Abstract

The speckle reduction for laser projectors has been vigorously studied because speckle causes a serious deterioration in image quality. Most speckle reduction methods can be categorized into wavelength diversity, angular diversity and polarization diversity, which are usually treated independently. In this paper, it is shown that the effect of wavelength diversity and angular diversity on speckle reduction is not independent, and that the effect of wavelength also depends on incidence and observation angles on screen. The speckle reduction effect by wavelength diversity is smaller when the angular diversity is larger. Also, the speckle reduction effect is investigated on various screens including matte and silver screens, and it is shown that the effect of wavelength diversity is larger on matte screen than on silver screen.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Speckle reduction in laser projection displays through angle and wavelength diversity

Trinh-Thi-Kim Tran, Øyvind Svensen, Xuyuan Chen, and Muhammad Nadeem Akram
Appl. Opt. 55(6) 1267-1274 (2016)

Speckle reduction in laser projection using microlens-array screens

Jaël Pauwels and Guy Verschaffelt
Opt. Express 25(4) 3180-3195 (2017)

Speckle reduction in laser projection using a dynamic deformable mirror

Thi-Kim-Trinh Tran, Xuyuan Chen, Øyvind Svensen, and Muhammad Nadeem Akram
Opt. Express 22(9) 11152-11166 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Kurashige, K. Ishida, and Y. Ohyagi, “Classification of subjective speckle for evaluation of laser display,” SID Int. Symp. Dig. Tech. Pap. 45, 419–422 (2014).
  2. J. D. Rigden and E. I. Gordon, “The Granularity of Scattered Optical Maser Light,” Proc. IRE50, 2367–2368 (1962).
  3. B. M. Oliver, “Sparkling Spots and Random Diffraction,” Proc. IEEE 51, 220–221 (1963).
  4. M. Elbaum, M. Greenebaum, and M. King, “A wavelength diversity technique for reduction of speckle size,” Opt. Commun. 5, 171–192 (1972).
  5. N. George and A. Jain, “Speckle Reduction Using Multiple Tones of Illumination,” Appl. Opt. 12(6), 1202–1212 (1973).
    [PubMed]
  6. J. C. Dainty, A. E. Ennos, M. Françon, J. W. Goodman, T. S. McKechnie, and G. Parry, Laser Speckle and Related Phenomena (Springer Berlin Heidelberg, 1975).
  7. J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE 4657, 131–137 (2002).
  8. J. W. Goodman, Speckle Phenomena in Optics (Roberts and Company Publishers, 2007).
  9. N. E. Yu, J. W. Choi, H. Kang, D.-K. Ko, S.-H. Fu, J.-W. Liou, A. H. Kung, H. J. Choi, B. J. Kim, M. Cha, and L.-H. Peng, “Speckle noise reduction on a laser projection display via a broadband green light source,” Opt. Express 22(3), 3547–3556 (2014).
    [PubMed]
  10. D. V. Kuksenkov, R. V. Roussev, S. Li, W. A. Wood, and C. M. Lynn, “Multiple-wavelength synthetic green laser source for speckle reduction,” Proc. SPIE 7917, 79170B (2011).
  11. M. N. Akram, Z. Tong, G. Ouyang, X. Chen, and V. Kartashov, “Laser speckle reduction due to spatial and angular diversity introduced by fast scanning micromirror,” Appl. Opt. 49(17), 3297–3304 (2010).
    [PubMed]
  12. L. Wang, T. Tschudi, T. Halldórsson, and P. R. Pétursson, “Speckle reduction in laser projection systems by diffractive optical elements,” Appl. Opt. 37(10), 1770–1775 (1998).
    [PubMed]
  13. S. Kubota and J. W. Goodman, “Very efficient speckle contrast reduction realized by moving diffuser device,” Appl. Opt. 49(23), 4385–4391 (2010).
    [PubMed]
  14. Y. Kuratomi, K. Sekiya, H. Satoh, T. Tomiyama, T. Kawakami, B. Katagiri, Y. Suzuki, and T. Uchida, “Speckle reduction mechanism in laser rear projection displays using a small moving diffuser,” J. Opt. Soc. Am. A 27(8), 1812–1817 (2010).
    [PubMed]
  15. P. Janssens and K. Malfait, “Future prospects of high-end laser projectors,” Proc. SPIE 7232, 72320Y (2009).
  16. A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).
  17. T.-T.-K. Tran, Ø. Svensen, X. Chen, and M. N. Akram, “Speckle reduction in laser projection displays through angle and wavelength diversity,” Appl. Opt. 55(6), 1267–1274 (2016).
    [PubMed]
  18. Z. Tong, W. Shen, S. Song, W. Cheng, Z. Cai, Y. Ma, L. Wei, W. Ma, L. Xiao, S. Jia, and X. Chen, “Combination of micro-scanning mirrors and multi-mode fibers for speckle reduction in high lumen laser projector applications,” Opt. Express 25(4), 3795–3804 (2017).
    [PubMed]
  19. S. Kubota, “Simulating the human eye in measurements of speckle from laser-based projection displays,” Appl. Opt. 53(17), 3814–3820 (2014).
    [PubMed]
  20. K. Suzuki, T. Fukui, S. Kubota, and Y. Furukawa, “Verification of speckle contrast measurement interrelation with observation distance,” Opt. Rev. 21, 94–97 (2014).
  21. S. Roelandt, Y. Meuret, G. Craggs, G. Verschaffelt, P. Janssens, and H. Thienpont, “Standardized speckle measurement method matched to human speckle perception in laser projection systems,” Opt. Express 20(8), 8770–8783 (2012).
    [PubMed]

