Abstract

In this paper, we present a parametric study of high performance microdisk lasers at 1.55 μm telecom wavelength, monolithically grown on on-axis (001) Si substrates incorporating quantum dots (QDs) as gain elements. In the optimized structure, seven layers of QDs were adopted to provide a high gain as well as a suppressed inhomogeneous broadening. The same laser structure employing quantum wells (QWs) on Si was concurrently evaluated, showing a higher threshold and more dispersive quantum efficiency than the QDs. Finally, a statistical comparison of these Si-based QD microdisk lasers with those grown on InP native substrates was conducted, revealing somewhat higher thresholds but of the same order. The monolithically grown QD microlasers on Si also demonstrated excellent temperature stability, with a record high characteristic temperature of 277 K. This work thus offers helpful insight towards the optimization of reliable Si-based QD lasers at 1550 nm.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-low threshold InAs/GaAs quantum dot microdisk lasers on planar on-axis Si (001) substrates

Taojie Zhou, Mingchu Tang, Guohong Xiang, Xuan Fang, Xiu Liu, Boyuan Xiang, Suikong Hark, Mickael Martin, Marie-Leonor Touraton, Thierry Baron, Ying Lu, Siming Chen, Huiyun Liu, and Zhaoyu Zhang
Optica 6(4) 430-435 (2019)

1.3-μm InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon

Qiang Li, Yating Wan, Alan Y. Liu, Arthur C. Gossard, John E. Bowers, Evelyn L. Hu, and Kei May Lau
Opt. Express 24(18) 21038-21045 (2016)

1310 nm InAs quantum-dot microdisk lasers on SOI by hybrid epitaxy

Bin Zhang, Wen-Qi Wei, Jian-Huan Wang, Jie-Yin Zhang, Hui Cong, Qi Feng, Ting Wang, and Jian-Jun Zhang
Opt. Express 27(14) 19348-19358 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
  2. D. Liang, X. Huang, G. Kurczveil, M. Fiorentino, and R. G. Beausoleil, “Integrated finely tunable microring laser on silicon,” Nat. Photonics 10, 719–722 (2016).
  3. K. Preston, P. Dong, B. Schmidt, and M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92, 151104 (2008).
  4. D. Feng, S. Liao, P. Dong, N. N. Feng, H. Liang, D. Zheng, C. C. Kung, J. Fong, R. Shafiiha, J. Cunningham, and A. V. Krishnamoorthy, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95, 261105 (2009).
  5. S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25(5), 4632–4639 (2017).
    [PubMed]
  6. J. Yang, P. Bhattacharya, and Z. Mi, “High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on silicon with multiple-layer quantum-dot dislocation filters,” IEEE Trans. Electron Dev. 54, 2849–2855 (2007).
  7. B. Shi, Q. Li, and K. M. Lau, “Self-organized InAs/InAlGaAs quantum dots as dislocation filters for InP films on (001) Si,” J. Cryst. Growth 464, 28–32 (2017).
  8. A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photonics Res. 3, B1–B9 (2015).
  9. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
  10. A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
  11. M. Z. M. Khan, T. K. Ng, and B. S. Ooi, “Self-assembled InAs/InP quantum dots and quantum dashes: Material structures and devices,” Prog. Quantum Electron. 38, 237–313 (2014).
  12. B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).
  13. M. Liao, S. Chen, S. Hou, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).
  14. K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315, 37–47 (2011).
  15. Y. Gao, Z. Zhong, S. Feng, Y. Geng, H. Liang, A. W. Poon, and K. M. Lau, “High-speed normal-incidence pin InGaAs photodetectors grown on silicon substrates by MOCVD,” IEEE Photonics Technol. Lett. 24, 237–239 (2012).
  16. Y. Geng, S. Feng, A. W. Poon, and K. M. Lau, “High-speed InGaAs photodetectors by selective-area MOCVD toward optoelectronic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 20, 36–42 (2014).
  17. Q. Li, X. Zhou, C. W. Tang, and K. M. Lau, “Material and Device Characteristics of Metamorphic In0.53Ga0.47As MOSHEMTs Grown on GaAs and Si Substrates by MOCVD,” IEEE Trans. Electron Dev. 60, 4112–4118 (2013).
  18. R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, S. Hurtt, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, J. M. Ziari, F. Kish, and D. Welch, “InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 16, 1113–1125 (2010).
  19. B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photonics 4, 204–210 (2017).
  20. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
  21. D. Y. Chu, M. K. Chin, N. J. Sauer, Z. Xu, T. Y. Chang, and S. T. Ho, “1.5 μm InGaAs/InAlGaAs quantum-well microdisk lasers,” IEEE Photonics Technol. Lett. 5, 1353–1355 (1993).
  22. R. Nötzel, S. Anantathanasarn, R. P. Van Veldhoven, F. W. Van Otten, T. J. Eijkemans, and A. Trampert, “Self-assembled InAs/InP quantum dots for telecom applications in the 1.55 µm wavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544 (2006).
  23. M. Lipinski, H. Schuler, O. Schmidt, K. Eberl, and N. Jin-Phillipp, “Strain-induced material intermixing of InAs quantum dots in GaAs,” Appl. Phys. Lett. 77, 1789–1791 (2000).
  24. I. Aharonovich, A. Woolf, K. J. Russell, T. Zhu, N. Niu, M. J. Kappers, R. A. Oliver, and E. L. Hu, “Low threshold, room-temperature microdisk lasers in the blue spectral range,” Appl. Phys. Lett. 103, 021112 (2013).
  25. D. Lacombe, A. Ponchet, J. M. Gérard, and O. Cabrol, “Structural study of InAs quantum boxes grown by molecular beam epitaxy on a (001) GaAs-on-Si substrate,” Appl. Phys. Lett. 70, 2398–2400 (1997).
  26. S. Zhu, B. Shi, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 μm band low-threshold, continuous-wave lasing from InAs/InAlGaAs quantum dot microdisks,” Opt. Lett. 42(4), 679–682 (2017).
    [PubMed]
  27. S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photonics 1, 638–642 (2014).
  28. Ž. Gačević, A. Das, J. Teubert, Y. Kotsar, P. K. Kandaswamy, T. Kehagias, T. Koukoula, Ph. Komninou, and E. Monroy, “Internal quantum efficiency of III-nitride quantum dot superlattices grown by plasma-assisted molecular-beam epitaxy,” J. Appl. Phys. 109, 103501 (2011).
  29. F. Klopf, J. P. Reithmaier, and A. Forchel, “Highly efficient GaInAs/(Al) GaAs quantum-dot lasers based on a single active layer versus 980 nm high-power quantum-well lasers,” Appl. Phys. Lett. 77, 1419–1421 (2000).
  30. G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The Influence of Quantum-Well Composition on the Performance of Quantum Dot Lasers Using InAs/InGaAs Dots-in-a-Well (DWELL) Structures,” IEEE J. Quantum Electron. 36, 1272–1279 (2000).
  31. H. A. R. El-Ella, F. Rol, M. J. Kappers, K. J. Russell, E. L. Hu, and R. A. Oliver, “Dislocation density-dependent quality factors in InGaN quantum dot containing microdisks,” Appl. Phys. Lett. 98, 131909 (2011).
  32. J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).
  33. Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).
  34. J. Van Campenhout, P. Rojo-Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, F. Jean-Marc, and R. Baets, “Thermal characterization of electrically injected thin-film InGaAsP microdisk lasers on Si,” J. Lightwave Technol. 25, 1543–1548 (2007).
  35. T. Ide, T. Baba, J. Tatebayashi, S. Iwamoto, T. Nakaoka, and Y. Arakawa, “Room temperature continuous wave lasing in InAs quantum-dot microdisks with air cladding,” Opt. Express 13(5), 1615–1620 (2005).
    [PubMed]
  36. M. Wu, Y. Chen, J. Kuo, M. Chin, and A. Sergent, “High temperature, high power InGaAs/GaAs quantum-well lasers with lattice-matched InGaP cladding layers,” IEEE Photonics Technol. Lett. 4, 676–679 (1992).
  37. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
  38. Z. M. Fang, K. Y. Ma, D. H. Jaw, R. M. Cohen, and G. B. Stringfellow, “Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy,” J. Appl. Phys. 67, 7034 (1990).
  39. R. Debusmann, T. W. Schlereth, S. Gerhard, W. Kaiser, S. Höfling, and A. Forchel, “Gain Studies on Quantum-Dot Lasers With Temperature-Stable Emission Wavelength,” IEEE J. Quantum Electron. 44, 175 (2008).

