Abstract

We report on the experimental demonstration of triggered single-photon emission at the telecom O-band from In(Ga)As/GaAs quantum dots (QDs) grown by metal-organic vapor-phase epitaxy. Micro-photoluminescence excitation experiments allowed us to identify the p-shell excitonic states in agreement with high excitation photoluminescence on the ensemble of QDs. Hereby we drive an O-band-emitting GaAs-based QD into the p-shell states to get a triggered single photon source of high purity. Applying pulsed p-shell resonant excitation results in strong suppression of multiphoton events evidenced by the as measured value of the second-order correlation function at zero delay of 0.03 (and ~0.005 after background correction).

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Triggered single photon emission up to 77K from ordered array of surface curvature-directed mesa-top GaAs/InGaAs single quantum dots

Jiefei Zhang, Siyuan Lu, Swarnabha Chattaraj, and Anupam Madhukar
Opt. Express 24(26) 29955-29962 (2016)

Photon antibunching from a single lithographically defined InGaAs/GaAs quantum dot

V. B. Verma, Martin J. Stevens, K. L. Silverman, N. L. Dias, A. Garg, J. J. Coleman, and R. P. Mirin
Opt. Express 19(5) 4182-4187 (2011)

Reconfigurable frequency coding of triggered single photons in the telecom C–band

Samuel Gyger, Katharina D. Zeuner, Klaus D. Jöns, Ali W. Elshaari, Matthias Paul, Sergei Popov, Carl Reuterskiöld Hedlund, Mattias Hammar, Oskars Ozolins, and Val Zwiller
Opt. Express 27(10) 14400-14406 (2019)

References

  • View by:
  • |
  • |
  • |

  1. I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
  2. K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
    [PubMed]
  3. W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, and A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491(7424), 426–430 (2012).
    [PubMed]
  4. I. Schwartz, D. Cogan, E. R. Schmidgall, Y. Don, L. Gantz, O. Kenneth, N. H. Lindner, and D. Gershoni, “Deterministic generation of a cluster state of entangled photons,” Science 354(6311), 434–437 (2016).
    [PubMed]
  5. H. Wang, Y.-M. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).
  6. Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, X. L. Wang, W. J. Zhang, S. J. Chen, C. Schneider, M. Kamp, L. X. You, Z. Wang, S. Höfling, C. Y. Lu, and J. W. Pan, “Scalable boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
    [PubMed]
  7. X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
    [PubMed]
  8. N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
  9. O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
    [PubMed]
  10. S. Unsleber, Y.-M. He, S. Gerhardt, S. Maier, C.-Y. Lu, J.-W. Pan, N. Gregersen, M. Kamp, C. Schneider, and S. Höfling, “Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency,” Opt. Express 24(8), 8539–8546 (2016).
    [PubMed]
  11. J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).
  12. M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
    [PubMed]
  13. M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
    [PubMed]
  14. T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, and Y. Arakawa, “Single-photon emission at 1.5 μm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities,” Appl. Phys. Lett. 109, 132106 (2016).
  15. Ł. Dusanowski, M. Syperek, P. Mrowiński, W. Rudno-Rudziński, J. Misiewicz, A. Somers, S. Höfling, M. Kamp, J. P. Reithmaier, and G. Sęk, “Single photon emission at 1.55 μm from charged and neutral exciton confined in a single quantum dash,” Appl. Phys. Lett. 105, 21909 (2014).
  16. M. Benyoucef, M. Yacob, J. P. Reithmaier, J. Kettler, and P. Michler, “Telecom-wavelength (1.5 μm) single-photon emission from InP-based quantum dots,” Appl. Phys. Lett. 103, 162101 (2013).
  17. M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
    [PubMed]
  18. X. Liu, K. Akahane, N. A. Jahan, N. Kobayashi, M. Sasaki, H. Kumano, and I. Suemune, “Single-photon emission in telecommunication band from an InAs quantum dot grown on InP with molecular-beam epitaxy,” Appl. Phys. Lett. 103, 17–21 (2013).
  19. K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, and Y. Arakawa, “Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors,” Sci. Rep. 5, 14383 (2015).
    [PubMed]
  20. V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
  21. K. Nishi, H. Saito, S. Sugou, and J.-S. Lee, “A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates,” Appl. Phys. Lett. 74, 1111–1113 (1999).
  22. J. Bloch, J. Shah, W. S. Hobson, J. Lopata, and S. N. G. Chu, “Room-temperature 1.3 μm emission from InAs quantum dots grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 75, 2199–2201 (1999).
  23. F. Guffarth, R. Heitz, A. Schliwa, O. Stier, N. N. Ledentsov, A. R. Kovsh, V. M. Ustinov, and D. Bimberg, “Strain engineering of self-organized InAs quantum dots,” Phys. Rev. B 64, 85305 (2001).
  24. A. Fiore, C. Zinoni, B. Alloing, C. Monat, L. Balet, L. H. Li, N. Le Thomas, R. Houdré, L. Lunghi, M. Francardi, A. Gerardino, and G. Patriarche, “Telecom-wavelength single-photon sources for quantum communications,” J. Phys. Condens. Matter 19, 225005 (2007).
  25. M. B. Ward, O. Z. Karimov, D. C. Unitt, Z. L. Yuan, P. See, D. G. Gevaux, A. J. Shields, P. Atkinson, and D. A. Ritchie, “On-demand single-photon source for 1.3μm telecom fiber,” Appl. Phys. Lett. 86, 201111 (2005).
  26. M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
  27. M. Paul, J. Kettler, K. Zeuner, C. Clausen, M. Jetter, and P. Michler, “Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3 μm,” Appl. Phys. Lett. 106, 122105 (2015).
  28. T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, “Single-photon emission from single quantum dots in a hybrid pillar microcavity,” Appl. Phys. Lett. 92, 81906 (2008).
  29. M. B. Ward, M. C. Dean, R. M. Stevenson, A. J. Bennett, D. J. P. Ellis, K. Cooper, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Coherent dynamics of a telecom-wavelength entangled photon source,” Nat. Commun. 5, 3316 (2014).
    [PubMed]
  30. J. Kettler, M. Paul, F. Olbrich, K. Zeuner, M. Jetter, and P. Michler, “Single-photon and photon pair emission from MOVPE-grown In(Ga)As quantum dots: shifting the emission wavelength from 1.0 to 1.3 μm,” Appl. Phys. B 122, 48 (2016).
  31. P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum key distribution using a triggered quantum dot source emitting near 1.3μm,” Appl. Phys. Lett. 91, 161103 (2007).
  32. P. Ester, L. Lackmann, S. Michaelis De Vasconcellos, M. C. Hübner, A. Zrenner, and M. Bichler, “Single photon emission based on coherent state preparation,” Appl. Phys. Lett. 91, 111110 (2007).
  33. R. Al-Khuzheyri, A. C. Dada, J. Huwer, T. S. Santana, J. Skiba-Szymanska, M. Felle, M. B. Ward, R. M. Stevenson, I. Farrer, M. G. Tanner, R. H. Hadfield, D. A. Ritchie, A. J. Shields, and B. D. Gerardot, “Resonance fluorescence from a telecom-wavelength quantum dot,” Appl. Phys. Lett. 109, 163104 (2016).
  34. A. Kaganskiy, T. Heuser, R. Schmidt, S. Rodt, and S. Reitzenstein, “CSAR 62 as negative-tone resist for high-contrast e-beam lithography at temperatures between 4K and room temperature,” J. Vac. Sci. Technol. 34, 061603 (2016).
  35. P. Schnauber, R. Schmidt, A. Kaganskiy, T. Heuser, M. Gschrey, S. Rodt, and S. Reitzenstein, “Using low-contrast negative-tone PMMA at cryogenic temperatures for 3D electron beam lithography,” Nanotechnology 27(19), 195301 (2016).
    [PubMed]
  36. E. Goldmann, M. Paul, F. F. Krause, K. Müller, J. Kettler, T. Mehrtens, A. Rosenauer, M. Jetter, P. Michler, and F. Jahnke, “Structural and emission properties of InGaAs/GaAs quantum dots emitting at 1.3 μm,” Appl. Phys. Lett. 105, 152102 (2014).
  37. C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered Single Photons from a Quantum Dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
    [PubMed]
  38. M.-E. Pistol, P. Castrillo, D. Hessman, J. A. Prieto, and L. Samuelson, “Random telegraph noise in photoluminescence from individual self-assembled quantum dots,” Phys. Rev. B 59, 10725–10729 (1999).
  39. H. D. Robinson and B. B. Goldberg, “Light-induced spectral diffusion in single self-assembled quantum dots,” Phys. Rev. B 61, R5086–R5089 (2000).

2017 (2)

H. Wang, Y.-M. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, X. L. Wang, W. J. Zhang, S. J. Chen, C. Schneider, M. Kamp, L. X. You, Z. Wang, S. Höfling, C. Y. Lu, and J. W. Pan, “Scalable boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[PubMed]

2016 (10)

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[PubMed]

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).

S. Unsleber, Y.-M. He, S. Gerhardt, S. Maier, C.-Y. Lu, J.-W. Pan, N. Gregersen, M. Kamp, C. Schneider, and S. Höfling, “Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency,” Opt. Express 24(8), 8539–8546 (2016).
[PubMed]

T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, and Y. Arakawa, “Single-photon emission at 1.5 μm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities,” Appl. Phys. Lett. 109, 132106 (2016).

I. Schwartz, D. Cogan, E. R. Schmidgall, Y. Don, L. Gantz, O. Kenneth, N. H. Lindner, and D. Gershoni, “Deterministic generation of a cluster state of entangled photons,” Science 354(6311), 434–437 (2016).
[PubMed]

J. Kettler, M. Paul, F. Olbrich, K. Zeuner, M. Jetter, and P. Michler, “Single-photon and photon pair emission from MOVPE-grown In(Ga)As quantum dots: shifting the emission wavelength from 1.0 to 1.3 μm,” Appl. Phys. B 122, 48 (2016).

R. Al-Khuzheyri, A. C. Dada, J. Huwer, T. S. Santana, J. Skiba-Szymanska, M. Felle, M. B. Ward, R. M. Stevenson, I. Farrer, M. G. Tanner, R. H. Hadfield, D. A. Ritchie, A. J. Shields, and B. D. Gerardot, “Resonance fluorescence from a telecom-wavelength quantum dot,” Appl. Phys. Lett. 109, 163104 (2016).

A. Kaganskiy, T. Heuser, R. Schmidt, S. Rodt, and S. Reitzenstein, “CSAR 62 as negative-tone resist for high-contrast e-beam lithography at temperatures between 4K and room temperature,” J. Vac. Sci. Technol. 34, 061603 (2016).

