Abstract

In situ absorption measurements collected with a WET Labs ac-9 employing a reflective tube approach were scatter corrected using several possible methods and compared to reference measurements made by a PSICAM to assess performance. Overall, two correction methods performed best for the stations sampled: one using an empirical relationship between the ac-9 and PSICAM to derive the scattering error (ε) in the near-infrared (NIR), and one where ε was independently derived from concurrent measurements of the volume scattering function (VSF). Application of the VSF-based method may be more universally applicable, although difficult to routinely apply because of the lack of commercially available VSF instrumentation. The performance of the empirical approach is encouraging as it relies only on the ac meter measurement and may be readily applied to historical data, although there are inevitably some inherent assumptions about particle composition that hinder universal applicability. For even the best performing methods, residual errors of 20% or more were commonly observed for many water types. For clear ocean waters, a conventional baseline subtraction with the assumption of negligible near-IR absorption performed as well or better than the above methods because propagated uncertainties were lower than observed with the proportional method.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Measurement uncertainties in PSICAM and reflective tube absorption meters

Ina Lefering, Rüdiger Röttgers, Christian Utschig, Michael S. Twardowski, and David McKee
Opt. Express 26(19) 24384-24402 (2018)

Scattering error corrections for in situ absorption and attenuation measurements

David McKee, Jacek Piskozub, and Ian Brown
Opt. Express 16(24) 19480-19492 (2008)

Semi-empirical correction algorithm for AC-9 measurements in a coccolithophore bloom

David McKee, Alex Cunningham, and Susanne Craig
Appl. Opt. 42(21) 4369-4374 (2003)