2017 (6)

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25(5), 4632–4639 (2017).
[PubMed]

B. Shi, Q. Li, and K. M. Lau, “Self-organized InAs/InAlGaAs quantum dots as dislocation filters for InP films on (001) Si,” J. Cryst. Growth 464, 28–32 (2017).

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).

M. Liao, S. Chen, S. Hou, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photonics 4, 204–210 (2017).

S. Zhu, B. Shi, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 μm band low-threshold, continuous-wave lasing from InAs/InAlGaAs quantum dot microdisks,” Opt. Lett. 42(4), 679–682 (2017).
[PubMed]

2016 (3)

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).

D. Liang, X. Huang, G. Kurczveil, M. Fiorentino, and R. G. Beausoleil, “Integrated finely tunable microring laser on silicon,” Nat. Photonics 10, 719–722 (2016).

2015 (3)

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photonics Res. 3, B1–B9 (2015).

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).

2014 (4)

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photonics 1, 638–642 (2014).

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).

M. Z. M. Khan, T. K. Ng, and B. S. Ooi, “Self-assembled InAs/InP quantum dots and quantum dashes: Material structures and devices,” Prog. Quantum Electron. 38, 237–313 (2014).

Y. Geng, S. Feng, A. W. Poon, and K. M. Lau, “High-speed InGaAs photodetectors by selective-area MOCVD toward optoelectronic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 20, 36–42 (2014).

2013 (2)

Q. Li, X. Zhou, C. W. Tang, and K. M. Lau, “Material and Device Characteristics of Metamorphic In0.53Ga0.47As MOSHEMTs Grown on GaAs and Si Substrates by MOCVD,” IEEE Trans. Electron Dev. 60, 4112–4118 (2013).

I. Aharonovich, A. Woolf, K. J. Russell, T. Zhu, N. Niu, M. J. Kappers, R. A. Oliver, and E. L. Hu, “Low threshold, room-temperature microdisk lasers in the blue spectral range,” Appl. Phys. Lett. 103, 021112 (2013).

2012 (1)

Y. Gao, Z. Zhong, S. Feng, Y. Geng, H. Liang, A. W. Poon, and K. M. Lau, “High-speed normal-incidence pin InGaAs photodetectors grown on silicon substrates by MOCVD,” IEEE Photonics Technol. Lett. 24, 237–239 (2012).

2011 (3)

Ž. Gačević, A. Das, J. Teubert, Y. Kotsar, P. K. Kandaswamy, T. Kehagias, T. Koukoula, Ph. Komninou, and E. Monroy, “Internal quantum efficiency of III-nitride quantum dot superlattices grown by plasma-assisted molecular-beam epitaxy,” J. Appl. Phys. 109, 103501 (2011).

H. A. R. El-Ella, F. Rol, M. J. Kappers, K. J. Russell, E. L. Hu, and R. A. Oliver, “Dislocation density-dependent quality factors in InGaN quantum dot containing microdisks,” Appl. Phys. Lett. 98, 131909 (2011).

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315, 37–47 (2011).

2010 (1)

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, S. Hurtt, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, J. M. Ziari, F. Kish, and D. Welch, “InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 16, 1113–1125 (2010).

2009 (1)

D. Feng, S. Liao, P. Dong, N. N. Feng, H. Liang, D. Zheng, C. C. Kung, J. Fong, R. Shafiiha, J. Cunningham, and A. V. Krishnamoorthy, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95, 261105 (2009).

2008 (2)

K. Preston, P. Dong, B. Schmidt, and M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92, 151104 (2008).

R. Debusmann, T. W. Schlereth, S. Gerhard, W. Kaiser, S. Höfling, and A. Forchel, “Gain Studies on Quantum-Dot Lasers With Temperature-Stable Emission Wavelength,” IEEE J. Quantum Electron. 44, 175 (2008).

2007 (2)

J. Yang, P. Bhattacharya, and Z. Mi, “High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on silicon with multiple-layer quantum-dot dislocation filters,” IEEE Trans. Electron Dev. 54, 2849–2855 (2007).

J. Van Campenhout, P. Rojo-Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, F. Jean-Marc, and R. Baets, “Thermal characterization of electrically injected thin-film InGaAsP microdisk lasers on Si,” J. Lightwave Technol. 25, 1543–1548 (2007).

2006 (1)

R. Nötzel, S. Anantathanasarn, R. P. Van Veldhoven, F. W. Van Otten, T. J. Eijkemans, and A. Trampert, “Self-assembled InAs/InP quantum dots for telecom applications in the 1.55 µm wavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544 (2006).

2005 (1)

2000 (3)

M. Lipinski, H. Schuler, O. Schmidt, K. Eberl, and N. Jin-Phillipp, “Strain-induced material intermixing of InAs quantum dots in GaAs,” Appl. Phys. Lett. 77, 1789–1791 (2000).

F. Klopf, J. P. Reithmaier, and A. Forchel, “Highly efficient GaInAs/(Al) GaAs quantum-dot lasers based on a single active layer versus 980 nm high-power quantum-well lasers,” Appl. Phys. Lett. 77, 1419–1421 (2000).

G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The Influence of Quantum-Well Composition on the Performance of Quantum Dot Lasers Using InAs/InGaAs Dots-in-a-Well (DWELL) Structures,” IEEE J. Quantum Electron. 36, 1272–1279 (2000).

1997 (1)

D. Lacombe, A. Ponchet, J. M. Gérard, and O. Cabrol, “Structural study of InAs quantum boxes grown by molecular beam epitaxy on a (001) GaAs-on-Si substrate,” Appl. Phys. Lett. 70, 2398–2400 (1997).

1993 (1)

D. Y. Chu, M. K. Chin, N. J. Sauer, Z. Xu, T. Y. Chang, and S. T. Ho, “1.5 μm InGaAs/InAlGaAs quantum-well microdisk lasers,” IEEE Photonics Technol. Lett. 5, 1353–1355 (1993).

1992 (2)

M. Wu, Y. Chen, J. Kuo, M. Chin, and A. Sergent, “High temperature, high power InGaAs/GaAs quantum-well lasers with lattice-matched InGaP cladding layers,” IEEE Photonics Technol. Lett. 4, 676–679 (1992).

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).

1990 (1)

Z. M. Fang, K. Y. Ma, D. H. Jaw, R. M. Cohen, and G. B. Stringfellow, “Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy,” J. Appl. Phys. 67, 7034 (1990).

1967 (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).

Absil, P.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).

Aharonovich, I.

I. Aharonovich, A. Woolf, K. J. Russell, T. Zhu, N. Niu, M. J. Kappers, R. A. Oliver, and E. L. Hu, “Low threshold, room-temperature microdisk lasers in the blue spectral range,” Appl. Phys. Lett. 103, 021112 (2013).

Anantathanasarn, S.

R. Nötzel, S. Anantathanasarn, R. P. Van Veldhoven, F. W. Van Otten, T. J. Eijkemans, and A. Trampert, “Self-assembled InAs/InP quantum dots for telecom applications in the 1.55 µm wavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544 (2006).

Arakawa, Y.

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).

T. Ide, T. Baba, J. Tatebayashi, S. Iwamoto, T. Nakaoka, and Y. Arakawa, “Room temperature continuous wave lasing in InAs quantum-dot microdisks with air cladding,” Opt. Express 13(5), 1615–1620 (2005).
[PubMed]

Baba, T.

Baets, R.

Baron, T.