P. Schnauber, R. Schmidt, A. Kaganskiy, T. Heuser, M. Gschrey, S. Rodt, and S. Reitzenstein, “Using low-contrast negative-tone PMMA at cryogenic temperatures for 3D electron beam lithography,” Nanotechnology 27(19), 195301 (2016).
[PubMed]

2015 (3)

M. Paul, J. Kettler, K. Zeuner, C. Clausen, M. Jetter, and P. Michler, “Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3 μm,” Appl. Phys. Lett. 106, 122105 (2015).

K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, and Y. Arakawa, “Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors,” Sci. Rep. 5, 14383 (2015).
[PubMed]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[PubMed]

2014 (3)

Ł. Dusanowski, M. Syperek, P. Mrowiński, W. Rudno-Rudziński, J. Misiewicz, A. Somers, S. Höfling, M. Kamp, J. P. Reithmaier, and G. Sęk, “Single photon emission at 1.55 μm from charged and neutral exciton confined in a single quantum dash,” Appl. Phys. Lett. 105, 21909 (2014).

E. Goldmann, M. Paul, F. F. Krause, K. Müller, J. Kettler, T. Mehrtens, A. Rosenauer, M. Jetter, P. Michler, and F. Jahnke, “Structural and emission properties of InGaAs/GaAs quantum dots emitting at 1.3 μm,” Appl. Phys. Lett. 105, 152102 (2014).

M. B. Ward, M. C. Dean, R. M. Stevenson, A. J. Bennett, D. J. P. Ellis, K. Cooper, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Coherent dynamics of a telecom-wavelength entangled photon source,” Nat. Commun. 5, 3316 (2014).
[PubMed]

2013 (3)

M. Benyoucef, M. Yacob, J. P. Reithmaier, J. Kettler, and P. Michler, “Telecom-wavelength (1.5 μm) single-photon emission from InP-based quantum dots,” Appl. Phys. Lett. 103, 162101 (2013).

X. Liu, K. Akahane, N. A. Jahan, N. Kobayashi, M. Sasaki, H. Kumano, and I. Suemune, “Single-photon emission in telecommunication band from an InAs quantum dot grown on InP with molecular-beam epitaxy,” Appl. Phys. Lett. 103, 17–21 (2013).

O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[PubMed]

2012 (4)

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[PubMed]

W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, and A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491(7424), 426–430 (2012).
[PubMed]

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[PubMed]

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[PubMed]

2010 (2)

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).

2008 (1)

T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, “Single-photon emission from single quantum dots in a hybrid pillar microcavity,” Appl. Phys. Lett. 92, 81906 (2008).

2007 (3)

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum key distribution using a triggered quantum dot source emitting near 1.3μm,” Appl. Phys. Lett. 91, 161103 (2007).

P. Ester, L. Lackmann, S. Michaelis De Vasconcellos, M. C. Hübner, A. Zrenner, and M. Bichler, “Single photon emission based on coherent state preparation,” Appl. Phys. Lett. 91, 111110 (2007).

A. Fiore, C. Zinoni, B. Alloing, C. Monat, L. Balet, L. H. Li, N. Le Thomas, R. Houdré, L. Lunghi, M. Francardi, A. Gerardino, and G. Patriarche, “Telecom-wavelength single-photon sources for quantum communications,” J. Phys. Condens. Matter 19, 225005 (2007).

2005 (1)

M. B. Ward, O. Z. Karimov, D. C. Unitt, Z. L. Yuan, P. See, D. G. Gevaux, A. J. Shields, P. Atkinson, and D. A. Ritchie, “On-demand single-photon source for 1.3μm telecom fiber,” Appl. Phys. Lett. 86, 201111 (2005).

2001 (2)

F. Guffarth, R. Heitz, A. Schliwa, O. Stier, N. N. Ledentsov, A. R. Kovsh, V. M. Ustinov, and D. Bimberg, “Strain engineering of self-organized InAs quantum dots,” Phys. Rev. B 64, 85305 (2001).

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered Single Photons from a Quantum Dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[PubMed]

2000 (1)

H. D. Robinson and B. B. Goldberg, “Light-induced spectral diffusion in single self-assembled quantum dots,” Phys. Rev. B 61, R5086–R5089 (2000).

1999 (4)

M.-E. Pistol, P. Castrillo, D. Hessman, J. A. Prieto, and L. Samuelson, “Random telegraph noise in photoluminescence from individual self-assembled quantum dots,” Phys. Rev. B 59, 10725–10729 (1999).

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).

K. Nishi, H. Saito, S. Sugou, and J.-S. Lee, “A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates,” Appl. Phys. Lett. 74, 1111–1113 (1999).

J. Bloch, J. Shah, W. S. Hobson, J. Lopata, and S. N. G. Chu, “Room-temperature 1.3 μm emission from InAs quantum dots grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 75, 2199–2201 (1999).

Abe, E.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[PubMed]

Aharonovich, I.

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).

Akahane, K.

X. Liu, K. Akahane, N. A. Jahan, N. Kobayashi, M. Sasaki, H. Kumano, and I. Suemune, “Single-photon emission in telecommunication band from an InAs quantum dot grown on InP with molecular-beam epitaxy,” Appl. Phys. Lett. 103, 17–21 (2013).

Akopian, N.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[PubMed]

Alferov, Z. I.

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).

Al-Khuzheyri, R.

R. Al-Khuzheyri, A. C. Dada, J. Huwer, T. S. Santana, J. Skiba-Szymanska, M. Felle, M. B. Ward, R. M. Stevenson, I. Farrer, M. G. Tanner, R. H. Hadfield, D. A. Ritchie, A. J. Shields, and B. D. Gerardot, “Resonance fluorescence from a telecom-wavelength quantum dot,” Appl. Phys. Lett. 109, 163104 (2016).

Alloing, B.

A. Fiore, C. Zinoni, B. Alloing, C. Monat, L. Balet, L. H. Li, N. Le Thomas, R. Houdré, L. Lunghi, M. Francardi, A. Gerardino, and G. Patriarche, “Telecom-wavelength single-photon sources for quantum communications,” J. Phys. Condens. Matter 19, 225005 (2007).

Almeida, M. P.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).

Antón, C.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).

Arakawa, Y.

T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, and Y. Arakawa, “Single-photon emission at 1.5 μm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities,” Appl. Phys. Lett. 109, 132106 (2016).

K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, and Y. Arakawa, “Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors,” Sci. Rep. 5, 14383 (2015).
[PubMed]

Arnold, C.

O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[PubMed]

Atkinson, P.

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum key distribution using a triggered quantum dot source emitting near 1.3μm,” Appl. Phys. Lett. 91, 161103 (2007).

M. B. Ward, O. Z. Karimov, D. C. Unitt, Z. L. Yuan, P. See, D. G. Gevaux, A. J. Shields, P. Atkinson, and D. A. Ritchie, “On-demand single-photon source for 1.3μm telecom fiber,” Appl. Phys. Lett. 86, 201111 (2005).

Auffeves, A.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).

Bakkers, E. P. A. M.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[PubMed]

Balet, L.

A. Fiore, C. Zinoni, B. Alloing, C. Monat, L. Balet, L. H. Li, N. Le Thomas, R. Houdré, L. Lunghi, M. Francardi, A. Gerardino, and G. Patriarche, “Telecom-wavelength single-photon sources for quantum communications,” J. Phys. Condens. Matter 19, 225005 (2007).

Bavinck, M. B.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[PubMed]

Bazin, M.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

Bennett, A. J.

M. B. Ward, M. C. Dean, R. M. Stevenson, A. J. Bennett, D. J. P. Ellis, K. Cooper, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Coherent dynamics of a telecom-wavelength entangled photon source,” Nat. Commun. 5, 3316 (2014).
[PubMed]

Benyoucef, M.

M. Benyoucef, M. Yacob, J. P. Reithmaier, J. Kettler, and P. Michler, “Telecom-wavelength (1.5 μm) single-photon emission from InP-based quantum dots,” Appl. Phys. Lett. 103, 162101 (2013).

Bert, N. A.

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).

Bichler, M.

P. Ester, L. Lackmann, S. Michaelis De Vasconcellos, M. C. Hübner, A. Zrenner, and M. Bichler, “Single photon emission based on coherent state preparation,” Appl. Phys. Lett. 91, 111110 (2007).

Bimberg, D.

F. Guffarth, R. Heitz, A. Schliwa, O. Stier, N. N. Ledentsov, A. R. Kovsh, V. M. Ustinov, and D. Bimberg, “Strain engineering of self-organized InAs quantum dots,” Phys. Rev. B 64, 85305 (2001).

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).

Birowosuto, M. D.

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[PubMed]

Bleuse, J.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

Bloch, J.

J. Bloch, J. Shah, W. S. Hobson, J. Lopata, and S. N. G. Chu, “Room-temperature 1.3 μm emission from InAs quantum dots grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 75, 2199–2201 (1999).

Bulgarini, G.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[PubMed]

Burger, S.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[PubMed]

Castrillo, P.

M.-E. Pistol, P. Castrillo, D. Hessman, J. A. Prieto, and L. Samuelson, “Random telegraph noise in photoluminescence from individual self-assembled quantum dots,” Phys. Rev. B 59, 10725–10729 (1999).

Chen, C.

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, X. L. Wang, W. J. Zhang, S. J. Chen, C. Schneider, M. Kamp, L. X. You, Z. Wang, S. Höfling, C. Y. Lu, and J. W. Pan, “Scalable boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[PubMed]

Chen, M.-C.

H. Wang, Y.-M. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[PubMed]

Chen, S. J.

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, X. L. Wang, W. J. Zhang, S. J. Chen, C. Schneider, M. Kamp, L. X. You, Z. Wang, S. Höfling, C. Y. Lu, and J. W. Pan, “Scalable boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[PubMed]

Chu, S. N. G.

J. Bloch, J. Shah, W. S. Hobson, J. Lopata, and S. N. G. Chu, “Room-temperature 1.3 μm emission from InAs quantum dots grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 75, 2199–2201 (1999).

Claudon, J.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

Clausen, C.

M. Paul, J. Kettler, K. Zeuner, C. Clausen, M. Jetter, and P. Michler, “Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3 μm,” Appl. Phys. Lett. 106, 122105 (2015).

Cogan, D.

I. Schwartz, D. Cogan, E. R. Schmidgall, Y. Don, L. Gantz, O. Kenneth, N. H. Lindner, and D. Gershoni, “Deterministic generation of a cluster state of entangled photons,” Science 354(6311), 434–437 (2016).
[PubMed]

Cooper, K.

M. B. Ward, M. C. Dean, R. M. Stevenson, A. J. Bennett, D. J. P. Ellis, K. Cooper, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Coherent dynamics of a telecom-wavelength entangled photon source,” Nat. Commun. 5, 3316 (2014).
[PubMed]

Dada, A. C.