References

  • View by:
  • |
  • |
  • |

  1. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. Atmos. 93(D9), 10909–10924 (1988).
  2. IOCCG, Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications, Z.-P. Lee ed. (IOCCG, 2006).
  3. P. J. Werdell, B. A. Franz, S. W. Bailey, G. C. Feldman, E. Boss, V. E. Brando, M. Dowell, T. Hirata, S. J. Lavender, Z. Lee, H. Loisel, S. Maritorena, F. Mélin, T. S. Moore, T. J. Smyth, D. Antoine, E. Devred, O. H. F. d’Andon, and A. Mangin, “Generalized ocean color inversion model for retrieving marine inherent optical properties,” Appl. Opt. 52(10), 2019–2037 (2013).
    [PubMed]
  4. A. H. Barnard, W. S. Pegau, and J. R. V. Zaneveld, “Global relationships of the inherent optical properties of the oceans,” J. Geophys. Res.: Oceans 103(C11), 24955–24968 (1998).
  5. Z. P. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, and J. S. Patch, “An empirical algorithm for light absorption by ocean water based on color,” J. Geophys. Res.: Oceans 103(C12), 27967–27978 (1998).
  6. D. Stramski, R. A. Reynolds, M. Kahru, and B. G. Mitchell, “Estimation of particulate organic carbon in the ocean from satellite remote sensing,” Science 285(5425), 239–242 (1999).
    [PubMed]
  7. A. Tonizzo, M. S. Twardowski, S. McLean, K. Voss, M. Lewis, and C. Trees, “Closure and uncertainty assessment for ocean color reflectance using measured volume scattering functions and reflective tube absorption coefficients with novel correction for scattering,” Appl. Opt. 56(1), 130–146 (2017).
  8. J. R. V. Zaneveld, J. C. Kitchen, A. Bricaud, and C. Moore, “Analysis of in situ absorption meter data,” Proc. SPIE 1750, 187–200 (1992).
  9. W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res.: Oceans 100(C7), 13201–13220 (1995).
  10. J. R. V. Zaneveld, J. C. Kitchen, and C. M. Moore, “The scattering error correction of reflecting-tube absorption meters,” Proc. SPIE 2258, 44–55 (1994).
  11. R. Röttgers, D. McKee, and S. B. Woźniak, “Evaluation of scatter corrections for ac-9 absorption measurements in coastal waters,” Methods Oceanogr. 7, 21–39 (2013).
  12. M. S. Twardowski, J. M. Sullivan, P. L. Donaghay, and J. R. V. Zaneveld, “Microscale quantification of the absorption by dissolved and particulate material in coastal waters with an ac-9,” J. Atmos. Ocean. Technol. 16, 691–707 (1999).
  13. J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range,” Appl. Opt. 45(21), 5294–5309 (2006).
    [PubMed]
  14. W. S. Pegau, D. Gray, and J. R. V. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity,” Appl. Opt. 36(24), 6035–6046 (1997).
    [PubMed]
  15. S. Tassan and G. M. Ferrari, “An alternative approach to absorption measurements of aquatic particles retained on filters,” Limnol. Oceanogr. 40(8), 1358–1368 (1995).
  16. S. Tassan and G. M. Ferrari, “Measurement of light absorption by aquatic particles retained on filters: determination of the optical pathlength amplification by the ‘transmittance-reflectance’ method,” J. Plankton Res. 20(9), 1699–1709 (1998).
  17. S. Tassan and G. M. Ferrari, “Variability of light absorption by aquatic particles in the near-infrared spectral region,” Appl. Opt. 42(24), 4802–4810 (2003).
    [PubMed]
  18. D. Stramski, S. B. Woźniak, and P. J. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49(3), 749–755 (2004).
  19. D. Stramski, M. Babin, and S. B. Woźniak, “Variations in the optical properties of terrigenous mineral-rich particulate matter,” Limnol. Oceanogr. 52(6), 2418–2433 (2007).
  20. R. Röttgers and S. Gehnke, “Measurement of light absorption by aquatic particles: improvement of the quantitative filter technique by use of an integrating sphere approach,” Appl. Opt. 51(9), 1336–1351 (2012).
    [PubMed]
  21. D. McKee, J. Piskozub, R. Röttgers, and R. A. Reynolds, “Evaluation and improvement of an iterative scattering correction scheme for in situ absorption and attenuation measurements,” J. Atmos. Ocean. Technol. 30, 1527–1541 (2013).
  22. R. Röttgers, C. Dupouy, B. B. Taylor, A. Bracher, and S. B. Woźniak, “Mass-specific light absorption coefficients of natural aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 59(5), 1449–1460 (2014).
  23. E. Leymarie, D. Doxaran, and M. Babin, “Uncertainties associated to measurements of inherent optical properties in natural waters,” Appl. Opt. 49(28), 5415–5436 (2010).
    [PubMed]
  24. M. Jonasz and G. R. Fournier, Light Scattering by Particles in Water: Theoretical and Experimental Foundations (Academic, 2007).
  25. R. Röttgers, W. Schönfeld, P.-R. Kipp, and R. Doerffer, “Practical test of a point-source integrating cavity absorption meter: the performance of different collector assemblies,” Appl. Opt. 44(26), 5549–5560 (2005).
    [PubMed]
  26. R. Röttgers, C. Häse, and R. Doerffer, “Determination of the particulate absorption of microalgae using a point-source integrating-cavity absorption meter: verification with a photometric technique, improvements for pigment bleaching, and correction for chlorophyll fluorescence,” Limnol. Oceanogr. Methods 5(1), 1–12 (2007).
  27. M. S. Twardowski, X. Zhang, S. Vagle, J. M. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res.: Oceans 117(C7), C00H17 (2012).
  28. J. M. Sullivan, M. S. Twardowski, and J. R. V. Zaneveld, “Measuring optical backscattering in water,” in Light Scattering Reviews 7: Radiative Transfer and Optical Properties of Atmosphere and Underlying Surface, A. A. Kokhanovsky, ed. (Springer-Praxis Books, 2013).
  29. W. H. Slade, E. Boss, G. Dall’Olmo, M. R. Langner, J. Loftin, M. J. Behrenfeld, C. Roesler, and T. K. Westberry, “Underway and moored methods for improving accuracy in measurement of spectral particulate absorption and attenuation,” J. Atmos. Ocean. Technol. 27, 1733–1746 (2010).
  30. J. Piskozub, Institute of Oceanology of Polish Academy of Sciences, Powstańców Warszawy 55, 81–712 Sopot, Poland (personal communication, 2017).