2017 (1)

2016 (1)

2014 (3)

2012 (1)

2011 (1)

D. V. Kuksenkov, R. V. Roussev, S. Li, W. A. Wood, and C. M. Lynn, “Multiple-wavelength synthetic green laser source for speckle reduction,” Proc. SPIE 7917, 79170B (2011).

2010 (3)

2009 (1)

P. Janssens and K. Malfait, “Future prospects of high-end laser projectors,” Proc. SPIE 7232, 72320Y (2009).

2008 (1)

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).

2002 (1)

J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE 4657, 131–137 (2002).

1998 (1)

1973 (1)

1972 (1)

M. Elbaum, M. Greenebaum, and M. King, “A wavelength diversity technique for reduction of speckle size,” Opt. Commun. 5, 171–192 (1972).

1963 (1)

B. M. Oliver, “Sparkling Spots and Random Diffraction,” Proc. IEEE 51, 220–221 (1963).

Akram, M. N.

Cai, Z.

Cha, M.

Chen, X.

Cheng, W.

Choi, H. J.

Choi, J. W.

Craggs, G.

Elbaum, M.

M. Elbaum, M. Greenebaum, and M. King, “A wavelength diversity technique for reduction of speckle size,” Opt. Commun. 5, 171–192 (1972).

Fu, S.-H.

Fukui, T.

K. Suzuki, T. Fukui, S. Kubota, and Y. Furukawa, “Verification of speckle contrast measurement interrelation with observation distance,” Opt. Rev. 21, 94–97 (2014).

Furukawa, A.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).

Furukawa, Y.

K. Suzuki, T. Fukui, S. Kubota, and Y. Furukawa, “Verification of speckle contrast measurement interrelation with observation distance,” Opt. Rev. 21, 94–97 (2014).

George, N.

Goodman, J. W.

Gordon, E. I.

J. D. Rigden and E. I. Gordon, “The Granularity of Scattered Optical Maser Light,” Proc. IRE50, 2367–2368 (1962).

Greenebaum, M.

M. Elbaum, M. Greenebaum, and M. King, “A wavelength diversity technique for reduction of speckle size,” Opt. Commun. 5, 171–192 (1972).

Halldórsson, T.

Hirata, S.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).

Imanishi, D.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).

Ito, S.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).

Jain, A.

Janssens, P.

Jia, S.

Kang, H.

Kartashov, V.

Katagiri, B.

Kawakami, T.

Kim, B. J.

King, M.

M. Elbaum, M. Greenebaum, and M. King, “A wavelength diversity technique for reduction of speckle size,” Opt. Commun. 5, 171–192 (1972).

Ko, D.-K.

Kubota, S.

Kuksenkov, D. V.

D. V. Kuksenkov, R. V. Roussev, S. Li, W. A. Wood, and C. M. Lynn, “Multiple-wavelength synthetic green laser source for speckle reduction,” Proc. SPIE 7917, 79170B (2011).

Kung, A. H.

Kuratomi, Y.

Li, S.

D. V. Kuksenkov, R. V. Roussev, S. Li, W. A. Wood, and C. M. Lynn, “Multiple-wavelength synthetic green laser source for speckle reduction,” Proc. SPIE 7917, 79170B (2011).

Liou, J.-W.

Lynn, C. M.

D. V. Kuksenkov, R. V. Roussev, S. Li, W. A. Wood, and C. M. Lynn, “Multiple-wavelength synthetic green laser source for speckle reduction,” Proc. SPIE 7917, 79170B (2011).

Ma, W.

Ma, Y.

Malfait, K.

P. Janssens and K. Malfait, “Future prospects of high-end laser projectors,” Proc. SPIE 7232, 72320Y (2009).

Meuret, Y.

Ohse, N.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).

Oliver, B. M.

B. M. Oliver, “Sparkling Spots and Random Diffraction,” Proc. IEEE 51, 220–221 (1963).

Ouyang, G.

Peng, L.-H.

Pétursson, P. R.

Rigden, J. D.

J. D. Rigden and E. I. Gordon, “The Granularity of Scattered Optical Maser Light,” Proc. IRE50, 2367–2368 (1962).

Roelandt, S.

Roussev, R. V.

D. V. Kuksenkov, R. V. Roussev, S. Li, W. A. Wood, and C. M. Lynn, “Multiple-wavelength synthetic green laser source for speckle reduction,” Proc. SPIE 7917, 79170B (2011).