R. Al-Khuzheyri, A. C. Dada, J. Huwer, T. S. Santana, J. Skiba-Szymanska, M. Felle, M. B. Ward, R. M. Stevenson, I. Farrer, M. G. Tanner, R. H. Hadfield, D. A. Ritchie, A. J. Shields, and B. D. Gerardot, “Resonance fluorescence from a telecom-wavelength quantum dot,” Appl. Phys. Lett. 109, 163104 (2016).

Dale, Y.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered Single Photons from a Quantum Dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[PubMed]

De Greve, K.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[PubMed]

De Santis, L.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).

Dean, M. C.

M. B. Ward, M. C. Dean, R. M. Stevenson, A. J. Bennett, D. J. P. Ellis, K. Cooper, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Coherent dynamics of a telecom-wavelength entangled photon source,” Nat. Commun. 5, 3316 (2014).
[PubMed]

Demory, J.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).

Ding, X.

H. Wang, Y.-M. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, X. L. Wang, W. J. Zhang, S. J. Chen, C. Schneider, M. Kamp, L. X. You, Z. Wang, S. Höfling, C. Y. Lu, and J. W. Pan, “Scalable boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[PubMed]

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[PubMed]

Don, Y.

I. Schwartz, D. Cogan, E. R. Schmidgall, Y. Don, L. Gantz, O. Kenneth, N. H. Lindner, and D. Gershoni, “Deterministic generation of a cluster state of entangled photons,” Science 354(6311), 434–437 (2016).
[PubMed]

Duan, Z.-C.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[PubMed]

Dusanowski, L.

Ł. Dusanowski, M. Syperek, P. Mrowiński, W. Rudno-Rudziński, J. Misiewicz, A. Somers, S. Höfling, M. Kamp, J. P. Reithmaier, and G. Sęk, “Single photon emission at 1.55 μm from charged and neutral exciton confined in a single quantum dash,” Appl. Phys. Lett. 105, 21909 (2014).

Egorov, A. Y.

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).

Ellis, D. J. P.

M. B. Ward, M. C. Dean, R. M. Stevenson, A. J. Bennett, D. J. P. Ellis, K. Cooper, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Coherent dynamics of a telecom-wavelength entangled photon source,” Nat. Commun. 5, 3316 (2014).
[PubMed]

Englund, D.

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).

Ester, P.

P. Ester, L. Lackmann, S. Michaelis De Vasconcellos, M. C. Hübner, A. Zrenner, and M. Bichler, “Single photon emission based on coherent state preparation,” Appl. Phys. Lett. 91, 111110 (2007).

Fallahi, P.

W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, and A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491(7424), 426–430 (2012).
[PubMed]

Farrer, I.

R. Al-Khuzheyri, A. C. Dada, J. Huwer, T. S. Santana, J. Skiba-Szymanska, M. Felle, M. B. Ward, R. M. Stevenson, I. Farrer, M. G. Tanner, R. H. Hadfield, D. A. Ritchie, A. J. Shields, and B. D. Gerardot, “Resonance fluorescence from a telecom-wavelength quantum dot,” Appl. Phys. Lett. 109, 163104 (2016).

M. B. Ward, M. C. Dean, R. M. Stevenson, A. J. Bennett, D. J. P. Ellis, K. Cooper, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Coherent dynamics of a telecom-wavelength entangled photon source,” Nat. Commun. 5, 3316 (2014).
[PubMed]

Fejer, M. M.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[PubMed]

Felle, M.

R. Al-Khuzheyri, A. C. Dada, J. Huwer, T. S. Santana, J. Skiba-Szymanska, M. Felle, M. B. Ward, R. M. Stevenson, I. Farrer, M. G. Tanner, R. H. Hadfield, D. A. Ritchie, A. J. Shields, and B. D. Gerardot, “Resonance fluorescence from a telecom-wavelength quantum dot,” Appl. Phys. Lett. 109, 163104 (2016).

Fiore, A.

A. Fiore, C. Zinoni, B. Alloing, C. Monat, L. Balet, L. H. Li, N. Le Thomas, R. Houdré, L. Lunghi, M. Francardi, A. Gerardino, and G. Patriarche, “Telecom-wavelength single-photon sources for quantum communications,” J. Phys. Condens. Matter 19, 225005 (2007).

Forchel, A.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[PubMed]

Francardi, M.

A. Fiore, C. Zinoni, B. Alloing, C. Monat, L. Balet, L. H. Li, N. Le Thomas, R. Houdré, L. Lunghi, M. Francardi, A. Gerardino, and G. Patriarche, “Telecom-wavelength single-photon sources for quantum communications,” J. Phys. Condens. Matter 19, 225005 (2007).

Fujiwara, M.

T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, and Y. Arakawa, “Single-photon emission at 1.5 μm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities,” Appl. Phys. Lett. 109, 132106 (2016).

Galopin, E.

O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[PubMed]

Gantz, L.

I. Schwartz, D. Cogan, E. R. Schmidgall, Y. Don, L. Gantz, O. Kenneth, N. H. Lindner, and D. Gershoni, “Deterministic generation of a cluster state of entangled photons,” Science 354(6311), 434–437 (2016).
[PubMed]

Gao, W. B.

W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, and A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491(7424), 426–430 (2012).
[PubMed]

Gazzano, O.

O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[PubMed]

Gérard, J.-M.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

Gerardino, A.

A. Fiore, C. Zinoni, B. Alloing, C. Monat, L. Balet, L. H. Li, N. Le Thomas, R. Houdré, L. Lunghi, M. Francardi, A. Gerardino, and G. Patriarche, “Telecom-wavelength single-photon sources for quantum communications,” J. Phys. Condens. Matter 19, 225005 (2007).

Gerardot, B. D.

R. Al-Khuzheyri, A. C. Dada, J. Huwer, T. S. Santana, J. Skiba-Szymanska, M. Felle, M. B. Ward, R. M. Stevenson, I. Farrer, M. G. Tanner, R. H. Hadfield, D. A. Ritchie, A. J. Shields, and B. D. Gerardot, “Resonance fluorescence from a telecom-wavelength quantum dot,” Appl. Phys. Lett. 109, 163104 (2016).

Gerhardt, S.

Gershoni, D.

I. Schwartz, D. Cogan, E. R. Schmidgall, Y. Don, L. Gantz, O. Kenneth, N. H. Lindner, and D. Gershoni, “Deterministic generation of a cluster state of entangled photons,” Science 354(6311), 434–437 (2016).
[PubMed]

Gevaux, D. G.

M. B. Ward, O. Z. Karimov, D. C. Unitt, Z. L. Yuan, P. See, D. G. Gevaux, A. J. Shields, P. Atkinson, and D. A. Ritchie, “On-demand single-photon source for 1.3μm telecom fiber,” Appl. Phys. Lett. 86, 201111 (2005).

Giesz, V.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).

Goldberg, B. B.

H. D. Robinson and B. B. Goldberg, “Light-induced spectral diffusion in single self-assembled quantum dots,” Phys. Rev. B 61, R5086–R5089 (2000).

Goldmann, E.

E. Goldmann, M. Paul, F. F. Krause, K. Müller, J. Kettler, T. Mehrtens, A. Rosenauer, M. Jetter, P. Michler, and F. Jahnke, “Structural and emission properties of InGaAs/GaAs quantum dots emitting at 1.3 μm,” Appl. Phys. Lett. 105, 152102 (2014).

Gómez, C.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).

Gotoh, H.

T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, “Single-photon emission from single quantum dots in a hybrid pillar microcavity,” Appl. Phys. Lett. 92, 81906 (2008).

Grange, T.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).

Gregersen, N.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[PubMed]

S. Unsleber, Y.-M. He, S. Gerhardt, S. Maier, C.-Y. Lu, J.-W. Pan, N. Gregersen, M. Kamp, C. Schneider, and S. Höfling, “Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency,” Opt. Express 24(8), 8539–8546 (2016).
[PubMed]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

Gschrey, M.

P. Schnauber, R. Schmidt, A. Kaganskiy, T. Heuser, M. Gschrey, S. Rodt, and S. Reitzenstein, “Using low-contrast negative-tone PMMA at cryogenic temperatures for 3D electron beam lithography,” Nanotechnology 27(19), 195301 (2016).
[PubMed]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[PubMed]

Guffarth, F.

F. Guffarth, R. Heitz, A. Schliwa, O. Stier, N. N. Ledentsov, A. R. Kovsh, V. M. Ustinov, and D. Bimberg, “Strain engineering of self-organized InAs quantum dots,” Phys. Rev. B 64, 85305 (2001).

Hadfield, R. H.

R. Al-Khuzheyri, A. C. Dada, J. Huwer, T. S. Santana, J. Skiba-Szymanska, M. Felle, M. B. Ward, R. M. Stevenson, I. Farrer, M. G. Tanner, R. H. Hadfield, D. A. Ritchie, A. J. Shields, and B. D. Gerardot, “Resonance fluorescence from a telecom-wavelength quantum dot,” Appl. Phys. Lett. 109, 163104 (2016).

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[PubMed]

He, Y.

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, X. L. Wang, W. J. Zhang, S. J. Chen, C. Schneider, M. Kamp, L. X. You, Z. Wang, S. Höfling, C. Y. Lu, and J. W. Pan, “Scalable boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[PubMed]

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[PubMed]

He, Y. M.

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, X. L. Wang, W. J. Zhang, S. J. Chen, C. Schneider, M. Kamp, L. X. You, Z. Wang, S. Höfling, C. Y. Lu, and J. W. Pan, “Scalable boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[PubMed]

He, Y.-M.

H. Wang, Y.-M. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).

H. Wang, Y.-M. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).

S. Unsleber, Y.-M. He, S. Gerhardt, S. Maier, C.-Y. Lu, J.-W. Pan, N. Gregersen, M. Kamp, C. Schneider, and S. Höfling, “Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency,” Opt. Express 24(8), 8539–8546 (2016).
[PubMed]

Heindel, T.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[PubMed]

Heitz, R.

F. Guffarth, R. Heitz, A. Schliwa, O. Stier, N. N. Ledentsov, A. R. Kovsh, V. M. Ustinov, and D. Bimberg, “Strain engineering of self-organized InAs quantum dots,” Phys. Rev. B 64, 85305 (2001).

Hessman, D.

M.-E. Pistol, P. Castrillo, D. Hessman, J. A. Prieto, and L. Samuelson, “Random telegraph noise in photoluminescence from individual self-assembled quantum dots,” Phys. Rev. B 59, 10725–10729 (1999).

Heuser, T.