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25(5), 4632–4639 (2017).
[PubMed]

M. Liao, S. Chen, S. Hou, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).

Beausoleil, R. G.

D. Liang, X. Huang, G. Kurczveil, M. Fiorentino, and R. G. Beausoleil, “Integrated finely tunable microring laser on silicon,” Nat. Photonics 10, 719–722 (2016).

Benamara, M.

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photonics 1, 638–642 (2014).

Beyer, A.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315, 37–47 (2011).

Bhattacharya, P.

J. Yang, P. Bhattacharya, and Z. Mi, “High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on silicon with multiple-layer quantum-dot dislocation filters,” IEEE Trans. Electron Dev. 54, 2849–2855 (2007).

Bowers, J. E.

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photonics Res. 3, B1–B9 (2015).

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).

Cabrol, O.

D. Lacombe, A. Ponchet, J. M. Gérard, and O. Cabrol, “Structural study of InAs quantum boxes grown by molecular beam epitaxy on a (001) GaAs-on-Si substrate,” Appl. Phys. Lett. 70, 2398–2400 (1997).

Chang, T. Y.

D. Y. Chu, M. K. Chin, N. J. Sauer, Z. Xu, T. Y. Chang, and S. T. Ho, “1.5 μm InGaAs/InAlGaAs quantum-well microdisk lasers,” IEEE Photonics Technol. Lett. 5, 1353–1355 (1993).

Chen, S.

M. Liao, S. Chen, S. Hou, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).

M. Liao, S. Chen, S. Hou, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25(5), 4632–4639 (2017).
[PubMed]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photonics 1, 638–642 (2014).

Chen, Y.

M. Wu, Y. Chen, J. Kuo, M. Chin, and A. Sergent, “High temperature, high power InGaAs/GaAs quantum-well lasers with lattice-matched InGaP cladding layers,” IEEE Photonics Technol. Lett. 4, 676–679 (1992).

Chin, M.

M. Wu, Y. Chen, J. Kuo, M. Chin, and A. Sergent, “High temperature, high power InGaAs/GaAs quantum-well lasers with lattice-matched InGaP cladding layers,” IEEE Photonics Technol. Lett. 4, 676–679 (1992).

Chin, M. K.

D. Y. Chu, M. K. Chin, N. J. Sauer, Z. Xu, T. Y. Chang, and S. T. Ho, “1.5 μm InGaAs/InAlGaAs quantum-well microdisk lasers,” IEEE Photonics Technol. Lett. 5, 1353–1355 (1993).

Chu, D. Y.

D. Y. Chu, M. K. Chin, N. J. Sauer, Z. Xu, T. Y. Chang, and S. T. Ho, “1.5 μm InGaAs/InAlGaAs quantum-well microdisk lasers,” IEEE Photonics Technol. Lett. 5, 1353–1355 (1993).

Cohen, R. M.

Z. M. Fang, K. Y. Ma, D. H. Jaw, R. M. Cohen, and G. B. Stringfellow, “Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy,” J. Appl. Phys. 67, 7034 (1990).

Corzine, S.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, S. Hurtt, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, J. M. Ziari, F. Kish, and D. Welch, “InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 16, 1113–1125 (2010).

Cunningham, J.

D. Feng, S. Liao, P. Dong, N. N. Feng, H. Liang, D. Zheng, C. C. Kung, J. Fong, R. Shafiiha, J. Cunningham, and A. V. Krishnamoorthy, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95, 261105 (2009).

Das, A.

Ž. Gačević, A. Das, J. Teubert, Y. Kotsar, P. K. Kandaswamy, T. Kehagias, T. Koukoula, Ph. Komninou, and E. Monroy, “Internal quantum efficiency of III-nitride quantum dot superlattices grown by plasma-assisted molecular-beam epitaxy,” J. Appl. Phys. 109, 103501 (2011).

Debusmann, R.

R. Debusmann, T. W. Schlereth, S. Gerhard, W. Kaiser, S. Höfling, and A. Forchel, “Gain Studies on Quantum-Dot Lasers With Temperature-Stable Emission Wavelength,” IEEE J. Quantum Electron. 44, 175 (2008).

Dentai, A.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, S. Hurtt, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, J. M. Ziari, F. Kish, and D. Welch, “InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 16, 1113–1125 (2010).

Di Cioccio, L.

Dong, P.

D. Feng, S. Liao, P. Dong, N. N. Feng, H. Liang, D. Zheng, C. C. Kung, J. Fong, R. Shafiiha, J. Cunningham, and A. V. Krishnamoorthy, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95, 261105 (2009).

K. Preston, P. Dong, B. Schmidt, and M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92, 151104 (2008).

Dorogan, V. G.

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photonics 1, 638–642 (2014).

Eberl, K.

M. Lipinski, H. Schuler, O. Schmidt, K. Eberl, and N. Jin-Phillipp, “Strain-induced material intermixing of InAs quantum dots in GaAs,” Appl. Phys. Lett. 77, 1789–1791 (2000).

Eijkemans, T. J.

R. Nötzel, S. Anantathanasarn, R. P. Van Veldhoven, F. W. Van Otten, T. J. Eijkemans, and A. Trampert, “Self-assembled InAs/InP quantum dots for telecom applications in the 1.55 µm wavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544 (2006).

El-Ella, H. A. R.

H. A. R. El-Ella, F. Rol, M. J. Kappers, K. J. Russell, E. L. Hu, and R. A. Oliver, “Dislocation density-dependent quality factors in InGaN quantum dot containing microdisks,” Appl. Phys. Lett. 98, 131909 (2011).

Elliott, S. N.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).

Evans, P.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, S. Hurtt, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, J. M. Ziari, F. Kish, and D. Welch, “InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 16, 1113–1125 (2010).

Fang, Z. M.

Z. M. Fang, K. Y. Ma, D. H. Jaw, R. M. Cohen, and G. B. Stringfellow, “Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy,” J. Appl. Phys. 67, 7034 (1990).

Fastenau, J. M.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).

Feng, D.

D. Feng, S. Liao, P. Dong, N. N. Feng, H. Liang, D. Zheng, C. C. Kung, J. Fong, R. Shafiiha, J. Cunningham, and A. V. Krishnamoorthy, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95, 261105 (2009).

Feng, N. N.

D. Feng, S. Liao, P. Dong, N. N. Feng, H. Liang, D. Zheng, C. C. Kung, J. Fong, R. Shafiiha, J. Cunningham, and A. V. Krishnamoorthy, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95, 261105 (2009).

Feng, S.

Y. Geng, S. Feng, A. W. Poon, and K. M. Lau, “High-speed InGaAs photodetectors by selective-area MOCVD toward optoelectronic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 20, 36–42 (2014).

Y. Gao, Z. Zhong, S. Feng, Y. Geng, H. Liang, A. W. Poon, and K. M. Lau, “High-speed normal-incidence pin InGaAs photodetectors grown on silicon substrates by MOCVD,” IEEE Photonics Technol. Lett. 24, 237–239 (2012).

Fiorentino, M.

D. Liang, X. Huang, G. Kurczveil, M. Fiorentino, and R. G. Beausoleil, “Integrated finely tunable microring laser on silicon,” Nat. Photonics 10, 719–722 (2016).

Fong, J.

D. Feng, S. Liao, P. Dong, N. N. Feng, H. Liang, D. Zheng, C. C. Kung, J. Fong, R. Shafiiha, J. Cunningham, and A. V. Krishnamoorthy, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95, 261105 (2009).

Forchel, A.

R. Debusmann, T. W. Schlereth, S. Gerhard, W. Kaiser, S. Höfling, and A. Forchel, “Gain Studies on Quantum-Dot Lasers With Temperature-Stable Emission Wavelength,” IEEE J. Quantum Electron. 44, 175 (2008).

F. Klopf, J. P. Reithmaier, and A. Forchel, “Highly efficient GaInAs/(Al) GaAs quantum-dot lasers based on a single active layer versus 980 nm high-power quantum-well lasers,” Appl. Phys. Lett. 77, 1419–1421 (2000).

