. R. Seren, J. D. Zhang, G. R. Keiser, S. J. Maddox, X. G. Zhao, K. B. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light Sci. Appl. 5(5), e16078 (2016).
[Crossref]

Metcalfe, G. D.

H. R. Seren, G. R. Keiser, L. Y. Cao, J. D. Zhang, A. C. Strikwerda, K. B. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Optical Mater. 2(12), 1221–1226 (2014).
[Crossref]

Mikulicz, M.

M. Reuter, N. Vieweg, B. M. Fischer, M. Mikulicz, M. Koch, K. Garbat, and R. Dabrowski, “Highly birefringent, low-loss liquid crystals for terahertz applications,” APL Mater. 1(1), 012107 (2013).
[Crossref]

Min Woo, J.

S. Hussain, J. Min Woo, and J.-H. Jang, “J. Min Woo, and J. H. Jang, “Dual-band terahertz metamaterials based on nested split ring resonators,” Appl. Phys. Lett. 101(9), 091103 (2012).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Nakajima, M.

Nie, K.

F. R. Hu, Y. X. Qian, Z. Li, J. H. Niu, K. Nie, X. M. Xiong, W. T. Zhang, and Z. Y. Peng, “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array,” J. Opt. 15(5), 055101 (2013).
[Crossref]

Niu, J.

Niu, J. H.

F. R. Hu, Y. X. Qian, Z. Li, J. H. Niu, K. Nie, X. M. Xiong, W. T. Zhang, and Z. Y. Peng, “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array,” J. Opt. 15(5), 055101 (2013).
[Crossref]

O’Hara, J. F.

M. T. Reiten, D. R. Chowdhury, J. Zhou, A. J. Taylor, J. F. O’Hara, and A. K. Azad, “Resonance tuning behavior in closely spaced inhomogeneous bilayer metamaterials,” Appl. Phys. Lett. 98(13), 131105 (2011).
[Crossref]

Ordal, M. A.

Padilla, W. J.

K. B. Fan and W. J. Padilla, “Dynamic electromagnetic metamaterials,” Mater. Today 18(1), 39–50 (2015).
[Crossref]

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Optical Mater. 2(3), 275–279 (2014).
[Crossref]

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Pan, C. L.

Pan, R. P.

Papari, G.

N. Chikhi, M. Lisitskiy, G. Papari, V. Tkachenko, and A. Andreone, “A hybrid tunable THz metadevice using a high birefringence liquid crystal,” Sci. Rep. 6(1), 34536 (2016).
[Crossref] [PubMed]

Peng, Z. Y.

F. R. Hu, Y. X. Qian, Z. Li, J. H. Niu, K. Nie, X. M. Xiong, W. T. Zhang, and Z. Y. Peng, “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array,” J. Opt. 15(5), 055101 (2013).
[Crossref]

Qian, Y. X.

F. R. Hu, Y. X. Qian, Z. Li, J. H. Niu, K. Nie, X. M. Xiong, W. T. Zhang, and Z. Y. Peng, “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array,” J. Opt. 15(5), 055101 (2013).
[Crossref]

Querry, M. R.

Reiten, M. T.

M. T. Reiten, D. R. Chowdhury, J. Zhou, A. J. Taylor, J. F. O’Hara, and A. K. Azad, “Resonance tuning behavior in closely spaced inhomogeneous bilayer metamaterials,” Appl. Phys. Lett. 98(13), 131105 (2011).
[Crossref]

Reuter, M.

M. Reuter, N. Vieweg, B. M. Fischer, M. Mikulicz, M. Koch, K. Garbat, and R. Dabrowski, “Highly birefringent, low-loss liquid crystals for terahertz applications,” APL Mater. 1(1), 012107 (2013).
[Crossref]

Rivera, E.

M. P. Hokmabadi, A. Tareki, E. Rivera, P. Kung, R. G. Lindquist, and S. M. Kim, “Investigation of tunable terahertz metamaterial perfect absorber with anisotropic dielectric liquid crystal,” AIP Adv. 7(1), 015102 (2017).
[Crossref]

Ruan, X. Z.