2017 (1)

2014 (1)

R. Röttgers, C. Dupouy, B. B. Taylor, A. Bracher, and S. B. Woźniak, “Mass-specific light absorption coefficients of natural aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 59(5), 1449–1460 (2014).

2013 (3)

D. McKee, J. Piskozub, R. Röttgers, and R. A. Reynolds, “Evaluation and improvement of an iterative scattering correction scheme for in situ absorption and attenuation measurements,” J. Atmos. Ocean. Technol. 30, 1527–1541 (2013).

P. J. Werdell, B. A. Franz, S. W. Bailey, G. C. Feldman, E. Boss, V. E. Brando, M. Dowell, T. Hirata, S. J. Lavender, Z. Lee, H. Loisel, S. Maritorena, F. Mélin, T. S. Moore, T. J. Smyth, D. Antoine, E. Devred, O. H. F. d’Andon, and A. Mangin, “Generalized ocean color inversion model for retrieving marine inherent optical properties,” Appl. Opt. 52(10), 2019–2037 (2013).
[PubMed]

R. Röttgers, D. McKee, and S. B. Woźniak, “Evaluation of scatter corrections for ac-9 absorption measurements in coastal waters,” Methods Oceanogr. 7, 21–39 (2013).

2012 (2)

R. Röttgers and S. Gehnke, “Measurement of light absorption by aquatic particles: improvement of the quantitative filter technique by use of an integrating sphere approach,” Appl. Opt. 51(9), 1336–1351 (2012).
[PubMed]

M. S. Twardowski, X. Zhang, S. Vagle, J. M. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res.: Oceans 117(C7), C00H17 (2012).

2010 (2)

W. H. Slade, E. Boss, G. Dall’Olmo, M. R. Langner, J. Loftin, M. J. Behrenfeld, C. Roesler, and T. K. Westberry, “Underway and moored methods for improving accuracy in measurement of spectral particulate absorption and attenuation,” J. Atmos. Ocean. Technol. 27, 1733–1746 (2010).

E. Leymarie, D. Doxaran, and M. Babin, “Uncertainties associated to measurements of inherent optical properties in natural waters,” Appl. Opt. 49(28), 5415–5436 (2010).
[PubMed]

2007 (2)

R. Röttgers, C. Häse, and R. Doerffer, “Determination of the particulate absorption of microalgae using a point-source integrating-cavity absorption meter: verification with a photometric technique, improvements for pigment bleaching, and correction for chlorophyll fluorescence,” Limnol. Oceanogr. Methods 5(1), 1–12 (2007).

D. Stramski, M. Babin, and S. B. Woźniak, “Variations in the optical properties of terrigenous mineral-rich particulate matter,” Limnol. Oceanogr. 52(6), 2418–2433 (2007).

2006 (1)

2005 (1)

2004 (1)

D. Stramski, S. B. Woźniak, and P. J. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49(3), 749–755 (2004).

2003 (1)

1999 (2)

M. S. Twardowski, J. M. Sullivan, P. L. Donaghay, and J. R. V. Zaneveld, “Microscale quantification of the absorption by dissolved and particulate material in coastal waters with an ac-9,” J. Atmos. Ocean. Technol. 16, 691–707 (1999).

D. Stramski, R. A. Reynolds, M. Kahru, and B. G. Mitchell, “Estimation of particulate organic carbon in the ocean from satellite remote sensing,” Science 285(5425), 239–242 (1999).
[PubMed]

1998 (3)

A. H. Barnard, W. S. Pegau, and J. R. V. Zaneveld, “Global relationships of the inherent optical properties of the oceans,” J. Geophys. Res.: Oceans 103(C11), 24955–24968 (1998).

Z. P. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, and J. S. Patch, “An empirical algorithm for light absorption by ocean water based on color,” J. Geophys. Res.: Oceans 103(C12), 27967–27978 (1998).