Gacevic, Ž.

Ž. Gačević, A. Das, J. Teubert, Y. Kotsar, P. K. Kandaswamy, T. Kehagias, T. Koukoula, Ph. Komninou, and E. Monroy, “Internal quantum efficiency of III-nitride quantum dot superlattices grown by plasma-assisted molecular-beam epitaxy,” J. Appl. Phys. 109, 103501 (2011).

Gao, Y.

Y. Gao, Z. Zhong, S. Feng, Y. Geng, H. Liang, A. W. Poon, and K. M. Lau, “High-speed normal-incidence pin InGaAs photodetectors grown on silicon substrates by MOCVD,” IEEE Photonics Technol. Lett. 24, 237–239 (2012).

Geng, Y.

Y. Geng, S. Feng, A. W. Poon, and K. M. Lau, “High-speed InGaAs photodetectors by selective-area MOCVD toward optoelectronic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 20, 36–42 (2014).

Y. Gao, Z. Zhong, S. Feng, Y. Geng, H. Liang, A. W. Poon, and K. M. Lau, “High-speed normal-incidence pin InGaAs photodetectors grown on silicon substrates by MOCVD,” IEEE Photonics Technol. Lett. 24, 237–239 (2012).

Gérard, J. M.

D. Lacombe, A. Ponchet, J. M. Gérard, and O. Cabrol, “Structural study of InAs quantum boxes grown by molecular beam epitaxy on a (001) GaAs-on-Si substrate,” Appl. Phys. Lett. 70, 2398–2400 (1997).

Gerhard, S.

R. Debusmann, T. W. Schlereth, S. Gerhard, W. Kaiser, S. Höfling, and A. Forchel, “Gain Studies on Quantum-Dot Lasers With Temperature-Stable Emission Wavelength,” IEEE J. Quantum Electron. 44, 175 (2008).

Gossard, A. C.

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photonics Res. 3, B1–B9 (2015).

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).

Gray, A. L.

G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The Influence of Quantum-Well Composition on the Performance of Quantum Dot Lasers Using InAs/InGaAs Dots-in-a-Well (DWELL) Structures,” IEEE J. Quantum Electron. 36, 1272–1279 (2000).

Guo, W.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).

Ho, J.

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).

Ho, S. T.

D. Y. Chu, M. K. Chin, N. J. Sauer, Z. Xu, T. Y. Chang, and S. T. Ho, “1.5 μm InGaAs/InAlGaAs quantum-well microdisk lasers,” IEEE Photonics Technol. Lett. 5, 1353–1355 (1993).

Höfling, S.

R. Debusmann, T. W. Schlereth, S. Gerhard, W. Kaiser, S. Höfling, and A. Forchel, “Gain Studies on Quantum-Dot Lasers With Temperature-Stable Emission Wavelength,” IEEE J. Quantum Electron. 44, 175 (2008).

Hou, S.

M. Liao, S. Chen, S. Hou, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).

Hu, E. L.

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photonics 4, 204–210 (2017).

S. Zhu, B. Shi, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 μm band low-threshold, continuous-wave lasing from InAs/InAlGaAs quantum dot microdisks,” Opt. Lett. 42(4), 679–682 (2017).
[PubMed]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).

I. Aharonovich, A. Woolf, K. J. Russell, T. Zhu, N. Niu, M. J. Kappers, R. A. Oliver, and E. L. Hu, “Low threshold, room-temperature microdisk lasers in the blue spectral range,” Appl. Phys. Lett. 103, 021112 (2013).

H. A. R. El-Ella, F. Rol, M. J. Kappers, K. J. Russell, E. L. Hu, and R. A. Oliver, “Dislocation density-dependent quality factors in InGaN quantum dot containing microdisks,” Appl. Phys. Lett. 98, 131909 (2011).

Huang, X.

D. Liang, X. Huang, G. Kurczveil, M. Fiorentino, and R. G. Beausoleil, “Integrated finely tunable microring laser on silicon,” Nat. Photonics 10, 719–722 (2016).

Hurtt, S.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, S. Hurtt, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, J. M. Ziari, F. Kish, and D. Welch, “InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 16, 1113–1125 (2010).

Ide, T.

Iwamoto, S.

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).

T. Ide, T. Baba, J. Tatebayashi, S. Iwamoto, T. Nakaoka, and Y. Arakawa, “Room temperature continuous wave lasing in InAs quantum-dot microdisks with air cladding,” Opt. Express 13(5), 1615–1620 (2005).
[PubMed]

Jaw, D. H.

Z. M. Fang, K. Y. Ma, D. H. Jaw, R. M. Cohen, and G. B. Stringfellow, “Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy,” J. Appl. Phys. 67, 7034 (1990).

Jean-Marc, F.

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photonics 1, 638–642 (2014).

Jin, C.

M. Liao, S. Chen, S. Hou, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).

Jin-Phillipp, N.

M. Lipinski, H. Schuler, O. Schmidt, K. Eberl, and N. Jin-Phillipp, “Strain-induced material intermixing of InAs quantum dots in GaAs,” Appl. Phys. Lett. 77, 1789–1791 (2000).

Joyner, C.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, S. Hurtt, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, J. M. Ziari, F. Kish, and D. Welch, “InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 16, 1113–1125 (2010).

Kaiser, W.

R. Debusmann, T. W. Schlereth, S. Gerhard, W. Kaiser, S. Höfling, and A. Forchel, “Gain Studies on Quantum-Dot Lasers With Temperature-Stable Emission Wavelength,” IEEE J. Quantum Electron. 44, 175 (2008).

Kako, S.

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).

Kandaswamy, P. K.

Ž. Gačević, A. Das, J. Teubert, Y. Kotsar, P. K. Kandaswamy, T. Kehagias, T. Koukoula, Ph. Komninou, and E. Monroy, “Internal quantum efficiency of III-nitride quantum dot superlattices grown by plasma-assisted molecular-beam epitaxy,” J. Appl. Phys. 109, 103501 (2011).

Kappers, M. J.

I. Aharonovich, A. Woolf, K. J. Russell, T. Zhu, N. Niu, M. J. Kappers, R. A. Oliver, and E. L. Hu, “Low threshold, room-temperature microdisk lasers in the blue spectral range,” Appl. Phys. Lett. 103, 021112 (2013).

H. A. R. El-Ella, F. Rol, M. J. Kappers, K. J. Russell, E. L. Hu, and R. A. Oliver, “Dislocation density-dependent quality factors in InGaN quantum dot containing microdisks,” Appl. Phys. Lett. 98, 131909 (2011).

Kato, M.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, S. Hurtt, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, J. M. Ziari, F. Kish, and D. Welch, “InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 16, 1113–1125 (2010).

Kehagias, T.

Ž. Gačević, A. Das, J. Teubert, Y. Kotsar, P. K. Kandaswamy, T. Kehagias, T. Koukoula, Ph. Komninou, and E. Monroy, “Internal quantum efficiency of III-nitride quantum dot superlattices grown by plasma-assisted molecular-beam epitaxy,” J. Appl. Phys. 109, 103501 (2011).

Kennedy, K.

M. Liao, S. Chen, S. Hou, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).

Khan, M. Z. M.

M. Z. M. Khan, T. K. Ng, and B. S. Ooi, “Self-assembled InAs/InP quantum dots and quantum dashes: Material structures and devices,” Prog. Quantum Electron. 38, 237–313 (2014).

Kish, F.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, S. Hurtt, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, J. M. Ziari, F. Kish, and D. Welch, “InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 16, 1113–1125 (2010).

Klopf, F.

F. Klopf, J. P. Reithmaier, and A. Forchel, “Highly efficient GaInAs/(Al) GaAs quantum-dot lasers based on a single active layer versus 980 nm high-power quantum-well lasers,” Appl. Phys. Lett. 77, 1419–1421 (2000).

Komninou, Ph.