Saha, S. C.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Savo, S.

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Optical Mater. 2(3), 275–279 (2014).
[Crossref]

Seren, H. R.

H. R. Seren, J. D. Zhang, G. R. Keiser, S. J. Maddox, X. G. Zhao, K. B. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light Sci. Appl. 5(5), e16078 (2016).
[Crossref]

H. R. Seren, G. R. Keiser, L. Y. Cao, J. D. Zhang, A. C. Strikwerda, K. B. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Optical Mater. 2(12), 1221–1226 (2014).
[Crossref]

Shen, X. P.

X. P. Shen, Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Shin, Y. J.

Shrekenhamer, D.

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Optical Mater. 2(3), 275–279 (2014).
[Crossref]

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Song, Z.

Strikwerda, A. C.

H. R. Seren, G. R. Keiser, L. Y. Cao, J. D. Zhang, A. C. Strikwerda, K. B. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Optical Mater. 2(12), 1221–1226 (2014).
[Crossref]

Sun, B.

Tang, T. T.

Tao, H.

Tareki, A.

M. P. Hokmabadi, A. Tareki, E. Rivera, P. Kung, R. G. Lindquist, and S. M. Kim, “Investigation of tunable terahertz metamaterial perfect absorber with anisotropic dielectric liquid crystal,” AIP Adv. 7(1), 015102 (2017).
[Crossref]

Taylor, A. J.

M. T. Reiten, D. R. Chowdhury, J. Zhou, A. J. Taylor, J. F. O’Hara, and A. K. Azad, “Resonance tuning behavior in closely spaced inhomogeneous bilayer metamaterials,” Appl. Phys. Lett. 98(13), 131105 (2011).
[Crossref]

Tian, H.

Y. Du, H. Tian, X. Cui, H. Wang, and Z. X. Zhou, “Electrically tunable liquid crystal terahertz phase shifter driven by transparent polymer electrodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(19), 4138–4142 (2016).
[Crossref]

Y. Du, H. Tian, X. Cui, X. Wang, J. Lu, and Z. Zhou, “Super terahertz transparent electrodes,” Opt. Express 24(6), 6359–6366 (2016).
[Crossref] [PubMed]

Tkachenko, V.

N. Chikhi, M. Lisitskiy, G. Papari, V. Tkachenko, and A. Andreone, “A hybrid tunable THz metadevice using a high birefringence liquid crystal,” Sci. Rep. 6(1), 34536 (2016).
[Crossref] [PubMed]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Vasic, B.

G. Isić, B. Vasić, D. C. Zografopoulos, R. Beccherelli, and R. Gajić, “Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals,” Phys. Rev. Appl. 3(6), 064007 (2015).
[Crossref]

Vieweg, N.

M. Reuter, N. Vieweg, B. M. Fischer, M. Mikulicz, M. Koch, K. Garbat, and R. Dabrowski, “Highly birefringent, low-loss liquid crystals for terahertz applications,” APL Mater. 1(1), 012107 (2013).
[Crossref]

Wang, B.

Wang, B. X.

B. X. Wang, G. Z. Wang, and H. X. Zhu, “Quad-band terahertz absorption enabled using a rectangle-shaped resonator cut with an air gap,” RSC Advances 7(43), 26888–26893 (2017).
[Crossref]

Wang, G. Z.

B. X. Wang, G. Z. Wang, and H. X. Zhu, “Quad-band terahertz absorption enabled using a rectangle-shaped resonator cut with an air gap,” RSC Advances 7(43), 26888–26893 (2017).
[Crossref]

Wang, H.

Y. Du, H. Tian, X. Cui, H. Wang, and Z. X. Zhou, “Electrically tunable liquid crystal terahertz phase shifter driven by transparent polymer electrodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(19), 4138–4142 (2016).
[Crossref]

Wang, H. C.

X. Hu, G. Q. Xu, L. Wen, H. C. Wang, Y. C. Zhao, Y. X. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Wang, K.

Wang, L.

Wang, L. L.

Wang, W. M.