A. Kaganskiy, T. Heuser, R. Schmidt, S. Rodt, and S. Reitzenstein, “CSAR 62 as negative-tone resist for high-contrast e-beam lithography at temperatures between 4K and room temperature,” J. Vac. Sci. Technol. 34, 061603 (2016).

P. Schnauber, R. Schmidt, A. Kaganskiy, T. Heuser, M. Gschrey, S. Rodt, and S. Reitzenstein, “Using low-contrast negative-tone PMMA at cryogenic temperatures for 3D electron beam lithography,” Nanotechnology 27(19), 195301 (2016).
[PubMed]

Hobson, W. S.

J. Bloch, J. Shah, W. S. Hobson, J. Lopata, and S. N. G. Chu, “Room-temperature 1.3 μm emission from InAs quantum dots grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 75, 2199–2201 (1999).

Hocevar, M.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[PubMed]

Höfling, S.

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, X. L. Wang, W. J. Zhang, S. J. Chen, C. Schneider, M. Kamp, L. X. You, Z. Wang, S. Höfling, C. Y. Lu, and J. W. Pan, “Scalable boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[PubMed]

H. Wang, Y.-M. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[PubMed]

S. Unsleber, Y.-M. He, S. Gerhardt, S. Maier, C.-Y. Lu, J.-W. Pan, N. Gregersen, M. Kamp, C. Schneider, and S. Höfling, “Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency,” Opt. Express 24(8), 8539–8546 (2016).
[PubMed]

Ł. Dusanowski, M. Syperek, P. Mrowiński, W. Rudno-Rudziński, J. Misiewicz, A. Somers, S. Höfling, M. Kamp, J. P. Reithmaier, and G. Sęk, “Single photon emission at 1.55 μm from charged and neutral exciton confined in a single quantum dash,” Appl. Phys. Lett. 105, 21909 (2014).

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[PubMed]

Hornecker, G.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).

Houdré, R.

A. Fiore, C. Zinoni, B. Alloing, C. Monat, L. Balet, L. H. Li, N. Le Thomas, R. Houdré, L. Lunghi, M. Francardi, A. Gerardino, and G. Patriarche, “Telecom-wavelength single-photon sources for quantum communications,” J. Phys. Condens. Matter 19, 225005 (2007).

Huang, H. L.

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, X. L. Wang, W. J. Zhang, S. J. Chen, C. Schneider, M. Kamp, L. X. You, Z. Wang, S. Höfling, C. Y. Lu, and J. W. Pan, “Scalable boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[PubMed]

Huang, H.-L.

H. Wang, Y.-M. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).

Hübner, M. C.

P. Ester, L. Lackmann, S. Michaelis De Vasconcellos, M. C. Hübner, A. Zrenner, and M. Bichler, “Single photon emission based on coherent state preparation,” Appl. Phys. Lett. 91, 111110 (2007).

Huwer, J.

R. Al-Khuzheyri, A. C. Dada, J. Huwer, T. S. Santana, J. Skiba-Szymanska, M. Felle, M. B. Ward, R. M. Stevenson, I. Farrer, M. G. Tanner, R. H. Hadfield, D. A. Ritchie, A. J. Shields, and B. D. Gerardot, “Resonance fluorescence from a telecom-wavelength quantum dot,” Appl. Phys. Lett. 109, 163104 (2016).

Imamoglu, A.

W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, and A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491(7424), 426–430 (2012).
[PubMed]

Intallura, P. M.

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum key distribution using a triggered quantum dot source emitting near 1.3μm,” Appl. Phys. Lett. 91, 161103 (2007).

Jaffrennou, P.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

Jahan, N. A.

X. Liu, K. Akahane, N. A. Jahan, N. Kobayashi, M. Sasaki, H. Kumano, and I. Suemune, “Single-photon emission in telecommunication band from an InAs quantum dot grown on InP with molecular-beam epitaxy,” Appl. Phys. Lett. 103, 17–21 (2013).

Jahnke, F.

E. Goldmann, M. Paul, F. F. Krause, K. Müller, J. Kettler, T. Mehrtens, A. Rosenauer, M. Jetter, P. Michler, and F. Jahnke, “Structural and emission properties of InGaAs/GaAs quantum dots emitting at 1.3 μm,” Appl. Phys. Lett. 105, 152102 (2014).

Jetter, M.

J. Kettler, M. Paul, F. Olbrich, K. Zeuner, M. Jetter, and P. Michler, “Single-photon and photon pair emission from MOVPE-grown In(Ga)As quantum dots: shifting the emission wavelength from 1.0 to 1.3 μm,” Appl. Phys. B 122, 48 (2016).

M. Paul, J. Kettler, K. Zeuner, C. Clausen, M. Jetter, and P. Michler, “Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3 μm,” Appl. Phys. Lett. 106, 122105 (2015).

E. Goldmann, M. Paul, F. F. Krause, K. Müller, J. Kettler, T. Mehrtens, A. Rosenauer, M. Jetter, P. Michler, and F. Jahnke, “Structural and emission properties of InGaAs/GaAs quantum dots emitting at 1.3 μm,” Appl. Phys. Lett. 105, 152102 (2014).

Kaganskiy, A.

P. Schnauber, R. Schmidt, A. Kaganskiy, T. Heuser, M. Gschrey, S. Rodt, and S. Reitzenstein, “Using low-contrast negative-tone PMMA at cryogenic temperatures for 3D electron beam lithography,” Nanotechnology 27(19), 195301 (2016).
[PubMed]

A. Kaganskiy, T. Heuser, R. Schmidt, S. Rodt, and S. Reitzenstein, “CSAR 62 as negative-tone resist for high-contrast e-beam lithography at temperatures between 4K and room temperature,” J. Vac. Sci. Technol. 34, 061603 (2016).

Kamada, H.

T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, “Single-photon emission from single quantum dots in a hybrid pillar microcavity,” Appl. Phys. Lett. 92, 81906 (2008).

Kamp, M.

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, X. L. Wang, W. J. Zhang, S. J. Chen, C. Schneider, M. Kamp, L. X. You, Z. Wang, S. Höfling, C. Y. Lu, and J. W. Pan, “Scalable boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[PubMed]

H. Wang, Y.-M. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[PubMed]

S. Unsleber, Y.-M. He, S. Gerhardt, S. Maier, C.-Y. Lu, J.-W. Pan, N. Gregersen, M. Kamp, C. Schneider, and S. Höfling, “Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency,” Opt. Express 24(8), 8539–8546 (2016).
[PubMed]

Ł. Dusanowski, M. Syperek, P. Mrowiński, W. Rudno-Rudziński, J. Misiewicz, A. Somers, S. Höfling, M. Kamp, J. P. Reithmaier, and G. Sęk, “Single photon emission at 1.55 μm from charged and neutral exciton confined in a single quantum dash,” Appl. Phys. Lett. 105, 21909 (2014).

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[PubMed]

Karimov, O. Z.

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum key distribution using a triggered quantum dot source emitting near 1.3μm,” Appl. Phys. Lett. 91, 161103 (2007).

M. B. Ward, O. Z. Karimov, D. C. Unitt, Z. L. Yuan, P. See, D. G. Gevaux, A. J. Shields, P. Atkinson, and D. A. Ritchie, “On-demand single-photon source for 1.3μm telecom fiber,” Appl. Phys. Lett. 86, 201111 (2005).

Kenneth, O.

I. Schwartz, D. Cogan, E. R. Schmidgall, Y. Don, L. Gantz, O. Kenneth, N. H. Lindner, and D. Gershoni, “Deterministic generation of a cluster state of entangled photons,” Science 354(6311), 434–437 (2016).
[PubMed]

Kettler, J.

J. Kettler, M. Paul, F. Olbrich, K. Zeuner, M. Jetter, and P. Michler, “Single-photon and photon pair emission from MOVPE-grown In(Ga)As quantum dots: shifting the emission wavelength from 1.0 to 1.3 μm,” Appl. Phys. B 122, 48 (2016).

M. Paul, J. Kettler, K. Zeuner, C. Clausen, M. Jetter, and P. Michler, “Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3 μm,” Appl. Phys. Lett. 106, 122105 (2015).

E. Goldmann, M. Paul, F. F. Krause, K. Müller, J. Kettler, T. Mehrtens, A. Rosenauer, M. Jetter, P. Michler, and F. Jahnke, “Structural and emission properties of InGaAs/GaAs quantum dots emitting at 1.3 μm,” Appl. Phys. Lett. 105, 152102 (2014).

M. Benyoucef, M. Yacob, J. P. Reithmaier, J. Kettler, and P. Michler, “Telecom-wavelength (1.5 μm) single-photon emission from InP-based quantum dots,” Appl. Phys. Lett. 103, 162101 (2013).

Kim, N. Y.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[PubMed]

Kobayashi, N.

X. Liu, K. Akahane, N. A. Jahan, N. Kobayashi, M. Sasaki, H. Kumano, and I. Suemune, “Single-photon emission in telecommunication band from an InAs quantum dot grown on InP with molecular-beam epitaxy,” Appl. Phys. Lett. 103, 17–21 (2013).

Kop’ev, P. S.

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).

Kouwenhoven, L. P.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[PubMed]

Kovsh, A. R.

F. Guffarth, R. Heitz, A. Schliwa, O. Stier, N. N. Ledentsov, A. R. Kovsh, V. M. Ustinov, and D. Bimberg, “Strain engineering of self-organized InAs quantum dots,” Phys. Rev. B 64, 85305 (2001).

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).

Krause, F. F.

E. Goldmann, M. Paul, F. F. Krause, K. Müller, J. Kettler, T. Mehrtens, A. Rosenauer, M. Jetter, P. Michler, and F. Jahnke, “Structural and emission properties of InGaAs/GaAs quantum dots emitting at 1.3 μm,” Appl. Phys. Lett. 105, 152102 (2014).

Krestnikov, I. L.

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).

Krüger, L.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[PubMed]

Kumano, H.

X. Liu, K. Akahane, N. A. Jahan, N. Kobayashi, M. Sasaki, H. Kumano, and I. Suemune, “Single-photon emission in telecommunication band from an InAs quantum dot grown on InP with molecular-beam epitaxy,” Appl. Phys. Lett. 103, 17–21 (2013).

Lackmann, L.

P. Ester, L. Lackmann, S. Michaelis De Vasconcellos, M. C. Hübner, A. Zrenner, and M. Bichler, “Single photon emission based on coherent state preparation,” Appl. Phys. Lett. 91, 111110 (2007).

Lalanne, P.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

Lanco, L.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).

O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[PubMed]

Lanzillotti-Kimura, N. D.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).

Le Thomas, N.