Ž. Gačević, A. Das, J. Teubert, Y. Kotsar, P. K. Kandaswamy, T. Kehagias, T. Koukoula, Ph. Komninou, and E. Monroy, “Internal quantum efficiency of III-nitride quantum dot superlattices grown by plasma-assisted molecular-beam epitaxy,” J. Appl. Phys. 109, 103501 (2011).

Kotsar, Y.

Ž. Gačević, A. Das, J. Teubert, Y. Kotsar, P. K. Kandaswamy, T. Kehagias, T. Koukoula, Ph. Komninou, and E. Monroy, “Internal quantum efficiency of III-nitride quantum dot superlattices grown by plasma-assisted molecular-beam epitaxy,” J. Appl. Phys. 109, 103501 (2011).

Koukoula, T.

Ž. Gačević, A. Das, J. Teubert, Y. Kotsar, P. K. Kandaswamy, T. Kehagias, T. Koukoula, Ph. Komninou, and E. Monroy, “Internal quantum efficiency of III-nitride quantum dot superlattices grown by plasma-assisted molecular-beam epitaxy,” J. Appl. Phys. 109, 103501 (2011).

Krishnamoorthy, A. V.

D. Feng, S. Liao, P. Dong, N. N. Feng, H. Liang, D. Zheng, C. C. Kung, J. Fong, R. Shafiiha, J. Cunningham, and A. V. Krishnamoorthy, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95, 261105 (2009).

Kumar, S.

M. Liao, S. Chen, S. Hou, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).

Kunert, B.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315, 37–47 (2011).

Kung, C. C.

D. Feng, S. Liao, P. Dong, N. N. Feng, H. Liang, D. Zheng, C. C. Kung, J. Fong, R. Shafiiha, J. Cunningham, and A. V. Krishnamoorthy, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95, 261105 (2009).

Kuo, J.

M. Wu, Y. Chen, J. Kuo, M. Chin, and A. Sergent, “High temperature, high power InGaAs/GaAs quantum-well lasers with lattice-matched InGaP cladding layers,” IEEE Photonics Technol. Lett. 4, 676–679 (1992).

Kurczveil, G.

D. Liang, X. Huang, G. Kurczveil, M. Fiorentino, and R. G. Beausoleil, “Integrated finely tunable microring laser on silicon,” Nat. Photonics 10, 719–722 (2016).

Lacombe, D.

D. Lacombe, A. Ponchet, J. M. Gérard, and O. Cabrol, “Structural study of InAs quantum boxes grown by molecular beam epitaxy on a (001) GaAs-on-Si substrate,” Appl. Phys. Lett. 70, 2398–2400 (1997).

Lau, K. M.

S. Zhu, B. Shi, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 μm band low-threshold, continuous-wave lasing from InAs/InAlGaAs quantum dot microdisks,” Opt. Lett. 42(4), 679–682 (2017).
[PubMed]

B. Shi, Q. Li, and K. M. Lau, “Self-organized InAs/InAlGaAs quantum dots as dislocation filters for InP films on (001) Si,” J. Cryst. Growth 464, 28–32 (2017).

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photonics 4, 204–210 (2017).

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).

Y. Geng, S. Feng, A. W. Poon, and K. M. Lau, “High-speed InGaAs photodetectors by selective-area MOCVD toward optoelectronic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 20, 36–42 (2014).

Q. Li, X. Zhou, C. W. Tang, and K. M. Lau, “Material and Device Characteristics of Metamorphic In0.53Ga0.47As MOSHEMTs Grown on GaAs and Si Substrates by MOCVD,” IEEE Trans. Electron Dev. 60, 4112–4118 (2013).

Y. Gao, Z. Zhong, S. Feng, Y. Geng, H. Liang, A. W. Poon, and K. M. Lau, “High-speed normal-incidence pin InGaAs photodetectors grown on silicon substrates by MOCVD,” IEEE Photonics Technol. Lett. 24, 237–239 (2012).

Lester, L. F.

G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The Influence of Quantum-Well Composition on the Performance of Quantum Dot Lasers Using InAs/InGaAs Dots-in-a-Well (DWELL) Structures,” IEEE J. Quantum Electron. 36, 1272–1279 (2000).

Levi, A. F. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).

Li, H.

G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The Influence of Quantum-Well Composition on the Performance of Quantum Dot Lasers Using InAs/InGaAs Dots-in-a-Well (DWELL) Structures,” IEEE J. Quantum Electron. 36, 1272–1279 (2000).

Li, Q.

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photonics 4, 204–210 (2017).

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).

B. Shi, Q. Li, and K. M. Lau, “Self-organized InAs/InAlGaAs quantum dots as dislocation filters for InP films on (001) Si,” J. Cryst. Growth 464, 28–32 (2017).

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).

Q. Li, X. Zhou, C. W. Tang, and K. M. Lau, “Material and Device Characteristics of Metamorphic In0.53Ga0.47As MOSHEMTs Grown on GaAs and Si Substrates by MOCVD,” IEEE Trans. Electron Dev. 60, 4112–4118 (2013).

Li, W.

M. Liao, S. Chen, S. Hou, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).

Liang, D.

D. Liang, X. Huang, G. Kurczveil, M. Fiorentino, and R. G. Beausoleil, “Integrated finely tunable microring laser on silicon,” Nat. Photonics 10, 719–722 (2016).

Liang, H.

Y. Gao, Z. Zhong, S. Feng, Y. Geng, H. Liang, A. W. Poon, and K. M. Lau, “High-speed normal-incidence pin InGaAs photodetectors grown on silicon substrates by MOCVD,” IEEE Photonics Technol. Lett. 24, 237–239 (2012).

D. Feng, S. Liao, P. Dong, N. N. Feng, H. Liang, D. Zheng, C. C. Kung, J. Fong, R. Shafiiha, J. Cunningham, and A. V. Krishnamoorthy, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95, 261105 (2009).

Liao, M.

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25(5), 4632–4639 (2017).
[PubMed]

M. Liao, S. Chen, S. Hou, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).

Liao, S.

D. Feng, S. Liao, P. Dong, N. N. Feng, H. Liang, D. Zheng, C. C. Kung, J. Fong, R. Shafiiha, J. Cunningham, and A. V. Krishnamoorthy, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95, 261105 (2009).

Lipinski, M.

M. Lipinski, H. Schuler, O. Schmidt, K. Eberl, and N. Jin-Phillipp, “Strain-induced material intermixing of InAs quantum dots in GaAs,” Appl. Phys. Lett. 77, 1789–1791 (2000).

Lipson, M.

K. Preston, P. Dong, B. Schmidt, and M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92, 151104 (2008).

Liu, A. W. K.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).

Liu, A. Y.

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photonics Res. 3, B1–B9 (2015).

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).

Liu, G. T.

G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The Influence of Quantum-Well Composition on the Performance of Quantum Dot Lasers Using InAs/InGaAs Dots-in-a-Well (DWELL) Structures,” IEEE J. Quantum Electron. 36, 1272–1279 (2000).

Liu, H.

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25(5), 4632–4639 (2017).
[PubMed]

M. Liao, S. Chen, S. Hou, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photonics 1, 638–642 (2014).

Logan, R. A.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).

Lubyshev, D.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).

Ma, K. Y.

Z. M. Fang, K. Y. Ma, D. H. Jaw, R. M. Cohen, and G. B. Stringfellow, “Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy,” J. Appl. Phys. 67, 7034 (1990).

Malloy, K. J.

G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The Influence of Quantum-Well Composition on the Performance of Quantum Dot Lasers Using InAs/InGaAs Dots-in-a-Well (DWELL) Structures,” IEEE J. Quantum Electron. 36, 1272–1279 (2000).

Martin, M.

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25(5), 4632–4639 (2017).
[PubMed]

M. Liao, S. Chen, S. Hou, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).

Mazur, Y. I.

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photonics 1, 638–642 (2014).

McCall, S. L.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).

Merckling, C.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).

Mi, Z.

J. Yang, P. Bhattacharya, and Z. Mi, “High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on silicon with multiple-layer quantum-dot dislocation filters,” IEEE Trans. Electron Dev. 54, 2849–2855 (2007).