F. R. Hu, N. N. Xu, W. M. Wang, Y. Wang, W. Zhang, J. Han, and W. Zhang, “A dynamically tunable terahertz metamaterial absorber based on an electrostatic MEMS actuator and electrical dipole resonator array,” J. Micromech. Microeng. 26(2), 025006 (2016).
[Crossref]

Wang, X.

Wang, Y.

F. R. Hu, N. N. Xu, W. M. Wang, Y. Wang, W. Zhang, J. Han, and W. Zhang, “A dynamically tunable terahertz metamaterial absorber based on an electrostatic MEMS actuator and electrical dipole resonator array,” J. Micromech. Microeng. 26(2), 025006 (2016).
[Crossref]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

Wen, L.

X. Hu, G. Q. Xu, L. Wen, H. C. Wang, Y. C. Zhao, Y. X. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Wen, S. C.

Wilbert, D. S.

M. P. Hokmabadi, D. S. Wilbert, P. Kung, and S. M. Kim, “Polarization-dependent, frequency-selective THz stereometamaterial perfect absorber,” Phys. Rev. Appl. 1(4), 044003 (2014).
[Crossref]

Wraback, M.

H. R. Seren, G. R. Keiser, L. Y. Cao, J. D. Zhang, A. C. Strikwerda, K. B. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Optical Mater. 2(12), 1221–1226 (2014).
[Crossref]

Wu, B.

Wu, Y.

Xia, S. X.

Xiong, X. M.

F. R. Hu, Y. X. Qian, Z. Li, J. H. Niu, K. Nie, X. M. Xiong, W. T. Zhang, and Z. Y. Peng, “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array,” J. Opt. 15(5), 055101 (2013).
[Crossref]

Xu, G. Q.

X. Hu, G. Q. Xu, L. Wen, H. C. Wang, Y. C. Zhao, Y. X. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Xu, N. N.

F. R. Hu, N. N. Xu, W. M. Wang, Y. Wang, W. Zhang, J. Han, and W. Zhang, “A dynamically tunable terahertz metamaterial absorber based on an electrostatic MEMS actuator and electrical dipole resonator array,” J. Micromech. Microeng. 26(2), 025006 (2016).
[Crossref]

Yang, C. S.

Yang, H.

Yang, K.-L.

Yang, L.

L. Yang, F. Fan, M. Chen, X. Z. Zhang, and S. J. Chang, “Active terahertz metamaterials based on liquid-crystal induced transparency and absorption,” Opt. Commun. 382, 42–48 (2017).
[Crossref]

Yang, Y.

X. P. Shen, Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Yao, G.

Yao, J.

Ye, L.

Yu, P.

Yue, J.

Zang, Y. Z.

X. P. Shen, Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Zhai, X.

Zhang, J. D.

H. R. Seren, J. D. Zhang, G. R. Keiser, S. J. Maddox, X. G. Zhao, K. B. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light Sci. Appl. 5(5), e16078 (2016).
[Crossref]

H. R. Seren, G. R. Keiser, L. Y. Cao, J. D. Zhang, A. C. Strikwerda, K. B. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Optical Mater. 2(12), 1221–1226 (2014).
[Crossref]

Zhang, W.

F. R. Hu, N. N. Xu, W. M. Wang, Y. Wang, W. Zhang, J. Han, and W. Zhang, “A dynamically tunable terahertz metamaterial absorber based on an electrostatic MEMS actuator and electrical dipole resonator array,” J. Micromech. Microeng. 26(2), 025006 (2016).
[Crossref]

F. R. Hu, N. N. Xu, W. M. Wang, Y. Wang, W. Zhang, J. Han, and W. Zhang, “A dynamically tunable terahertz metamaterial absorber based on an electrostatic MEMS actuator and electrical dipole resonator array,” J. Micromech. Microeng. 26(2), 025006 (2016).
[Crossref]

Zhang, W. L.