S. Tassan and G. M. Ferrari, “Measurement of light absorption by aquatic particles retained on filters: determination of the optical pathlength amplification by the ‘transmittance-reflectance’ method,” J. Plankton Res. 20(9), 1699–1709 (1998).

1997 (1)

1995 (2)

S. Tassan and G. M. Ferrari, “An alternative approach to absorption measurements of aquatic particles retained on filters,” Limnol. Oceanogr. 40(8), 1358–1368 (1995).

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res.: Oceans 100(C7), 13201–13220 (1995).

1994 (1)

J. R. V. Zaneveld, J. C. Kitchen, and C. M. Moore, “The scattering error correction of reflecting-tube absorption meters,” Proc. SPIE 2258, 44–55 (1994).

1992 (1)

J. R. V. Zaneveld, J. C. Kitchen, A. Bricaud, and C. Moore, “Analysis of in situ absorption meter data,” Proc. SPIE 1750, 187–200 (1992).

1988 (1)

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. Atmos. 93(D9), 10909–10924 (1988).

Antoine, D.

Babin, M.

E. Leymarie, D. Doxaran, and M. Babin, “Uncertainties associated to measurements of inherent optical properties in natural waters,” Appl. Opt. 49(28), 5415–5436 (2010).
[PubMed]

D. Stramski, M. Babin, and S. B. Woźniak, “Variations in the optical properties of terrigenous mineral-rich particulate matter,” Limnol. Oceanogr. 52(6), 2418–2433 (2007).

Bailey, S. W.

Baker, K. S.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. Atmos. 93(D9), 10909–10924 (1988).

Barnard, A. H.

Behrenfeld, M. J.

W. H. Slade, E. Boss, G. Dall’Olmo, M. R. Langner, J. Loftin, M. J. Behrenfeld, C. Roesler, and T. K. Westberry, “Underway and moored methods for improving accuracy in measurement of spectral particulate absorption and attenuation,” J. Atmos. Ocean. Technol. 27, 1733–1746 (2010).

Bi, L.

M. S. Twardowski, X. Zhang, S. Vagle, J. M. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res.: Oceans 117(C7), C00H17 (2012).

Boss, E.

P. J. Werdell, B. A. Franz, S. W. Bailey, G. C. Feldman, E. Boss, V. E. Brando, M. Dowell, T. Hirata, S. J. Lavender, Z. Lee, H. Loisel, S. Maritorena, F. Mélin, T. S. Moore, T. J. Smyth, D. Antoine, E. Devred, O. H. F. d’Andon, and A. Mangin, “Generalized ocean color inversion model for retrieving marine inherent optical properties,” Appl. Opt. 52(10), 2019–2037 (2013).
[PubMed]

W. H. Slade, E. Boss, G. Dall’Olmo, M. R. Langner, J. Loftin, M. J. Behrenfeld, C. Roesler, and T. K. Westberry, “Underway and moored methods for improving accuracy in measurement of spectral particulate absorption and attenuation,” J. Atmos. Ocean. Technol. 27, 1733–1746 (2010).

Bracher, A.

R. Röttgers, C. Dupouy, B. B. Taylor, A. Bracher, and S. B. Woźniak, “Mass-specific light absorption coefficients of natural aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 59(5), 1449–1460 (2014).

Brando, V. E.

Bricaud, A.

J. R. V. Zaneveld, J. C. Kitchen, A. Bricaud, and C. Moore, “Analysis of in situ absorption meter data,” Proc. SPIE 1750, 187–200 (1992).

Brown, J. W.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. Atmos. 93(D9), 10909–10924 (1988).

Brown, O. B.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. Atmos. 93(D9), 10909–10924 (1988).

Carder, K. L.

Z. P. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, and J. S. Patch, “An empirical algorithm for light absorption by ocean water based on color,” J. Geophys. Res.: Oceans 103(C12), 27967–27978 (1998).

Clark, D. K.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. Atmos. 93(D9), 10909–10924 (1988).

Cleveland, J. S.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res.: Oceans 100(C7), 13201–13220 (1995).

Czerski, H.

M. S. Twardowski, X. Zhang, S. Vagle, J. M. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res.: Oceans 117(C7), C00H17 (2012).

d’Andon, O. H. F.