Missey, M.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, S. Hurtt, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, J. M. Ziari, F. Kish, and D. Welch, “InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 16, 1113–1125 (2010).

Monroy, E.

Ž. Gačević, A. Das, J. Teubert, Y. Kotsar, P. K. Kandaswamy, T. Kehagias, T. Koukoula, Ph. Komninou, and E. Monroy, “Internal quantum efficiency of III-nitride quantum dot superlattices grown by plasma-assisted molecular-beam epitaxy,” J. Appl. Phys. 109, 103501 (2011).

Murthy, S.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, S. Hurtt, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, J. M. Ziari, F. Kish, and D. Welch, “InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 16, 1113–1125 (2010).

Muthiah, R.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, S. Hurtt, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, J. M. Ziari, F. Kish, and D. Welch, “InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 16, 1113–1125 (2010).

Nagarajan, R.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, S. Hurtt, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, J. M. Ziari, F. Kish, and D. Welch, “InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 16, 1113–1125 (2010).

Nakaoka, T.

Németh, I.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315, 37–47 (2011).

Newell, T. C.

G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The Influence of Quantum-Well Composition on the Performance of Quantum Dot Lasers Using InAs/InGaAs Dots-in-a-Well (DWELL) Structures,” IEEE J. Quantum Electron. 36, 1272–1279 (2000).

Ng, T. K.

M. Z. M. Khan, T. K. Ng, and B. S. Ooi, “Self-assembled InAs/InP quantum dots and quantum dashes: Material structures and devices,” Prog. Quantum Electron. 38, 237–313 (2014).

Niu, N.

I. Aharonovich, A. Woolf, K. J. Russell, T. Zhu, N. Niu, M. J. Kappers, R. A. Oliver, and E. L. Hu, “Low threshold, room-temperature microdisk lasers in the blue spectral range,” Appl. Phys. Lett. 103, 021112 (2013).

Norman, J.

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photonics Res. 3, B1–B9 (2015).

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).

Nötzel, R.

R. Nötzel, S. Anantathanasarn, R. P. Van Veldhoven, F. W. Van Otten, T. J. Eijkemans, and A. Trampert, “Self-assembled InAs/InP quantum dots for telecom applications in the 1.55 µm wavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544 (2006).

Ohlmann, J.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315, 37–47 (2011).

Oliver, R. A.

I. Aharonovich, A. Woolf, K. J. Russell, T. Zhu, N. Niu, M. J. Kappers, R. A. Oliver, and E. L. Hu, “Low threshold, room-temperature microdisk lasers in the blue spectral range,” Appl. Phys. Lett. 103, 021112 (2013).

H. A. R. El-Ella, F. Rol, M. J. Kappers, K. J. Russell, E. L. Hu, and R. A. Oliver, “Dislocation density-dependent quality factors in InGaN quantum dot containing microdisks,” Appl. Phys. Lett. 98, 131909 (2011).

Ooi, B. S.

M. Z. M. Khan, T. K. Ng, and B. S. Ooi, “Self-assembled InAs/InP quantum dots and quantum dashes: Material structures and devices,” Prog. Quantum Electron. 38, 237–313 (2014).

Ota, Y.

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).

Pantouvaki, M.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).

Pearton, S. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).

Pleumeekers, J.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, S. Hurtt, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, J. M. Ziari, F. Kish, and D. Welch, “InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 16, 1113–1125 (2010).

Ponchet, A.

D. Lacombe, A. Ponchet, J. M. Gérard, and O. Cabrol, “Structural study of InAs quantum boxes grown by molecular beam epitaxy on a (001) GaAs-on-Si substrate,” Appl. Phys. Lett. 70, 2398–2400 (1997).

Poon, A. W.

Y. Geng, S. Feng, A. W. Poon, and K. M. Lau, “High-speed InGaAs photodetectors by selective-area MOCVD toward optoelectronic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 20, 36–42 (2014).

Y. Gao, Z. Zhong, S. Feng, Y. Geng, H. Liang, A. W. Poon, and K. M. Lau, “High-speed normal-incidence pin InGaAs photodetectors grown on silicon substrates by MOCVD,” IEEE Photonics Technol. Lett. 24, 237–239 (2012).

Preston, K.

K. Preston, P. Dong, B. Schmidt, and M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92, 151104 (2008).

Regreny, P.

Reithmaier, J. P.

F. Klopf, J. P. Reithmaier, and A. Forchel, “Highly efficient GaInAs/(Al) GaAs quantum-dot lasers based on a single active layer versus 980 nm high-power quantum-well lasers,” Appl. Phys. Lett. 77, 1419–1421 (2000).

Rojo-Romeo, P.

Rol, F.

H. A. R. El-Ella, F. Rol, M. J. Kappers, K. J. Russell, E. L. Hu, and R. A. Oliver, “Dislocation density-dependent quality factors in InGaN quantum dot containing microdisks,” Appl. Phys. Lett. 98, 131909 (2011).

Ross, I.

M. Liao, S. Chen, S. Hou, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).

Russell, K. J.

I. Aharonovich, A. Woolf, K. J. Russell, T. Zhu, N. Niu, M. J. Kappers, R. A. Oliver, and E. L. Hu, “Low threshold, room-temperature microdisk lasers in the blue spectral range,” Appl. Phys. Lett. 103, 021112 (2013).

H. A. R. El-Ella, F. Rol, M. J. Kappers, K. J. Russell, E. L. Hu, and R. A. Oliver, “Dislocation density-dependent quality factors in InGaN quantum dot containing microdisks,” Appl. Phys. Lett. 98, 131909 (2011).

Salamo, G. J.

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photonics 1, 638–642 (2014).

Salvatore, R. A.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, S. Hurtt, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, J. M. Ziari, F. Kish, and D. Welch, “InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 16, 1113–1125 (2010).

Sauer, N. J.

D. Y. Chu, M. K. Chin, N. J. Sauer, Z. Xu, T. Y. Chang, and S. T. Ho, “1.5 μm InGaAs/InAlGaAs quantum-well microdisk lasers,” IEEE Photonics Technol. Lett. 5, 1353–1355 (1993).

Schlereth, T. W.

R. Debusmann, T. W. Schlereth, S. Gerhard, W. Kaiser, S. Höfling, and A. Forchel, “Gain Studies on Quantum-Dot Lasers With Temperature-Stable Emission Wavelength,” IEEE J. Quantum Electron. 44, 175 (2008).

Schmidt, B.

K. Preston, P. Dong, B. Schmidt, and M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92, 151104 (2008).

Schmidt, O.

M. Lipinski, H. Schuler, O. Schmidt, K. Eberl, and N. Jin-Phillipp, “Strain-induced material intermixing of InAs quantum dots in GaAs,” Appl. Phys. Lett. 77, 1789–1791 (2000).

Schneider, R.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, S. Hurtt, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, J. M. Ziari, F. Kish, and D. Welch, “InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 16, 1113–1125 (2010).

Schuler, H.

M. Lipinski, H. Schuler, O. Schmidt, K. Eberl, and N. Jin-Phillipp, “Strain-induced material intermixing of InAs quantum dots in GaAs,” Appl. Phys. Lett. 77, 1789–1791 (2000).

Seassal, C.

Seeds, A.

M. Liao, S. Chen, S. Hou, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25(5), 4632–4639 (2017).
[PubMed]

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photonics 1, 638–642 (2014).

Seeds, A. J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).

Sergent, A.

M. Wu, Y. Chen, J. Kuo, M. Chin, and A. Sergent, “High temperature, high power InGaAs/GaAs quantum-well lasers with lattice-matched InGaP cladding layers,” IEEE Photonics Technol. Lett. 4, 676–679 (1992).

Shafiiha, R.

D. Feng, S. Liao, P. Dong, N. N. Feng, H. Liang, D. Zheng, C. C. Kung, J. Fong, R. Shafiiha, J. Cunningham, and A. V. Krishnamoorthy, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95, 261105 (2009).

Shi, B.