Sato, Y.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).

Satoh, H.

Sekiya, K.

Shen, W.

Song, S.

Suzuki, K.

K. Suzuki, T. Fukui, S. Kubota, and Y. Furukawa, “Verification of speckle contrast measurement interrelation with observation distance,” Opt. Rev. 21, 94–97 (2014).

Suzuki, Y.

Svensen, Ø.

Tamamura, K.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).

Thienpont, H.

Tomiyama, T.

Tong, Z.

Tran, T.-T.-K.

Trisnadi, J. I.

J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE 4657, 131–137 (2002).

Tschudi, T.

Uchida, T.

Verschaffelt, G.

Wakabayashi, K.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).

Wang, L.

Wei, L.

Wood, W. A.

D. V. Kuksenkov, R. V. Roussev, S. Li, W. A. Wood, and C. M. Lynn, “Multiple-wavelength synthetic green laser source for speckle reduction,” Proc. SPIE 7917, 79170B (2011).

Xiao, L.

Yu, N. E.

Appl. Opt. (6)

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

M. Elbaum, M. Greenebaum, and M. King, “A wavelength diversity technique for reduction of speckle size,” Opt. Commun. 5, 171–192 (1972).

Opt. Express (3)

Opt. Rev. (1)

K. Suzuki, T. Fukui, S. Kubota, and Y. Furukawa, “Verification of speckle contrast measurement interrelation with observation distance,” Opt. Rev. 21, 94–97 (2014).

Proc. IEEE (1)

B. M. Oliver, “Sparkling Spots and Random Diffraction,” Proc. IEEE 51, 220–221 (1963).

Proc. SPIE (4)

J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE 4657, 131–137 (2002).

D. V. Kuksenkov, R. V. Roussev, S. Li, W. A. Wood, and C. M. Lynn, “Multiple-wavelength synthetic green laser source for speckle reduction,” Proc. SPIE 7917, 79170B (2011).

P. Janssens and K. Malfait, “Future prospects of high-end laser projectors,” Proc. SPIE 7232, 72320Y (2009).

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).

Other (4)

J. W. Goodman, Speckle Phenomena in Optics (Roberts and Company Publishers, 2007).

J. C. Dainty, A. E. Ennos, M. Françon, J. W. Goodman, T. S. McKechnie, and G. Parry, Laser Speckle and Related Phenomena (Springer Berlin Heidelberg, 1975).

M. Kurashige, K. Ishida, and Y. Ohyagi, “Classification of subjective speckle for evaluation of laser display,” SID Int. Symp. Dig. Tech. Pap. 45, 419–422 (2014).

J. D. Rigden and E. I. Gordon, “The Granularity of Scattered Optical Maser Light,” Proc. IRE50, 2367–2368 (1962).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of an experimental setup.
Fig. 2
Fig. 2 The speckle contrast of two lasers divided by the average speckle contrast of each laser: (a) the incidence angle was fixed to 0° (normal incidence); (b) the observation angle was fixed to 0°; and (c) the CCD camera was set to capture the specular light.
Fig. 3
Fig. 3 The speckle contrast of two lasers divided by the average speckle contrast of each laser with different focal length. The incidence and observation angles were fixed to (θi, θo) = (0°, 17°).
Fig. 4
Fig. 4 Difference in the second term of Eq. (11) between two components of incident light with the same incident and observation angles θi1 = θi2 = 0°, θo1 = θo2 = 15° (red solid line), and with the same observation angles, but slightly different incident angles θi1 = 0°, θi2 = 0.1°, θo1 = θo2 = 15° (blue dashed line). The wavelength of the first component is 532 nm, and that of the second component is between 526 and 538 nm.
Fig. 5
Fig. 5 The speckle contrast of two lasers divided by the average speckle contrast of each laser on different screens.

Tables (1)

Tables Icon

Table 1 List of screens used in the experiment. Polarization extinction ratio was measured with the observation angle of 17° and the incident angle of 0°.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

C λ = R g (Δv) | μ(Δ q z ) | 2 dΔv ,
R g (Δv)= 0 g(v) g(v+Δv)dv,
| μ(Δ q z | 2 =exp( σ h 2 Δ q z 2 ),
Δ q z = 2π| Δv | c (cos θ o +cos θ i ),
g(v)= i A i 2 π δ v i exp( ( v v i δ v i /2 ) 2 ),
C λ = [ i,j A i A j exp( 2 ( v i v j ) 2 δ v i δ v j B ij 1+ B ij ) 1+ B ij ] 1 2 ,
B ij =2 π 2 δ v i v i δ v j v j σ h 2 λ i λ j (cos θ o +cos θ i ) 2 .
C Ω = M+K±1 MK ,
C Ω = 1 K .
C= C λ C Ω C σ ,
Φ(x,y)=2π h(x,y)(cos θ o +cos θ i ) λ +2πx sin θ o sin θ i λ ,

Metrics