Dall’Olmo, G.

W. H. Slade, E. Boss, G. Dall’Olmo, M. R. Langner, J. Loftin, M. J. Behrenfeld, C. Roesler, and T. K. Westberry, “Underway and moored methods for improving accuracy in measurement of spectral particulate absorption and attenuation,” J. Atmos. Ocean. Technol. 27, 1733–1746 (2010).

Davis, C. O.

Z. P. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, and J. S. Patch, “An empirical algorithm for light absorption by ocean water based on color,” J. Geophys. Res.: Oceans 103(C12), 27967–27978 (1998).

Devred, E.

Doerffer, R.

R. Röttgers, C. Häse, and R. Doerffer, “Determination of the particulate absorption of microalgae using a point-source integrating-cavity absorption meter: verification with a photometric technique, improvements for pigment bleaching, and correction for chlorophyll fluorescence,” Limnol. Oceanogr. Methods 5(1), 1–12 (2007).

R. Röttgers, W. Schönfeld, P.-R. Kipp, and R. Doerffer, “Practical test of a point-source integrating cavity absorption meter: the performance of different collector assemblies,” Appl. Opt. 44(26), 5549–5560 (2005).
[PubMed]

Donaghay, P. L.

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range,” Appl. Opt. 45(21), 5294–5309 (2006).
[PubMed]

M. S. Twardowski, J. M. Sullivan, P. L. Donaghay, and J. R. V. Zaneveld, “Microscale quantification of the absorption by dissolved and particulate material in coastal waters with an ac-9,” J. Atmos. Ocean. Technol. 16, 691–707 (1999).

Doss, W.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res.: Oceans 100(C7), 13201–13220 (1995).

Dowell, M.

Doxaran, D.

Dupouy, C.

R. Röttgers, C. Dupouy, B. B. Taylor, A. Bracher, and S. B. Woźniak, “Mass-specific light absorption coefficients of natural aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 59(5), 1449–1460 (2014).

Evans, R. H.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. Atmos. 93(D9), 10909–10924 (1988).

Feldman, G. C.

Ferrari, G. M.

S. Tassan and G. M. Ferrari, “Variability of light absorption by aquatic particles in the near-infrared spectral region,” Appl. Opt. 42(24), 4802–4810 (2003).
[PubMed]

S. Tassan and G. M. Ferrari, “Measurement of light absorption by aquatic particles retained on filters: determination of the optical pathlength amplification by the ‘transmittance-reflectance’ method,” J. Plankton Res. 20(9), 1699–1709 (1998).

S. Tassan and G. M. Ferrari, “An alternative approach to absorption measurements of aquatic particles retained on filters,” Limnol. Oceanogr. 40(8), 1358–1368 (1995).

Flatau, P. J.

D. Stramski, S. B. Woźniak, and P. J. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49(3), 749–755 (2004).

Franz, B. A.

Freeman, S.

M. S. Twardowski, X. Zhang, S. Vagle, J. M. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res.: Oceans 117(C7), C00H17 (2012).

Gehnke, S.

Gordon, H. R.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. Atmos. 93(D9), 10909–10924 (1988).

Gray, D.

Häse, C.

R. Röttgers, C. Häse, and R. Doerffer, “Determination of the particulate absorption of microalgae using a point-source integrating-cavity absorption meter: verification with a photometric technique, improvements for pigment bleaching, and correction for chlorophyll fluorescence,” Limnol. Oceanogr. Methods 5(1), 1–12 (2007).

Hirata, T.

Kahru, M.

D. Stramski, R. A. Reynolds, M. Kahru, and B. G. Mitchell, “Estimation of particulate organic carbon in the ocean from satellite remote sensing,” Science 285(5425), 239–242 (1999).
[PubMed]

Kattawar, G.

M. S. Twardowski, X. Zhang, S. Vagle, J. M. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res.: Oceans 117(C7), C00H17 (2012).

Kennedy, C. D.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res.: Oceans 100(C7), 13201–13220 (1995).

Kipp, P.-R.