B. Shi, Q. Li, and K. M. Lau, “Self-organized InAs/InAlGaAs quantum dots as dislocation filters for InP films on (001) Si,” J. Cryst. Growth 464, 28–32 (2017).

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photonics 4, 204–210 (2017).

S. Zhu, B. Shi, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 μm band low-threshold, continuous-wave lasing from InAs/InAlGaAs quantum dot microdisks,” Opt. Lett. 42(4), 679–682 (2017).
[PubMed]

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).

Slusher, R. E.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).

Smowton, P.

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photonics 1, 638–642 (2014).

Smowton, P. M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).

Snyder, A.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).

Srinivasan, S.

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photonics Res. 3, B1–B9 (2015).

Stintz, A.

G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The Influence of Quantum-Well Composition on the Performance of Quantum Dot Lasers Using InAs/InGaAs Dots-in-a-Well (DWELL) Structures,” IEEE J. Quantum Electron. 36, 1272–1279 (2000).

Stolz, W.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315, 37–47 (2011).

Stringfellow, G. B.

Z. M. Fang, K. Y. Ma, D. H. Jaw, R. M. Cohen, and G. B. Stringfellow, “Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy,” J. Appl. Phys. 67, 7034 (1990).

Tang, C. W.

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).

Q. Li, X. Zhou, C. W. Tang, and K. M. Lau, “Material and Device Characteristics of Metamorphic In0.53Ga0.47As MOSHEMTs Grown on GaAs and Si Substrates by MOCVD,” IEEE Trans. Electron Dev. 60, 4112–4118 (2013).

Tang, M.

M. Liao, S. Chen, S. Hou, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25(5), 4632–4639 (2017).
[PubMed]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photonics 1, 638–642 (2014).

Tatebayashi, J.

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).

T. Ide, T. Baba, J. Tatebayashi, S. Iwamoto, T. Nakaoka, and Y. Arakawa, “Room temperature continuous wave lasing in InAs quantum-dot microdisks with air cladding,” Opt. Express 13(5), 1615–1620 (2005).
[PubMed]

Teubert, J.

Ž. Gačević, A. Das, J. Teubert, Y. Kotsar, P. K. Kandaswamy, T. Kehagias, T. Koukoula, Ph. Komninou, and E. Monroy, “Internal quantum efficiency of III-nitride quantum dot superlattices grown by plasma-assisted molecular-beam epitaxy,” J. Appl. Phys. 109, 103501 (2011).

Tian, B.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).

Trampert, A.

R. Nötzel, S. Anantathanasarn, R. P. Van Veldhoven, F. W. Van Otten, T. J. Eijkemans, and A. Trampert, “Self-assembled InAs/InP quantum dots for telecom applications in the 1.55 µm wavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544 (2006).

Van Campenhout, J.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).

J. Van Campenhout, P. Rojo-Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, F. Jean-Marc, and R. Baets, “Thermal characterization of electrically injected thin-film InGaAsP microdisk lasers on Si,” J. Lightwave Technol. 25, 1543–1548 (2007).

Van Otten, F. W.

R. Nötzel, S. Anantathanasarn, R. P. Van Veldhoven, F. W. Van Otten, T. J. Eijkemans, and A. Trampert, “Self-assembled InAs/InP quantum dots for telecom applications in the 1.55 µm wavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544 (2006).

Van Thourhout, D.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).

J. Van Campenhout, P. Rojo-Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, F. Jean-Marc, and R. Baets, “Thermal characterization of electrically injected thin-film InGaAsP microdisk lasers on Si,” J. Lightwave Technol. 25, 1543–1548 (2007).

Van Veldhoven, R. P.

R. Nötzel, S. Anantathanasarn, R. P. Van Veldhoven, F. W. Van Otten, T. J. Eijkemans, and A. Trampert, “Self-assembled InAs/InP quantum dots for telecom applications in the 1.55 µm wavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544 (2006).

Varangis, P. M.

G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The Influence of Quantum-Well Composition on the Performance of Quantum Dot Lasers Using InAs/InGaAs Dots-in-a-Well (DWELL) Structures,” IEEE J. Quantum Electron. 36, 1272–1279 (2000).

Varshni, Y. P.

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).

Volz, K.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315, 37–47 (2011).

Wan, Y.

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photonics 4, 204–210 (2017).

S. Zhu, B. Shi, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 μm band low-threshold, continuous-wave lasing from InAs/InAlGaAs quantum dot microdisks,” Opt. Lett. 42(4), 679–682 (2017).
[PubMed]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).

Wang, Z.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).

Welch, D.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, S. Hurtt, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, J. M. Ziari, F. Kish, and D. Welch, “InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 16, 1113–1125 (2010).

Witte, W.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315, 37–47 (2011).

Woolf, A.

I. Aharonovich, A. Woolf, K. J. Russell, T. Zhu, N. Niu, M. J. Kappers, R. A. Oliver, and E. L. Hu, “Low threshold, room-temperature microdisk lasers in the blue spectral range,” Appl. Phys. Lett. 103, 021112 (2013).

Wu, J.

M. Liao, S. Chen, S. Hou, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25(5), 4632–4639 (2017).
[PubMed]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photonics 1, 638–642 (2014).

Wu, M.

M. Wu, Y. Chen, J. Kuo, M. Chin, and A. Sergent, “High temperature, high power InGaAs/GaAs quantum-well lasers with lattice-matched InGaP cladding layers,” IEEE Photonics Technol. Lett. 4, 676–679 (1992).

Xu, Z.

D. Y. Chu, M. K. Chin, N. J. Sauer, Z. Xu, T. Y. Chang, and S. T. Ho, “1.5 μm InGaAs/InAlGaAs quantum-well microdisk lasers,” IEEE Photonics Technol. Lett. 5, 1353–1355 (1993).

Yang, J.

J. Yang, P. Bhattacharya, and Z. Mi, “High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on silicon with multiple-layer quantum-dot dislocation filters,” IEEE Trans. Electron Dev. 54, 2849–2855 (2007).

Zhang, C.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).

Zheng, D.

D. Feng, S. Liao, P. Dong, N. N. Feng, H. Liang, D. Zheng, C. C. Kung, J. Fong, R. Shafiiha, J. Cunningham, and A. V. Krishnamoorthy, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95, 261105 (2009).

Zhong, Z.

Y. Gao, Z. Zhong, S. Feng, Y. Geng, H. Liang, A. W. Poon, and K. M. Lau, “High-speed normal-incidence pin InGaAs photodetectors grown on silicon substrates by MOCVD,” IEEE Photonics Technol. Lett. 24, 237–239 (2012).

Zhou, X.

Q. Li, X. Zhou, C. W. Tang, and K. M. Lau, “Material and Device Characteristics of Metamorphic In0.53Ga0.47As MOSHEMTs Grown on GaAs and Si Substrates by MOCVD,” IEEE Trans. Electron Dev. 60, 4112–4118 (2013).

Zhu, S.

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photonics 4, 204–210 (2017).

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).

S. Zhu, B. Shi, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 μm band low-threshold, continuous-wave lasing from InAs/InAlGaAs quantum dot microdisks,” Opt. Lett. 42(4), 679–682 (2017).
[PubMed]

Zhu, T.

I. Aharonovich, A. Woolf, K. J. Russell, T. Zhu, N. Niu, M. J. Kappers, R. A. Oliver, and E. L. Hu, “Low threshold, room-temperature microdisk lasers in the blue spectral range,” Appl. Phys. Lett. 103, 021112 (2013).

Ziari, J. M.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, S. Hurtt, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, J. M. Ziari, F. Kish, and D. Welch, “InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 16, 1113–1125 (2010).

ACS Photonics (2)

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photonics 4, 204–210 (2017).

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photonics 1, 638–642 (2014).

Appl. Phys. Lett. (11)

F. Klopf, J. P. Reithmaier, and A. Forchel, “Highly efficient GaInAs/(Al) GaAs quantum-dot lasers based on a single active layer versus 980 nm high-power quantum-well lasers,” Appl. Phys. Lett. 77, 1419–1421 (2000).