X. P. Shen, Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Zhang, W. T.

F. R. Hu, Y. X. Qian, Z. Li, J. H. Niu, K. Nie, X. M. Xiong, W. T. Zhang, and Z. Y. Peng, “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array,” J. Opt. 15(5), 055101 (2013).
[Crossref]

Zhang, X.

H. R. Seren, J. D. Zhang, G. R. Keiser, S. J. Maddox, X. G. Zhao, K. B. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light Sci. Appl. 5(5), e16078 (2016).
[Crossref]

H. R. Seren, G. R. Keiser, L. Y. Cao, J. D. Zhang, A. C. Strikwerda, K. B. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Optical Mater. 2(12), 1221–1226 (2014).
[Crossref]

Y. Wu, X. Z. Ruan, C.-H. Chen, Y. J. Shin, Y. Lee, J. Niu, J. Liu, Y. Chen, K.-L. Yang, X. Zhang, J.-H. Ahn, and H. Yang, “Graphene/liquid crystal based terahertz phase shifters,” Opt. Express 21(18), 21395–21402 (2013).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Zhang, X. Z.

L. Yang, F. Fan, M. Chen, X. Z. Zhang, and S. J. Chang, “Active terahertz metamaterials based on liquid-crystal induced transparency and absorption,” Opt. Commun. 382, 42–48 (2017).
[Crossref]

Zhang, Y.

Zhang, Y. X.

X. Hu, G. Q. Xu, L. Wen, H. C. Wang, Y. C. Zhao, Y. X. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Zhao, J.

Zhao, X. G.

H. R. Seren, J. D. Zhang, G. R. Keiser, S. J. Maddox, X. G. Zhao, K. B. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light Sci. Appl. 5(5), e16078 (2016).
[Crossref]

Zhao, Y. C.

X. Hu, G. Q. Xu, L. Wen, H. C. Wang, Y. C. Zhao, Y. X. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Zhao, Y. T.

Zhou, J.

M. T. Reiten, D. R. Chowdhury, J. Zhou, A. J. Taylor, J. F. O’Hara, and A. K. Azad, “Resonance tuning behavior in closely spaced inhomogeneous bilayer metamaterials,” Appl. Phys. Lett. 98(13), 131105 (2011).
[Crossref]

Zhou, Z.

Zhou, Z. X.

Y. Du, H. Tian, X. Cui, H. Wang, and Z. X. Zhou, “Electrically tunable liquid crystal terahertz phase shifter driven by transparent polymer electrodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(19), 4138–4142 (2016).
[Crossref]

Zhu, B.

Zhu, H. X.

B. X. Wang, G. Z. Wang, and H. X. Zhu, “Quad-band terahertz absorption enabled using a rectangle-shaped resonator cut with an air gap,” RSC Advances 7(43), 26888–26893 (2017).
[Crossref]

Zhu, J.

Zografopoulos, D. C.

G. Isić, B. Vasić, D. C. Zografopoulos, R. Beccherelli, and R. Gajić, “Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals,” Phys. Rev. Appl. 3(6), 064007 (2015).
[Crossref]

Adv. Mater. (1)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

Adv. Optical Mater. (2)

H. R. Seren, G. R. Keiser, L. Y. Cao, J. D. Zhang, A. C. Strikwerda, K. B. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Optical Mater. 2(12), 1221–1226 (2014).
[Crossref]

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Optical Mater. 2(3), 275–279 (2014).
[Crossref]

AIP Adv. (1)

M. P. Hokmabadi, A. Tareki, E. Rivera, P. Kung, R. G. Lindquist, and S. M. Kim, “Investigation of tunable terahertz metamaterial perfect absorber with anisotropic dielectric liquid crystal,” AIP Adv. 7(1), 015102 (2017).
[Crossref]

APL Mater. (1)

M. Reuter, N. Vieweg, B. M. Fischer, M. Mikulicz, M. Koch, K. Garbat, and R. Dabrowski, “Highly birefringent, low-loss liquid crystals for terahertz applications,” APL Mater. 1(1), 012107 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

S. Hussain, J. Min Woo, and J.-H. Jang, “J. Min Woo, and J. H. Jang, “Dual-band terahertz metamaterials based on nested split ring resonators,” Appl. Phys. Lett. 101(9), 091103 (2012).
[Crossref]