Kitchen, J. C.

J. R. V. Zaneveld, J. C. Kitchen, and C. M. Moore, “The scattering error correction of reflecting-tube absorption meters,” Proc. SPIE 2258, 44–55 (1994).

J. R. V. Zaneveld, J. C. Kitchen, A. Bricaud, and C. Moore, “Analysis of in situ absorption meter data,” Proc. SPIE 1750, 187–200 (1992).

Langner, M. R.

W. H. Slade, E. Boss, G. Dall’Olmo, M. R. Langner, J. Loftin, M. J. Behrenfeld, C. Roesler, and T. K. Westberry, “Underway and moored methods for improving accuracy in measurement of spectral particulate absorption and attenuation,” J. Atmos. Ocean. Technol. 27, 1733–1746 (2010).

Lavender, S. J.

Lee, Z.

Lee, Z. P.

Z. P. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, and J. S. Patch, “An empirical algorithm for light absorption by ocean water based on color,” J. Geophys. Res.: Oceans 103(C12), 27967–27978 (1998).

Lewis, M.

Leymarie, E.

Loftin, J.

W. H. Slade, E. Boss, G. Dall’Olmo, M. R. Langner, J. Loftin, M. J. Behrenfeld, C. Roesler, and T. K. Westberry, “Underway and moored methods for improving accuracy in measurement of spectral particulate absorption and attenuation,” J. Atmos. Ocean. Technol. 27, 1733–1746 (2010).

Loisel, H.

Maffione, R. A.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res.: Oceans 100(C7), 13201–13220 (1995).

Mangin, A.

Maritorena, S.

McKee, D.

R. Röttgers, D. McKee, and S. B. Woźniak, “Evaluation of scatter corrections for ac-9 absorption measurements in coastal waters,” Methods Oceanogr. 7, 21–39 (2013).

D. McKee, J. Piskozub, R. Röttgers, and R. A. Reynolds, “Evaluation and improvement of an iterative scattering correction scheme for in situ absorption and attenuation measurements,” J. Atmos. Ocean. Technol. 30, 1527–1541 (2013).

McLean, S.

Mélin, F.

Mitchell, B. G.

D. Stramski, R. A. Reynolds, M. Kahru, and B. G. Mitchell, “Estimation of particulate organic carbon in the ocean from satellite remote sensing,” Science 285(5425), 239–242 (1999).
[PubMed]

Moore, C.

J. R. V. Zaneveld, J. C. Kitchen, A. Bricaud, and C. Moore, “Analysis of in situ absorption meter data,” Proc. SPIE 1750, 187–200 (1992).

Moore, C. M.

Moore, T. S.

Mueller, J. L.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res.: Oceans 100(C7), 13201–13220 (1995).

Patch, J. S.

Z. P. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, and J. S. Patch, “An empirical algorithm for light absorption by ocean water based on color,” J. Geophys. Res.: Oceans 103(C12), 27967–27978 (1998).

Peacock, T. G.

Z. P. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, and J. S. Patch, “An empirical algorithm for light absorption by ocean water based on color,” J. Geophys. Res.: Oceans 103(C12), 27967–27978 (1998).

Pegau, W. S.

A. H. Barnard, W. S. Pegau, and J. R. V. Zaneveld, “Global relationships of the inherent optical properties of the oceans,” J. Geophys. Res.: Oceans 103(C11), 24955–24968 (1998).

W. S. Pegau, D. Gray, and J. R. V. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity,” Appl. Opt. 36(24), 6035–6046 (1997).
[PubMed]

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res.: Oceans 100(C7), 13201–13220 (1995).

Piskozub, J.

D. McKee, J. Piskozub, R. Röttgers, and R. A. Reynolds, “Evaluation and improvement of an iterative scattering correction scheme for in situ absorption and attenuation measurements,” J. Atmos. Ocean. Technol. 30, 1527–1541 (2013).

Reynolds, R. A.

D. McKee, J. Piskozub, R. Röttgers, and R. A. Reynolds, “Evaluation and improvement of an iterative scattering correction scheme for in situ absorption and attenuation measurements,” J. Atmos. Ocean. Technol. 30, 1527–1541 (2013).