A. Fiore, C. Zinoni, B. Alloing, C. Monat, L. Balet, L. H. Li, N. Le Thomas, R. Houdré, L. Lunghi, M. Francardi, A. Gerardino, and G. Patriarche, “Telecom-wavelength single-photon sources for quantum communications,” J. Phys. Condens. Matter 19, 225005 (2007).

Ledentsov, N. N.

F. Guffarth, R. Heitz, A. Schliwa, O. Stier, N. N. Ledentsov, A. R. Kovsh, V. M. Ustinov, and D. Bimberg, “Strain engineering of self-organized InAs quantum dots,” Phys. Rev. B 64, 85305 (2001).

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).

Lee, J.-S.

K. Nishi, H. Saito, S. Sugou, and J.-S. Lee, “A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates,” Appl. Phys. Lett. 74, 1111–1113 (1999).

Lemaítre, A.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).

Lemaître, A.

O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[PubMed]

Li, B.

H. Wang, Y.-M. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).

Li, J.-P.

H. Wang, Y.-M. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).

Li, L. H.

A. Fiore, C. Zinoni, B. Alloing, C. Monat, L. Balet, L. H. Li, N. Le Thomas, R. Houdré, L. Lunghi, M. Francardi, A. Gerardino, and G. Patriarche, “Telecom-wavelength single-photon sources for quantum communications,” J. Phys. Condens. Matter 19, 225005 (2007).

Li, Y.-H.

H. Wang, Y.-M. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).

Lindner, N. H.

I. Schwartz, D. Cogan, E. R. Schmidgall, Y. Don, L. Gantz, O. Kenneth, N. H. Lindner, and D. Gershoni, “Deterministic generation of a cluster state of entangled photons,” Science 354(6311), 434–437 (2016).
[PubMed]

Liu, C.

H. Wang, Y.-M. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).

Liu, X.

X. Liu, K. Akahane, N. A. Jahan, N. Kobayashi, M. Sasaki, H. Kumano, and I. Suemune, “Single-photon emission in telecommunication band from an InAs quantum dot grown on InP with molecular-beam epitaxy,” Appl. Phys. Lett. 103, 17–21 (2013).

Lopata, J.

J. Bloch, J. Shah, W. S. Hobson, J. Lopata, and S. N. G. Chu, “Room-temperature 1.3 μm emission from InAs quantum dots grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 75, 2199–2201 (1999).

Loredo, J. C.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).

Lu, C. Y.

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, X. L. Wang, W. J. Zhang, S. J. Chen, C. Schneider, M. Kamp, L. X. You, Z. Wang, S. Höfling, C. Y. Lu, and J. W. Pan, “Scalable boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[PubMed]

Lu, C.-Y.

H. Wang, Y.-M. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[PubMed]

S. Unsleber, Y.-M. He, S. Gerhardt, S. Maier, C.-Y. Lu, J.-W. Pan, N. Gregersen, M. Kamp, C. Schneider, and S. Höfling, “Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency,” Opt. Express 24(8), 8539–8546 (2016).
[PubMed]

Lunev, A. V.

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).

Lunghi, L.

A. Fiore, C. Zinoni, B. Alloing, C. Monat, L. Balet, L. H. Li, N. Le Thomas, R. Houdré, L. Lunghi, M. Francardi, A. Gerardino, and G. Patriarche, “Telecom-wavelength single-photon sources for quantum communications,” J. Phys. Condens. Matter 19, 225005 (2007).

Ma, L.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).

Maier, S.

S. Unsleber, Y.-M. He, S. Gerhardt, S. Maier, C.-Y. Lu, J.-W. Pan, N. Gregersen, M. Kamp, C. Schneider, and S. Höfling, “Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency,” Opt. Express 24(8), 8539–8546 (2016).
[PubMed]

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[PubMed]

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[PubMed]

Maleev, N. A.

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).

Malik, N. S.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

Matsuo, S.

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[PubMed]

McMahon, P. L.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[PubMed]

Mehrtens, T.

E. Goldmann, M. Paul, F. F. Krause, K. Müller, J. Kettler, T. Mehrtens, A. Rosenauer, M. Jetter, P. Michler, and F. Jahnke, “Structural and emission properties of InGaAs/GaAs quantum dots emitting at 1.3 μm,” Appl. Phys. Lett. 105, 152102 (2014).

Michaelis de Vasconcellos, S.

O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[PubMed]

P. Ester, L. Lackmann, S. Michaelis De Vasconcellos, M. C. Hübner, A. Zrenner, and M. Bichler, “Single photon emission based on coherent state preparation,” Appl. Phys. Lett. 91, 111110 (2007).

Michler, P.

J. Kettler, M. Paul, F. Olbrich, K. Zeuner, M. Jetter, and P. Michler, “Single-photon and photon pair emission from MOVPE-grown In(Ga)As quantum dots: shifting the emission wavelength from 1.0 to 1.3 μm,” Appl. Phys. B 122, 48 (2016).

M. Paul, J. Kettler, K. Zeuner, C. Clausen, M. Jetter, and P. Michler, “Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3 μm,” Appl. Phys. Lett. 106, 122105 (2015).

E. Goldmann, M. Paul, F. F. Krause, K. Müller, J. Kettler, T. Mehrtens, A. Rosenauer, M. Jetter, P. Michler, and F. Jahnke, “Structural and emission properties of InGaAs/GaAs quantum dots emitting at 1.3 μm,” Appl. Phys. Lett. 105, 152102 (2014).

M. Benyoucef, M. Yacob, J. P. Reithmaier, J. Kettler, and P. Michler, “Telecom-wavelength (1.5 μm) single-photon emission from InP-based quantum dots,” Appl. Phys. Lett. 103, 162101 (2013).

Miguel-Sanchez, J.

W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, and A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491(7424), 426–430 (2012).
[PubMed]

Mikami, O.

T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, “Single-photon emission from single quantum dots in a hybrid pillar microcavity,” Appl. Phys. Lett. 92, 81906 (2008).

Miki, S.

T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, and Y. Arakawa, “Single-photon emission at 1.5 μm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities,” Appl. Phys. Lett. 109, 132106 (2016).

Misiewicz, J.

Ł. Dusanowski, M. Syperek, P. Mrowiński, W. Rudno-Rudziński, J. Misiewicz, A. Somers, S. Höfling, M. Kamp, J. P. Reithmaier, and G. Sęk, “Single photon emission at 1.55 μm from charged and neutral exciton confined in a single quantum dash,” Appl. Phys. Lett. 105, 21909 (2014).

Miyazawa, T.

T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, and Y. Arakawa, “Single-photon emission at 1.5 μm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities,” Appl. Phys. Lett. 109, 132106 (2016).

K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, and Y. Arakawa, “Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors,” Sci. Rep. 5, 14383 (2015).
[PubMed]

Monat, C.

A. Fiore, C. Zinoni, B. Alloing, C. Monat, L. Balet, L. H. Li, N. Le Thomas, R. Houdré, L. Lunghi, M. Francardi, A. Gerardino, and G. Patriarche, “Telecom-wavelength single-photon sources for quantum communications,” J. Phys. Condens. Matter 19, 225005 (2007).

Mrowinski, P.

Ł. Dusanowski, M. Syperek, P. Mrowiński, W. Rudno-Rudziński, J. Misiewicz, A. Somers, S. Höfling, M. Kamp, J. P. Reithmaier, and G. Sęk, “Single photon emission at 1.55 μm from charged and neutral exciton confined in a single quantum dash,” Appl. Phys. Lett. 105, 21909 (2014).

Müller, K.

E. Goldmann, M. Paul, F. F. Krause, K. Müller, J. Kettler, T. Mehrtens, A. Rosenauer, M. Jetter, P. Michler, and F. Jahnke, “Structural and emission properties of InGaAs/GaAs quantum dots emitting at 1.3 μm,” Appl. Phys. Lett. 105, 152102 (2014).

Musikhin, Y. G.

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).

Nakano, H.

T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, “Single-photon emission from single quantum dots in a hybrid pillar microcavity,” Appl. Phys. Lett. 92, 81906 (2008).

Nambu, Y.

T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, and Y. Arakawa, “Single-photon emission at 1.5 μm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities,” Appl. Phys. Lett. 109, 132106 (2016).

K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, and Y. Arakawa, “Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors,” Sci. Rep. 5, 14383 (2015).
[PubMed]

Natarajan, C. M.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[PubMed]

Nicoll, C. A.

M. B. Ward, M. C. Dean, R. M. Stevenson, A. J. Bennett, D. J. P. Ellis, K. Cooper, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Coherent dynamics of a telecom-wavelength entangled photon source,” Nat. Commun. 5, 3316 (2014).
[PubMed]

Nishi, K.

K. Nishi, H. Saito, S. Sugou, and J.-S. Lee, “A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates,” Appl. Phys. Lett. 74, 1111–1113 (1999).

Notomi, M.

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[PubMed]

Nötzel, R.

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[PubMed]

Nowak, A.

O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[PubMed]

Okamoto, H.

T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, “Single-photon emission from single quantum dots in a hybrid pillar microcavity,” Appl. Phys. Lett. 92, 81906 (2008).

Olbrich, F.

J. Kettler, M. Paul, F. Olbrich, K. Zeuner, M. Jetter, and P. Michler, “Single-photon and photon pair emission from MOVPE-grown In(Ga)As quantum dots: shifting the emission wavelength from 1.0 to 1.3 μm,” Appl. Phys. B 122, 48 (2016).

Pan, J. W.

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, X. L. Wang, W. J. Zhang, S. J. Chen, C. Schneider, M. Kamp, L. X. You, Z. Wang, S. Höfling, C. Y. Lu, and J. W. Pan, “Scalable boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[PubMed]

Pan, J.-W.

H. Wang, Y.-M. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[PubMed]

S. Unsleber, Y.-M. He, S. Gerhardt, S. Maier, C.-Y. Lu, J.-W. Pan, N. Gregersen, M. Kamp, C. Schneider, and S. Höfling, “Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency,” Opt. Express 24(8), 8539–8546 (2016).
[PubMed]

Patriarche, G.

A. Fiore, C. Zinoni, B. Alloing, C. Monat, L. Balet, L. H. Li, N. Le Thomas, R. Houdré, L. Lunghi, M. Francardi, A. Gerardino, and G. Patriarche, “Telecom-wavelength single-photon sources for quantum communications,” J. Phys. Condens. Matter 19, 225005 (2007).

Paul, M.

J. Kettler, M. Paul, F. Olbrich, K. Zeuner, M. Jetter, and P. Michler, “Single-photon and photon pair emission from MOVPE-grown In(Ga)As quantum dots: shifting the emission wavelength from 1.0 to 1.3 μm,” Appl. Phys. B 122, 48 (2016).