S. Liu, H. B. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

X. P. Shen, Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

M. T. Reiten, D. R. Chowdhury, J. Zhou, A. J. Taylor, J. F. O’Hara, and A. K. Azad, “Resonance tuning behavior in closely spaced inhomogeneous bilayer metamaterials,” Appl. Phys. Lett. 98(13), 131105 (2011).
[Crossref]

J. Lightwave Technol. (1)

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

Y. Du, H. Tian, X. Cui, H. Wang, and Z. X. Zhou, “Electrically tunable liquid crystal terahertz phase shifter driven by transparent polymer electrodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(19), 4138–4142 (2016).
[Crossref]

J. Micromech. Microeng. (1)

F. R. Hu, N. N. Xu, W. M. Wang, Y. Wang, W. Zhang, J. Han, and W. Zhang, “A dynamically tunable terahertz metamaterial absorber based on an electrostatic MEMS actuator and electrical dipole resonator array,” J. Micromech. Microeng. 26(2), 025006 (2016).
[Crossref]

J. Opt. (1)

F. R. Hu, Y. X. Qian, Z. Li, J. H. Niu, K. Nie, X. M. Xiong, W. T. Zhang, and Z. Y. Peng, “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array,” J. Opt. 15(5), 055101 (2013).
[Crossref]

Laser Photonics Rev. (1)

X. Hu, G. Q. Xu, L. Wen, H. C. Wang, Y. C. Zhao, Y. X. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Light Sci. Appl. (1)

H. R. Seren, J. D. Zhang, G. R. Keiser, S. J. Maddox, X. G. Zhao, K. B. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light Sci. Appl. 5(5), e16078 (2016).
[Crossref]

Mater. Today (1)

K. B. Fan and W. J. Padilla, “Dynamic electromagnetic metamaterials,” Mater. Today 18(1), 39–50 (2015).
[Crossref]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Opt. Commun. (1)

L. Yang, F. Fan, M. Chen, X. Z. Zhang, and S. J. Chang, “Active terahertz metamaterials based on liquid-crystal induced transparency and absorption,” Opt. Commun. 382, 42–48 (2017).
[Crossref]

Opt. Express (12)

Y. Wu, X. Z. Ruan, C.-H. Chen, Y. J. Shin, Y. Lee, J. Niu, J. Liu, Y. Chen, K.-L. Yang, X. Zhang, J.-H. Ahn, and H. Yang, “Graphene/liquid crystal based terahertz phase shifters,” Opt. Express 21(18), 21395–21402 (2013).
[Crossref] [PubMed]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
[Crossref] [PubMed]

S. Ke, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Plasmonic absorption enhancement in periodic cross-shaped graphene arrays,” Opt. Express 23(7), 8888–8900 (2015).
[Crossref] [PubMed]

S. X. Xia, X. Zhai, L. L. Wang, Q. Lin, and S. C. Wen, “Localized plasmonic field enhancement in shaped graphene nanoribbons,” Opt. Express 24(15), 16336–16348 (2016).
[Crossref] [PubMed]

S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24(16), 17886–17899 (2016).
[Crossref] [PubMed]

G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
[Crossref] [PubMed]

S. X. Xia, X. Zhai, L. L. Wang, Q. Lin, and S. C. Wen, “Excitation of crest and trough surface plasmon modes in in-plane bended graphene nanoribbons,” Opt. Express 24(1), 427–436 (2016).
[Crossref] [PubMed]

L. Wang, S. Ge, W. Hu, M. Nakajima, and Y. Lu, “Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber,” Opt. Express 25(20), 23873–23879 (2017).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Y. T. Zhao, B. Wu, B. J. Huang, and Q. Cheng, “Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface,” Opt. Express 25(7), 7161–7169 (2017).
[Crossref] [PubMed]

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
[Crossref] [PubMed]

Y. Du, H. Tian, X. Cui, X. Wang, J. Lu, and Z. Zhou, “Super terahertz transparent electrodes,” Opt. Express 24(6), 6359–6366 (2016).
[Crossref] [PubMed]