D. Stramski, R. A. Reynolds, M. Kahru, and B. G. Mitchell, “Estimation of particulate organic carbon in the ocean from satellite remote sensing,” Science 285(5425), 239–242 (1999).
[PubMed]

Rhoades, B.

Roesler, C.

W. H. Slade, E. Boss, G. Dall’Olmo, M. R. Langner, J. Loftin, M. J. Behrenfeld, C. Roesler, and T. K. Westberry, “Underway and moored methods for improving accuracy in measurement of spectral particulate absorption and attenuation,” J. Atmos. Ocean. Technol. 27, 1733–1746 (2010).

Röttgers, R.

R. Röttgers, C. Dupouy, B. B. Taylor, A. Bracher, and S. B. Woźniak, “Mass-specific light absorption coefficients of natural aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 59(5), 1449–1460 (2014).

D. McKee, J. Piskozub, R. Röttgers, and R. A. Reynolds, “Evaluation and improvement of an iterative scattering correction scheme for in situ absorption and attenuation measurements,” J. Atmos. Ocean. Technol. 30, 1527–1541 (2013).

R. Röttgers, D. McKee, and S. B. Woźniak, “Evaluation of scatter corrections for ac-9 absorption measurements in coastal waters,” Methods Oceanogr. 7, 21–39 (2013).

R. Röttgers and S. Gehnke, “Measurement of light absorption by aquatic particles: improvement of the quantitative filter technique by use of an integrating sphere approach,” Appl. Opt. 51(9), 1336–1351 (2012).
[PubMed]

R. Röttgers, C. Häse, and R. Doerffer, “Determination of the particulate absorption of microalgae using a point-source integrating-cavity absorption meter: verification with a photometric technique, improvements for pigment bleaching, and correction for chlorophyll fluorescence,” Limnol. Oceanogr. Methods 5(1), 1–12 (2007).

R. Röttgers, W. Schönfeld, P.-R. Kipp, and R. Doerffer, “Practical test of a point-source integrating cavity absorption meter: the performance of different collector assemblies,” Appl. Opt. 44(26), 5549–5560 (2005).
[PubMed]

Schönfeld, W.

Slade, W. H.

W. H. Slade, E. Boss, G. Dall’Olmo, M. R. Langner, J. Loftin, M. J. Behrenfeld, C. Roesler, and T. K. Westberry, “Underway and moored methods for improving accuracy in measurement of spectral particulate absorption and attenuation,” J. Atmos. Ocean. Technol. 27, 1733–1746 (2010).

Smith, R. C.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. Atmos. 93(D9), 10909–10924 (1988).

Smyth, T. J.

Steward, R. G.

Z. P. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, and J. S. Patch, “An empirical algorithm for light absorption by ocean water based on color,” J. Geophys. Res.: Oceans 103(C12), 27967–27978 (1998).

Stone, R.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res.: Oceans 100(C7), 13201–13220 (1995).

Stramski, D.

D. Stramski, M. Babin, and S. B. Woźniak, “Variations in the optical properties of terrigenous mineral-rich particulate matter,” Limnol. Oceanogr. 52(6), 2418–2433 (2007).

D. Stramski, S. B. Woźniak, and P. J. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49(3), 749–755 (2004).

D. Stramski, R. A. Reynolds, M. Kahru, and B. G. Mitchell, “Estimation of particulate organic carbon in the ocean from satellite remote sensing,” Science 285(5425), 239–242 (1999).
[PubMed]

Sullivan, J. M.

M. S. Twardowski, X. Zhang, S. Vagle, J. M. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res.: Oceans 117(C7), C00H17 (2012).

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range,” Appl. Opt. 45(21), 5294–5309 (2006).
[PubMed]

M. S. Twardowski, J. M. Sullivan, P. L. Donaghay, and J. R. V. Zaneveld, “Microscale quantification of the absorption by dissolved and particulate material in coastal waters with an ac-9,” J. Atmos. Ocean. Technol. 16, 691–707 (1999).