M. Paul, J. Kettler, K. Zeuner, C. Clausen, M. Jetter, and P. Michler, “Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3 μm,” Appl. Phys. Lett. 106, 122105 (2015).

E. Goldmann, M. Paul, F. F. Krause, K. Müller, J. Kettler, T. Mehrtens, A. Rosenauer, M. Jetter, P. Michler, and F. Jahnke, “Structural and emission properties of InGaAs/GaAs quantum dots emitting at 1.3 μm,” Appl. Phys. Lett. 105, 152102 (2014).

Pelc, J. S.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[PubMed]

Pelton, M.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered Single Photons from a Quantum Dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[PubMed]

Peng, C.-Z.

H. Wang, Y.-M. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).

Pistol, M.-E.

M.-E. Pistol, P. Castrillo, D. Hessman, J. A. Prieto, and L. Samuelson, “Random telegraph noise in photoluminescence from individual self-assembled quantum dots,” Phys. Rev. B 59, 10725–10729 (1999).

Portalupi, S. L.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).

Prieto, J. A.

M.-E. Pistol, P. Castrillo, D. Hessman, J. A. Prieto, and L. Samuelson, “Random telegraph noise in photoluminescence from individual self-assembled quantum dots,” Phys. Rev. B 59, 10725–10729 (1999).

Qin, J.

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, X. L. Wang, W. J. Zhang, S. J. Chen, C. Schneider, M. Kamp, L. X. You, Z. Wang, S. Höfling, C. Y. Lu, and J. W. Pan, “Scalable boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[PubMed]

H. Wang, Y.-M. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).

Rakher, M. T.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).

Reimer, M. E.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[PubMed]

Reithmaier, J. P.

Ł. Dusanowski, M. Syperek, P. Mrowiński, W. Rudno-Rudziński, J. Misiewicz, A. Somers, S. Höfling, M. Kamp, J. P. Reithmaier, and G. Sęk, “Single photon emission at 1.55 μm from charged and neutral exciton confined in a single quantum dash,” Appl. Phys. Lett. 105, 21909 (2014).

M. Benyoucef, M. Yacob, J. P. Reithmaier, J. Kettler, and P. Michler, “Telecom-wavelength (1.5 μm) single-photon emission from InP-based quantum dots,” Appl. Phys. Lett. 103, 162101 (2013).

Reitzenstein, S.

P. Schnauber, R. Schmidt, A. Kaganskiy, T. Heuser, M. Gschrey, S. Rodt, and S. Reitzenstein, “Using low-contrast negative-tone PMMA at cryogenic temperatures for 3D electron beam lithography,” Nanotechnology 27(19), 195301 (2016).
[PubMed]

A. Kaganskiy, T. Heuser, R. Schmidt, S. Rodt, and S. Reitzenstein, “CSAR 62 as negative-tone resist for high-contrast e-beam lithography at temperatures between 4K and room temperature,” J. Vac. Sci. Technol. 34, 061603 (2016).

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[PubMed]

Ritchie, D. A.

R. Al-Khuzheyri, A. C. Dada, J. Huwer, T. S. Santana, J. Skiba-Szymanska, M. Felle, M. B. Ward, R. M. Stevenson, I. Farrer, M. G. Tanner, R. H. Hadfield, D. A. Ritchie, A. J. Shields, and B. D. Gerardot, “Resonance fluorescence from a telecom-wavelength quantum dot,” Appl. Phys. Lett. 109, 163104 (2016).

M. B. Ward, M. C. Dean, R. M. Stevenson, A. J. Bennett, D. J. P. Ellis, K. Cooper, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Coherent dynamics of a telecom-wavelength entangled photon source,” Nat. Commun. 5, 3316 (2014).
[PubMed]

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum key distribution using a triggered quantum dot source emitting near 1.3μm,” Appl. Phys. Lett. 91, 161103 (2007).

M. B. Ward, O. Z. Karimov, D. C. Unitt, Z. L. Yuan, P. See, D. G. Gevaux, A. J. Shields, P. Atkinson, and D. A. Ritchie, “On-demand single-photon source for 1.3μm telecom fiber,” Appl. Phys. Lett. 86, 201111 (2005).

Robinson, H. D.

H. D. Robinson and B. B. Goldberg, “Light-induced spectral diffusion in single self-assembled quantum dots,” Phys. Rev. B 61, R5086–R5089 (2000).

Rodt, S.

A. Kaganskiy, T. Heuser, R. Schmidt, S. Rodt, and S. Reitzenstein, “CSAR 62 as negative-tone resist for high-contrast e-beam lithography at temperatures between 4K and room temperature,” J. Vac. Sci. Technol. 34, 061603 (2016).

P. Schnauber, R. Schmidt, A. Kaganskiy, T. Heuser, M. Gschrey, S. Rodt, and S. Reitzenstein, “Using low-contrast negative-tone PMMA at cryogenic temperatures for 3D electron beam lithography,” Nanotechnology 27(19), 195301 (2016).
[PubMed]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[PubMed]

Rosenauer, A.

E. Goldmann, M. Paul, F. F. Krause, K. Müller, J. Kettler, T. Mehrtens, A. Rosenauer, M. Jetter, P. Michler, and F. Jahnke, “Structural and emission properties of InGaAs/GaAs quantum dots emitting at 1.3 μm,” Appl. Phys. Lett. 105, 152102 (2014).

Rudno-Rudzinski, W.

Ł. Dusanowski, M. Syperek, P. Mrowiński, W. Rudno-Rudziński, J. Misiewicz, A. Somers, S. Höfling, M. Kamp, J. P. Reithmaier, and G. Sęk, “Single photon emission at 1.55 μm from charged and neutral exciton confined in a single quantum dash,” Appl. Phys. Lett. 105, 21909 (2014).

Sagnes, I.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).

O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[PubMed]

Saito, H.

K. Nishi, H. Saito, S. Sugou, and J.-S. Lee, “A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates,” Appl. Phys. Lett. 74, 1111–1113 (1999).

Sakuma, Y.

T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, and Y. Arakawa, “Single-photon emission at 1.5 μm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities,” Appl. Phys. Lett. 109, 132106 (2016).

K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, and Y. Arakawa, “Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors,” Sci. Rep. 5, 14383 (2015).
[PubMed]

Samuelson, L.

M.-E. Pistol, P. Castrillo, D. Hessman, J. A. Prieto, and L. Samuelson, “Random telegraph noise in photoluminescence from individual self-assembled quantum dots,” Phys. Rev. B 59, 10725–10729 (1999).

Santana, T. S.

R. Al-Khuzheyri, A. C. Dada, J. Huwer, T. S. Santana, J. Skiba-Szymanska, M. Felle, M. B. Ward, R. M. Stevenson, I. Farrer, M. G. Tanner, R. H. Hadfield, D. A. Ritchie, A. J. Shields, and B. D. Gerardot, “Resonance fluorescence from a telecom-wavelength quantum dot,” Appl. Phys. Lett. 109, 163104 (2016).

Santori, C.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered Single Photons from a Quantum Dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[PubMed]

Sasaki, M.

T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, and Y. Arakawa, “Single-photon emission at 1.5 μm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities,” Appl. Phys. Lett. 109, 132106 (2016).

X. Liu, K. Akahane, N. A. Jahan, N. Kobayashi, M. Sasaki, H. Kumano, and I. Suemune, “Single-photon emission in telecommunication band from an InAs quantum dot grown on InP with molecular-beam epitaxy,” Appl. Phys. Lett. 103, 17–21 (2013).

Sauvan, C.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

Schliwa, A.

F. Guffarth, R. Heitz, A. Schliwa, O. Stier, N. N. Ledentsov, A. R. Kovsh, V. M. Ustinov, and D. Bimberg, “Strain engineering of self-organized InAs quantum dots,” Phys. Rev. B 64, 85305 (2001).

Schmidgall, E. R.

I. Schwartz, D. Cogan, E. R. Schmidgall, Y. Don, L. Gantz, O. Kenneth, N. H. Lindner, and D. Gershoni, “Deterministic generation of a cluster state of entangled photons,” Science 354(6311), 434–437 (2016).
[PubMed]

Schmidt, F.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[PubMed]

Schmidt, R.

P. Schnauber, R. Schmidt, A. Kaganskiy, T. Heuser, M. Gschrey, S. Rodt, and S. Reitzenstein, “Using low-contrast negative-tone PMMA at cryogenic temperatures for 3D electron beam lithography,” Nanotechnology 27(19), 195301 (2016).
[PubMed]

A. Kaganskiy, T. Heuser, R. Schmidt, S. Rodt, and S. Reitzenstein, “CSAR 62 as negative-tone resist for high-contrast e-beam lithography at temperatures between 4K and room temperature,” J. Vac. Sci. Technol. 34, 061603 (2016).

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[PubMed]

Schnauber, P.

P. Schnauber, R. Schmidt, A. Kaganskiy, T. Heuser, M. Gschrey, S. Rodt, and S. Reitzenstein, “Using low-contrast negative-tone PMMA at cryogenic temperatures for 3D electron beam lithography,” Nanotechnology 27(19), 195301 (2016).
[PubMed]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[PubMed]

Schneider, C.

H. Wang, Y.-M. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, X. L. Wang, W. J. Zhang, S. J. Chen, C. Schneider, M. Kamp, L. X. You, Z. Wang, S. Höfling, C. Y. Lu, and J. W. Pan, “Scalable boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[PubMed]

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[PubMed]

S. Unsleber, Y.-M. He, S. Gerhardt, S. Maier, C.-Y. Lu, J.-W. Pan, N. Gregersen, M. Kamp, C. Schneider, and S. Höfling, “Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency,” Opt. Express 24(8), 8539–8546 (2016).
[PubMed]

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[PubMed]

Schulze, J.-H.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[PubMed]

Schwartz, I.

I. Schwartz, D. Cogan, E. R. Schmidgall, Y. Don, L. Gantz, O. Kenneth, N. H. Lindner, and D. Gershoni, “Deterministic generation of a cluster state of entangled photons,” Science 354(6311), 434–437 (2016).
[PubMed]

See, P.

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum key distribution using a triggered quantum dot source emitting near 1.3μm,” Appl. Phys. Lett. 91, 161103 (2007).

M. B. Ward, O. Z. Karimov, D. C. Unitt, Z. L. Yuan, P. See, D. G. Gevaux, A. J. Shields, P. Atkinson, and D. A. Ritchie, “On-demand single-photon source for 1.3μm telecom fiber,” Appl. Phys. Lett. 86, 201111 (2005).

Seifried, M.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[PubMed]

Sek, G.

Ł. Dusanowski, M. Syperek, P. Mrowiński, W. Rudno-Rudziński, J. Misiewicz, A. Somers, S. Höfling, M. Kamp, J. P. Reithmaier, and G. Sęk, “Single photon emission at 1.55 μm from charged and neutral exciton confined in a single quantum dash,” Appl. Phys. Lett. 105, 21909 (2014).