Opt. Lett. (5)

Opt. Mater. Express (1)

Phys. Rev. Appl. (2)

G. Isić, B. Vasić, D. C. Zografopoulos, R. Beccherelli, and R. Gajić, “Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals,” Phys. Rev. Appl. 3(6), 064007 (2015).
[Crossref]

M. P. Hokmabadi, D. S. Wilbert, P. Kung, and S. M. Kim, “Polarization-dependent, frequency-selective THz stereometamaterial perfect absorber,” Phys. Rev. Appl. 1(4), 044003 (2014).
[Crossref]

Phys. Rev. Lett. (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

RSC Advances (1)

B. X. Wang, G. Z. Wang, and H. X. Zhu, “Quad-band terahertz absorption enabled using a rectangle-shaped resonator cut with an air gap,” RSC Advances 7(43), 26888–26893 (2017).
[Crossref]

Sci. Rep. (1)

N. Chikhi, M. Lisitskiy, G. Papari, V. Tkachenko, and A. Andreone, “A hybrid tunable THz metadevice using a high birefringence liquid crystal,” Sci. Rep. 6(1), 34536 (2016).
[Crossref] [PubMed]

Other (1)

J. H. Son, Terahertz Biomedical Science and Technology (Chemical Rubber Company, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the LC tunable TMA structure. (left) cross section (not to scale); (middle) bird's eye view of the whole structure; (right) the unit cell of the metamaterial.
Fig. 2
Fig. 2 The THz absorption spectra for periodically-patterned disk metamaterials composed of (a) only elliptical disks with the major axis parallel to x-axis, (b) only circular disks, (c) only elliptical disks with the minor axis parallel to x-axis, and (d) hybrid circular-elliptical disks meta-molecules shown in Fig. 1. In the panels (a), (b) and (c), the color inserts illustrate the electric field distributions under the resonant excitation of 1.05, 1.51 and 1.95 THz, respectively. In the panel (d), three dashed lines represent the intrinsic resonance response corresponding to the subfigures (a), (b) and (c), and the solid line shows the triple-band perfect absorption of the proposed structure.
Fig. 3
Fig. 3 The peak absorbance dependence on the LC thickness for the triple resonant modes. The shadow region indicates the range of optimum LC thickness for near-unity perfect absorption simultaneously at the triple modes.
Fig. 4
Fig. 4 The electric field distribution on the superstrate of gold disk array (x-y plane), corresponding to three resonance frequencies at (a) 1.05 THz, (b) 1.47 THz and (c) 1.90 THz; The local amplifications marked by dashed frames in the panels (a), (b) and (c) are displayed, respectively, in the panels (d), (e) and (f); The panels (g), (h) and (i) illustrate the magnetic field distributions at the p1, p2 and p3 cross-section planes, respectively under the resonant excitation of 1.05, 1.47 and 1.90 THz. The dashed line pairs indicate the position of LC layers.
Fig. 5
Fig. 5 The THz absorption spectra at the refractive indices of LC mixture n ˜ o (red curve) and n ˜ e (blue curve), (b) The simulated absorption efficiencies as a function of the operating frequency and refractive index of LC material.
Fig. 6
Fig. 6 For the s-polarized incident beam, (a) and (b) are two-dimensional absorption spectra as a function of the operating frequency and angle of incidence, respectively at the LC refractive index of and n ˜ o and n ˜ e (c), (d) and (e) are the spectral absorbance as a function of LC refractive index and angle of incidence, respectively at the three resonant modes of ƒ1, ƒ2 and ƒ3.
Fig. 7
Fig. 7 For the p-polarized incident beam, (a) and (b) are two-dimensional absorption spectra as a function of the operating frequency and angle of incidence, respectively at the LC refractive index of n ˜ o and n ˜ e ; (c), (d) and (e) are the spectral absorbance as a function of LC refractive index and angle of incidence, respectively at the three resonant modes of ƒ1, ƒ2 and ƒ3.

Metrics