H. A. R. El-Ella, F. Rol, M. J. Kappers, K. J. Russell, E. L. Hu, and R. A. Oliver, “Dislocation density-dependent quality factors in InGaN quantum dot containing microdisks,” Appl. Phys. Lett. 98, 131909 (2011).

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).

K. Preston, P. Dong, B. Schmidt, and M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92, 151104 (2008).

D. Feng, S. Liao, P. Dong, N. N. Feng, H. Liang, D. Zheng, C. C. Kung, J. Fong, R. Shafiiha, J. Cunningham, and A. V. Krishnamoorthy, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95, 261105 (2009).

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).

M. Lipinski, H. Schuler, O. Schmidt, K. Eberl, and N. Jin-Phillipp, “Strain-induced material intermixing of InAs quantum dots in GaAs,” Appl. Phys. Lett. 77, 1789–1791 (2000).

I. Aharonovich, A. Woolf, K. J. Russell, T. Zhu, N. Niu, M. J. Kappers, R. A. Oliver, and E. L. Hu, “Low threshold, room-temperature microdisk lasers in the blue spectral range,” Appl. Phys. Lett. 103, 021112 (2013).

D. Lacombe, A. Ponchet, J. M. Gérard, and O. Cabrol, “Structural study of InAs quantum boxes grown by molecular beam epitaxy on a (001) GaAs-on-Si substrate,” Appl. Phys. Lett. 70, 2398–2400 (1997).

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).

IEEE J. Quantum Electron. (2)

R. Debusmann, T. W. Schlereth, S. Gerhard, W. Kaiser, S. Höfling, and A. Forchel, “Gain Studies on Quantum-Dot Lasers With Temperature-Stable Emission Wavelength,” IEEE J. Quantum Electron. 44, 175 (2008).

G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The Influence of Quantum-Well Composition on the Performance of Quantum Dot Lasers Using InAs/InGaAs Dots-in-a-Well (DWELL) Structures,” IEEE J. Quantum Electron. 36, 1272–1279 (2000).

IEEE J. Sel. Top. Quantum Electron. (3)

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, S. Hurtt, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, J. M. Ziari, F. Kish, and D. Welch, “InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 16, 1113–1125 (2010).

M. Liao, S. Chen, S. Hou, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).

Y. Geng, S. Feng, A. W. Poon, and K. M. Lau, “High-speed InGaAs photodetectors by selective-area MOCVD toward optoelectronic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 20, 36–42 (2014).

IEEE Photonics Technol. Lett. (3)

D. Y. Chu, M. K. Chin, N. J. Sauer, Z. Xu, T. Y. Chang, and S. T. Ho, “1.5 μm InGaAs/InAlGaAs quantum-well microdisk lasers,” IEEE Photonics Technol. Lett. 5, 1353–1355 (1993).

Y. Gao, Z. Zhong, S. Feng, Y. Geng, H. Liang, A. W. Poon, and K. M. Lau, “High-speed normal-incidence pin InGaAs photodetectors grown on silicon substrates by MOCVD,” IEEE Photonics Technol. Lett. 24, 237–239 (2012).

M. Wu, Y. Chen, J. Kuo, M. Chin, and A. Sergent, “High temperature, high power InGaAs/GaAs quantum-well lasers with lattice-matched InGaP cladding layers,” IEEE Photonics Technol. Lett. 4, 676–679 (1992).

IEEE Trans. Electron Dev. (2)

J. Yang, P. Bhattacharya, and Z. Mi, “High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on silicon with multiple-layer quantum-dot dislocation filters,” IEEE Trans. Electron Dev. 54, 2849–2855 (2007).

Q. Li, X. Zhou, C. W. Tang, and K. M. Lau, “Material and Device Characteristics of Metamorphic In0.53Ga0.47As MOSHEMTs Grown on GaAs and Si Substrates by MOCVD,” IEEE Trans. Electron Dev. 60, 4112–4118 (2013).

J. Appl. Phys. (2)

Z. M. Fang, K. Y. Ma, D. H. Jaw, R. M. Cohen, and G. B. Stringfellow, “Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy,” J. Appl. Phys. 67, 7034 (1990).

Ž. Gačević, A. Das, J. Teubert, Y. Kotsar, P. K. Kandaswamy, T. Kehagias, T. Koukoula, Ph. Komninou, and E. Monroy, “Internal quantum efficiency of III-nitride quantum dot superlattices grown by plasma-assisted molecular-beam epitaxy,” J. Appl. Phys. 109, 103501 (2011).

J. Cryst. Growth (2)

B. Shi, Q. Li, and K. M. Lau, “Self-organized InAs/InAlGaAs quantum dots as dislocation filters for InP films on (001) Si,” J. Cryst. Growth 464, 28–32 (2017).

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315, 37–47 (2011).

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

R. Nötzel, S. Anantathanasarn, R. P. Van Veldhoven, F. W. Van Otten, T. J. Eijkemans, and A. Trampert, “Self-assembled InAs/InP quantum dots for telecom applications in the 1.55 µm wavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544 (2006).

Nat. Photonics (4)

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).

D. Liang, X. Huang, G. Kurczveil, M. Fiorentino, and R. G. Beausoleil, “Integrated finely tunable microring laser on silicon,” Nat. Photonics 10, 719–722 (2016).

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).

Opt. Express (2)

Opt. Lett. (1)

Photonics Res. (1)

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photonics Res. 3, B1–B9 (2015).

Physica (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).

Prog. Quantum Electron. (1)

M. Z. M. Khan, T. K. Ng, and B. S. Ooi, “Self-assembled InAs/InP quantum dots and quantum dashes: Material structures and devices,” Prog. Quantum Electron. 38, 237–313 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic diagram of the microdisk laser structure on Si substrate; (b) processing steps in the microdisk laser fabrication; (c) 70° tilted SEM image of the fabricated device on Si, revealing a smooth and steep sidewall topology.
Fig. 2
Fig. 2 (a) Cross-sectional slice of the simulated whispering gallery modes of 2D microdisks with 3-layer and (b) 7-layer QDs. (c) Calculated confinement factor of the modes inside the disk and QDs respectively. The inset demonstrates the derived cold cavity quality factors for both devices. (d) Extracted L-L curves for several microdisk lasers with 3-layer and 7-layer QDs on InP. Different symbols represents individual devices.
Fig. 3
Fig. 3 Room-temperature PL comparison of as-grown samples under two different power regimes.
Fig. 4
Fig. 4 Room temperature photoluminescence of the as-grown 7-layer (a) QDs and (b) QWs on InP and (001) silicon substrates. Inset: Normalized PL spectra to clearly compare the linewidths. L-L curves of MDLs on silicon substrate with (c) 7-layer QDs and QWs active medium, individual device are differentiated with different symbols.
Fig. 5
Fig. 5 Power-dependent lasing spectra of microdisks on (a) InP and (b) Si. Insets: Extracted output integrated intensity and linewidth evolution as a function of injection power. The kinks in the L-L curves signify lasing oscillation and an evident linewidth reduction occurs around the threshold regions.
Fig. 6
Fig. 6 (a) Representative L-L curves for microdisk lasers on InP and Si. (b) Statistical distribution of lasing thresholds. The solid symbols represent single mode lasing thresholds while the open symbols show multi-mode lasers. The background is overlaid with normalized room-temperature PL curves for samples on InP and Si. Note that the spectrum on Si has been magnified by 6 times.
Fig. 7
Fig. 7 (a) Normalized lasing spectra at various temperatures, ranging from 10 K to 330 K. (b) L-L curves of the lasing peaks as a function of temperature. (c) Natural logarithm of threshold powers and slope efficiencies against temperature. The characteristic temperature T0 is fitted to be 277 K.
Fig. 8
Fig. 8 Temperature-dependent lasing energy of InAs/InAlGaAs QD MDLs on silicon. The two parallel dashed red lines are fitted curves of data points extracted from Fig. 7(a), using the Varshni’s formula. The blue solid line plots the bandgap change with temperature of bulk InAs.

Metrics