Senellart, P.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).

O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[PubMed]

Shah, J.

J. Bloch, J. Shah, W. S. Hobson, J. Lopata, and S. N. G. Chu, “Room-temperature 1.3 μm emission from InAs quantum dots grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 75, 2199–2201 (1999).

Shields, A. J.

R. Al-Khuzheyri, A. C. Dada, J. Huwer, T. S. Santana, J. Skiba-Szymanska, M. Felle, M. B. Ward, R. M. Stevenson, I. Farrer, M. G. Tanner, R. H. Hadfield, D. A. Ritchie, A. J. Shields, and B. D. Gerardot, “Resonance fluorescence from a telecom-wavelength quantum dot,” Appl. Phys. Lett. 109, 163104 (2016).

M. B. Ward, M. C. Dean, R. M. Stevenson, A. J. Bennett, D. J. P. Ellis, K. Cooper, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Coherent dynamics of a telecom-wavelength entangled photon source,” Nat. Commun. 5, 3316 (2014).
[PubMed]

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum key distribution using a triggered quantum dot source emitting near 1.3μm,” Appl. Phys. Lett. 91, 161103 (2007).

M. B. Ward, O. Z. Karimov, D. C. Unitt, Z. L. Yuan, P. See, D. G. Gevaux, A. J. Shields, P. Atkinson, and D. A. Ritchie, “On-demand single-photon source for 1.3μm telecom fiber,” Appl. Phys. Lett. 86, 201111 (2005).

Skiba-Szymanska, J.

R. Al-Khuzheyri, A. C. Dada, J. Huwer, T. S. Santana, J. Skiba-Szymanska, M. Felle, M. B. Ward, R. M. Stevenson, I. Farrer, M. G. Tanner, R. H. Hadfield, D. A. Ritchie, A. J. Shields, and B. D. Gerardot, “Resonance fluorescence from a telecom-wavelength quantum dot,” Appl. Phys. Lett. 109, 163104 (2016).

Slattery, O.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).

Solomon, G.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered Single Photons from a Quantum Dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[PubMed]

Somaschi, N.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).

Somers, A.

Ł. Dusanowski, M. Syperek, P. Mrowiński, W. Rudno-Rudziński, J. Misiewicz, A. Somers, S. Höfling, M. Kamp, J. P. Reithmaier, and G. Sęk, “Single photon emission at 1.55 μm from charged and neutral exciton confined in a single quantum dash,” Appl. Phys. Lett. 105, 21909 (2014).

Srinivasan, K.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).

Stevenson, R. M.

R. Al-Khuzheyri, A. C. Dada, J. Huwer, T. S. Santana, J. Skiba-Szymanska, M. Felle, M. B. Ward, R. M. Stevenson, I. Farrer, M. G. Tanner, R. H. Hadfield, D. A. Ritchie, A. J. Shields, and B. D. Gerardot, “Resonance fluorescence from a telecom-wavelength quantum dot,” Appl. Phys. Lett. 109, 163104 (2016).

M. B. Ward, M. C. Dean, R. M. Stevenson, A. J. Bennett, D. J. P. Ellis, K. Cooper, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Coherent dynamics of a telecom-wavelength entangled photon source,” Nat. Commun. 5, 3316 (2014).
[PubMed]

Stier, O.

F. Guffarth, R. Heitz, A. Schliwa, O. Stier, N. N. Ledentsov, A. R. Kovsh, V. M. Ustinov, and D. Bimberg, “Strain engineering of self-organized InAs quantum dots,” Phys. Rev. B 64, 85305 (2001).

Strittmatter, A.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[PubMed]

Su, Z. E.

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, X. L. Wang, W. J. Zhang, S. J. Chen, C. Schneider, M. Kamp, L. X. You, Z. Wang, S. Höfling, C. Y. Lu, and J. W. Pan, “Scalable boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[PubMed]

Su, Z.-E.

H. Wang, Y.-M. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).

Suemune, I.

X. Liu, K. Akahane, N. A. Jahan, N. Kobayashi, M. Sasaki, H. Kumano, and I. Suemune, “Single-photon emission in telecommunication band from an InAs quantum dot grown on InP with molecular-beam epitaxy,” Appl. Phys. Lett. 103, 17–21 (2013).

Sugou, S.

K. Nishi, H. Saito, S. Sugou, and J.-S. Lee, “A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates,” Appl. Phys. Lett. 74, 1111–1113 (1999).

Sumikura, H.

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[PubMed]

Syperek, M.

Ł. Dusanowski, M. Syperek, P. Mrowiński, W. Rudno-Rudziński, J. Misiewicz, A. Somers, S. Höfling, M. Kamp, J. P. Reithmaier, and G. Sęk, “Single photon emission at 1.55 μm from charged and neutral exciton confined in a single quantum dash,” Appl. Phys. Lett. 105, 21909 (2014).

Takatsu, M.

T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, and Y. Arakawa, “Single-photon emission at 1.5 μm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities,” Appl. Phys. Lett. 109, 132106 (2016).

Takemoto, K.

T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, and Y. Arakawa, “Single-photon emission at 1.5 μm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities,” Appl. Phys. Lett. 109, 132106 (2016).

K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, and Y. Arakawa, “Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors,” Sci. Rep. 5, 14383 (2015).
[PubMed]

Tang, X.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).

Taniyama, H.

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[PubMed]

Tanner, M. G.

R. Al-Khuzheyri, A. C. Dada, J. Huwer, T. S. Santana, J. Skiba-Szymanska, M. Felle, M. B. Ward, R. M. Stevenson, I. Farrer, M. G. Tanner, R. H. Hadfield, D. A. Ritchie, A. J. Shields, and B. D. Gerardot, “Resonance fluorescence from a telecom-wavelength quantum dot,” Appl. Phys. Lett. 109, 163104 (2016).

Tawara, T.

T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, “Single-photon emission from single quantum dots in a hybrid pillar microcavity,” Appl. Phys. Lett. 92, 81906 (2008).

Terai, H.

T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, and Y. Arakawa, “Single-photon emission at 1.5 μm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities,” Appl. Phys. Lett. 109, 132106 (2016).

Thoma, A.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[PubMed]

Togan, E.

W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, and A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491(7424), 426–430 (2012).
[PubMed]

Toth, M.

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).

Unitt, D. C.

M. B. Ward, O. Z. Karimov, D. C. Unitt, Z. L. Yuan, P. See, D. G. Gevaux, A. J. Shields, P. Atkinson, and D. A. Ritchie, “On-demand single-photon source for 1.3μm telecom fiber,” Appl. Phys. Lett. 86, 201111 (2005).

Unsleber, S.

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, X. L. Wang, W. J. Zhang, S. J. Chen, C. Schneider, M. Kamp, L. X. You, Z. Wang, S. Höfling, C. Y. Lu, and J. W. Pan, “Scalable boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[PubMed]

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[PubMed]

S. Unsleber, Y.-M. He, S. Gerhardt, S. Maier, C.-Y. Lu, J.-W. Pan, N. Gregersen, M. Kamp, C. Schneider, and S. Höfling, “Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency,” Opt. Express 24(8), 8539–8546 (2016).
[PubMed]

Ustinov, V. M.

F. Guffarth, R. Heitz, A. Schliwa, O. Stier, N. N. Ledentsov, A. R. Kovsh, V. M. Ustinov, and D. Bimberg, “Strain engineering of self-organized InAs quantum dots,” Phys. Rev. B 64, 85305 (2001).

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).

van Veldhoven, P. J.

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[PubMed]

Verheijen, M. A.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[PubMed]

Volovik, B. V.

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).

Wang, C.

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, X. L. Wang, W. J. Zhang, S. J. Chen, C. Schneider, M. Kamp, L. X. You, Z. Wang, S. Höfling, C. Y. Lu, and J. W. Pan, “Scalable boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[PubMed]

Wang, H.

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, X. L. Wang, W. J. Zhang, S. J. Chen, C. Schneider, M. Kamp, L. X. You, Z. Wang, S. Höfling, C. Y. Lu, and J. W. Pan, “Scalable boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[PubMed]

H. Wang, Y.-M. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).

Wang, X. L.

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, X. L. Wang, W. J. Zhang, S. J. Chen, C. Schneider, M. Kamp, L. X. You, Z. Wang, S. Höfling, C. Y. Lu, and J. W. Pan, “Scalable boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[PubMed]

Wang, Z.

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, X. L. Wang, W. J. Zhang, S. J. Chen, C. Schneider, M. Kamp, L. X. You, Z. Wang, S. Höfling, C. Y. Lu, and J. W. Pan, “Scalable boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[PubMed]

Ward, M. B.

R. Al-Khuzheyri, A. C. Dada, J. Huwer, T. S. Santana, J. Skiba-Szymanska, M. Felle, M. B. Ward, R. M. Stevenson, I. Farrer, M. G. Tanner, R. H. Hadfield, D. A. Ritchie, A. J. Shields, and B. D. Gerardot, “Resonance fluorescence from a telecom-wavelength quantum dot,” Appl. Phys. Lett. 109, 163104 (2016).

M. B. Ward, M. C. Dean, R. M. Stevenson, A. J. Bennett, D. J. P. Ellis, K. Cooper, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Coherent dynamics of a telecom-wavelength entangled photon source,” Nat. Commun. 5, 3316 (2014).
[PubMed]

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum key distribution using a triggered quantum dot source emitting near 1.3μm,” Appl. Phys. Lett. 91, 161103 (2007).

M. B. Ward, O. Z. Karimov, D. C. Unitt, Z. L. Yuan, P. See, D. G. Gevaux, A. J. Shields, P. Atkinson, and D. A. Ritchie, “On-demand single-photon source for 1.3μm telecom fiber,” Appl. Phys. Lett. 86, 201111 (2005).

White, A. G.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).

Wohlfeil, B.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[PubMed]

Yacob, M.

M. Benyoucef, M. Yacob, J. P. Reithmaier, J. Kettler, and P. Michler, “Telecom-wavelength (1.5 μm) single-photon emission from InP-based quantum dots,” Appl. Phys. Lett. 103, 162101 (2013).

Yamaguchi, T.

T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, “Single-photon emission from single quantum dots in a hybrid pillar microcavity,” Appl. Phys. Lett. 92, 81906 (2008).

Yamamoto, T.

T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, and Y. Arakawa, “Single-photon emission at 1.5 μm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities,” Appl. Phys. Lett. 109, 132106 (2016).

K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, and Y. Arakawa, “Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors,” Sci. Rep. 5, 14383 (2015).
[PubMed]

Yamamoto, Y.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[PubMed]

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered Single Photons from a Quantum Dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[PubMed]

Yamashita, T.

T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, and Y. Arakawa, “Single-photon emission at 1.5 μm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities,” Appl. Phys. Lett. 109, 132106 (2016).

Yorozu, S.

K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, and Y. Arakawa, “Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors,” Sci. Rep. 5, 14383 (2015).
[PubMed]

You, L. X.

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, X. L. Wang, W. J. Zhang, S. J. Chen, C. Schneider, M. Kamp, L. X. You, Z. Wang, S. Höfling, C. Y. Lu, and J. W. Pan, “Scalable boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[PubMed]

Yu, L.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[PubMed]

Yuan, Z. L.

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum key distribution using a triggered quantum dot source emitting near 1.3μm,” Appl. Phys. Lett. 91, 161103 (2007).

M. B. Ward, O. Z. Karimov, D. C. Unitt, Z. L. Yuan, P. See, D. G. Gevaux, A. J. Shields, P. Atkinson, and D. A. Ritchie, “On-demand single-photon source for 1.3μm telecom fiber,” Appl. Phys. Lett. 86, 201111 (2005).

Zeuner, K.

J. Kettler, M. Paul, F. Olbrich, K. Zeuner, M. Jetter, and P. Michler, “Single-photon and photon pair emission from MOVPE-grown In(Ga)As quantum dots: shifting the emission wavelength from 1.0 to 1.3 μm,” Appl. Phys. B 122, 48 (2016).

M. Paul, J. Kettler, K. Zeuner, C. Clausen, M. Jetter, and P. Michler, “Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3 μm,” Appl. Phys. Lett. 106, 122105 (2015).

Zhang, W. J.

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, X. L. Wang, W. J. Zhang, S. J. Chen, C. Schneider, M. Kamp, L. X. You, Z. Wang, S. Höfling, C. Y. Lu, and J. W. Pan, “Scalable boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[PubMed]

Zhukov, A. E.

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).

Zinoni, C.

A. Fiore, C. Zinoni, B. Alloing, C. Monat, L. Balet, L. H. Li, N. Le Thomas, R. Houdré, L. Lunghi, M. Francardi, A. Gerardino, and G. Patriarche, “Telecom-wavelength single-photon sources for quantum communications,” J. Phys. Condens. Matter 19, 225005 (2007).

Zrenner, A.

P. Ester, L. Lackmann, S. Michaelis De Vasconcellos, M. C. Hübner, A. Zrenner, and M. Bichler, “Single photon emission based on coherent state preparation,” Appl. Phys. Lett. 91, 111110 (2007).

Zwiller, V.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[PubMed]

Appl. Phys. B (1)

J. Kettler, M. Paul, F. Olbrich, K. Zeuner, M. Jetter, and P. Michler, “Single-photon and photon pair emission from MOVPE-grown In(Ga)As quantum dots: shifting the emission wavelength from 1.0 to 1.3 μm,” Appl. Phys. B 122, 48 (2016).

Appl. Phys. Lett. (14)

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum key distribution using a triggered quantum dot source emitting near 1.3μm,” Appl. Phys. Lett. 91, 161103 (2007).

P. Ester, L. Lackmann, S. Michaelis De Vasconcellos, M. C. Hübner, A. Zrenner, and M. Bichler, “Single photon emission based on coherent state preparation,” Appl. Phys. Lett. 91, 111110 (2007).

R. Al-Khuzheyri, A. C. Dada, J. Huwer, T. S. Santana, J. Skiba-Szymanska, M. Felle, M. B. Ward, R. M. Stevenson, I. Farrer, M. G. Tanner, R. H. Hadfield, D. A. Ritchie, A. J. Shields, and B. D. Gerardot, “Resonance fluorescence from a telecom-wavelength quantum dot,” Appl. Phys. Lett. 109, 163104 (2016).

M. Paul, J. Kettler, K. Zeuner, C. Clausen, M. Jetter, and P. Michler, “Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3 μm,” Appl. Phys. Lett. 106, 122105 (2015).

T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, “Single-photon emission from single quantum dots in a hybrid pillar microcavity,” Appl. Phys. Lett. 92, 81906 (2008).

E. Goldmann, M. Paul, F. F. Krause, K. Müller, J. Kettler, T. Mehrtens, A. Rosenauer, M. Jetter, P. Michler, and F. Jahnke, “Structural and emission properties of InGaAs/GaAs quantum dots emitting at 1.3 μm,” Appl. Phys. Lett. 105, 152102 (2014).

T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, and Y. Arakawa, “Single-photon emission at 1.5 μm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities,” Appl. Phys. Lett. 109, 132106 (2016).

Ł. Dusanowski, M. Syperek, P. Mrowiński, W. Rudno-Rudziński, J. Misiewicz, A. Somers, S. Höfling, M. Kamp, J. P. Reithmaier, and G. Sęk, “Single photon emission at 1.55 μm from charged and neutral exciton confined in a single quantum dash,” Appl. Phys. Lett. 105, 21909 (2014).

M. Benyoucef, M. Yacob, J. P. Reithmaier, J. Kettler, and P. Michler, “Telecom-wavelength (1.5 μm) single-photon emission from InP-based quantum dots,” Appl. Phys. Lett. 103, 162101 (2013).

X. Liu, K. Akahane, N. A. Jahan, N. Kobayashi, M. Sasaki, H. Kumano, and I. Suemune, “Single-photon emission in telecommunication band from an InAs quantum dot grown on InP with molecular-beam epitaxy,” Appl. Phys. Lett. 103, 17–21 (2013).

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).

K. Nishi, H. Saito, S. Sugou, and J.-S. Lee, “A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates,” Appl. Phys. Lett. 74, 1111–1113 (1999).

J. Bloch, J. Shah, W. S. Hobson, J. Lopata, and S. N. G. Chu, “Room-temperature 1.3 μm emission from InAs quantum dots grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 75, 2199–2201 (1999).

M. B. Ward, O. Z. Karimov, D. C. Unitt, Z. L. Yuan, P. See, D. G. Gevaux, A. J. Shields, P. Atkinson, and D. A. Ritchie, “On-demand single-photon source for 1.3μm telecom fiber,” Appl. Phys. Lett. 86, 201111 (2005).

J. Phys. Condens. Matter (1)

A. Fiore, C. Zinoni, B. Alloing, C. Monat, L. Balet, L. H. Li, N. Le Thomas, R. Houdré, L. Lunghi, M. Francardi, A. Gerardino, and G. Patriarche, “Telecom-wavelength single-photon sources for quantum communications,” J. Phys. Condens. Matter 19, 225005 (2007).

J. Vac. Sci. Technol. (1)

A. Kaganskiy, T. Heuser, R. Schmidt, S. Rodt, and S. Reitzenstein, “CSAR 62 as negative-tone resist for high-contrast e-beam lithography at temperatures between 4K and room temperature,” J. Vac. Sci. Technol. 34, 061603 (2016).

Nanotechnology (1)

P. Schnauber, R. Schmidt, A. Kaganskiy, T. Heuser, M. Gschrey, S. Rodt, and S. Reitzenstein, “Using low-contrast negative-tone PMMA at cryogenic temperatures for 3D electron beam lithography,” Nanotechnology 27(19), 195301 (2016).
[PubMed]

Nat. Commun. (4)

M. B. Ward, M. C. Dean, R. M. Stevenson, A. J. Bennett, D. J. P. Ellis, K. Cooper, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Coherent dynamics of a telecom-wavelength entangled photon source,” Nat. Commun. 5, 3316 (2014).
[PubMed]

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[PubMed]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[PubMed]

O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[PubMed]

Nat. Photonics (5)

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).

H. Wang, Y.-M. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photonics 11, 361–365 (2017).

Nature (2)

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491(7424), 421–425 (2012).
[PubMed]

W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, and A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491(7424), 426–430 (2012).
[PubMed]

Opt. Express (1)

Phys. Rev. B (3)

M.-E. Pistol, P. Castrillo, D. Hessman, J. A. Prieto, and L. Samuelson, “Random telegraph noise in photoluminescence from individual self-assembled quantum dots,” Phys. Rev. B 59, 10725–10729 (1999).

H. D. Robinson and B. B. Goldberg, “Light-induced spectral diffusion in single self-assembled quantum dots,” Phys. Rev. B 61, R5086–R5089 (2000).

F. Guffarth, R. Heitz, A. Schliwa, O. Stier, N. N. Ledentsov, A. R. Kovsh, V. M. Ustinov, and D. Bimberg, “Strain engineering of self-organized InAs quantum dots,” Phys. Rev. B 64, 85305 (2001).

Phys. Rev. Lett. (3)

Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, X. L. Wang, W. J. Zhang, S. J. Chen, C. Schneider, M. Kamp, L. X. You, Z. Wang, S. Höfling, C. Y. Lu, and J. W. Pan, “Scalable boson sampling with a single-photon device,” Phys. Rev. Lett. 118(19), 190501 (2017).
[PubMed]

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[PubMed]

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered Single Photons from a Quantum Dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[PubMed]

Sci. Rep. (2)

K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, and Y. Arakawa, “Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors,” Sci. Rep. 5, 14383 (2015).
[PubMed]

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[PubMed]

Science (1)

I. Schwartz, D. Cogan, E. R. Schmidgall, Y. Don, L. Gantz, O. Kenneth, N. H. Lindner, and D. Gershoni, “Deterministic generation of a cluster state of entangled photons,” Science 354(6311), 434–437 (2016).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Low-temperature emission spectrum from single QDs in a microlens structure under above GaAs-band-gap cw excitation. (b) Spectrally-integrated intensity of the line labeled with an arrow as a function of excitation power. The experimental data was fitted with a power function (red solid line) revealing a linear increase of the QD intensity with excitation power.
Fig. 2
Fig. 2 (a) PL spectra for an ensemble of QDs under various excitation powers revealing wetting layer (WL) as well as s-, p- and d- shell-like QD-states emission. (b) µPL and µPLE spectra (right) of the QD under quasi-resonant pulsed excitation. µPL spectra recorded for 5 meV laser-energy-detuning from the p-shell (red solid line) and for direct p-shell excitation (black solid line). All spectra were recorded at low temperature (T = 5 K).
Fig. 3
Fig. 3 The second-order auto correlation function g(2)(τ) of the photons emitted from a QD under pulsed p-shell resonant excitation. Nearly ideal single-photon emission is demonstrated with a strongly reduced multiphoton probability at zero time delay with as measured g(2)(0) = 0.03 ± 0.01. The experimental data was fitted with a model [14] (red solid line) including a blinking effect with an “on” and “off” state time constants, equal to 13 and 56 ns, respectively.

Metrics