Tassan, S.

S. Tassan and G. M. Ferrari, “Variability of light absorption by aquatic particles in the near-infrared spectral region,” Appl. Opt. 42(24), 4802–4810 (2003).
[PubMed]

S. Tassan and G. M. Ferrari, “Measurement of light absorption by aquatic particles retained on filters: determination of the optical pathlength amplification by the ‘transmittance-reflectance’ method,” J. Plankton Res. 20(9), 1699–1709 (1998).

S. Tassan and G. M. Ferrari, “An alternative approach to absorption measurements of aquatic particles retained on filters,” Limnol. Oceanogr. 40(8), 1358–1368 (1995).

Taylor, B. B.

R. Röttgers, C. Dupouy, B. B. Taylor, A. Bracher, and S. B. Woźniak, “Mass-specific light absorption coefficients of natural aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 59(5), 1449–1460 (2014).

Tonizzo, A.

Trees, C.

Trees, C. C.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res.: Oceans 100(C7), 13201–13220 (1995).

Twardowski, M. S.

A. Tonizzo, M. S. Twardowski, S. McLean, K. Voss, M. Lewis, and C. Trees, “Closure and uncertainty assessment for ocean color reflectance using measured volume scattering functions and reflective tube absorption coefficients with novel correction for scattering,” Appl. Opt. 56(1), 130–146 (2017).

M. S. Twardowski, X. Zhang, S. Vagle, J. M. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res.: Oceans 117(C7), C00H17 (2012).

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range,” Appl. Opt. 45(21), 5294–5309 (2006).
[PubMed]

M. S. Twardowski, J. M. Sullivan, P. L. Donaghay, and J. R. V. Zaneveld, “Microscale quantification of the absorption by dissolved and particulate material in coastal waters with an ac-9,” J. Atmos. Ocean. Technol. 16, 691–707 (1999).

Vagle, S.

M. S. Twardowski, X. Zhang, S. Vagle, J. M. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res.: Oceans 117(C7), C00H17 (2012).

Voss, K.

Weidemann, A. D.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res.: Oceans 100(C7), 13201–13220 (1995).

Wells, W. H.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res.: Oceans 100(C7), 13201–13220 (1995).

Werdell, P. J.

Westberry, T. K.

W. H. Slade, E. Boss, G. Dall’Olmo, M. R. Langner, J. Loftin, M. J. Behrenfeld, C. Roesler, and T. K. Westberry, “Underway and moored methods for improving accuracy in measurement of spectral particulate absorption and attenuation,” J. Atmos. Ocean. Technol. 27, 1733–1746 (2010).

Wozniak, S. B.

R. Röttgers, C. Dupouy, B. B. Taylor, A. Bracher, and S. B. Woźniak, “Mass-specific light absorption coefficients of natural aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 59(5), 1449–1460 (2014).

R. Röttgers, D. McKee, and S. B. Woźniak, “Evaluation of scatter corrections for ac-9 absorption measurements in coastal waters,” Methods Oceanogr. 7, 21–39 (2013).

D. Stramski, M. Babin, and S. B. Woźniak, “Variations in the optical properties of terrigenous mineral-rich particulate matter,” Limnol. Oceanogr. 52(6), 2418–2433 (2007).

D. Stramski, S. B. Woźniak, and P. J. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49(3), 749–755 (2004).

You, Y.

M. S. Twardowski, X. Zhang, S. Vagle, J. M. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res.: Oceans 117(C7), C00H17 (2012).

Zaneveld, J. R. V.

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range,” Appl. Opt. 45(21), 5294–5309 (2006).
[PubMed]

M. S. Twardowski, J. M. Sullivan, P. L. Donaghay, and J. R. V. Zaneveld, “Microscale quantification of the absorption by dissolved and particulate material in coastal waters with an ac-9,” J. Atmos. Ocean. Technol. 16, 691–707 (1999).

A. H. Barnard, W. S. Pegau, and J. R. V. Zaneveld, “Global relationships of the inherent optical properties of the oceans,” J. Geophys. Res.: Oceans 103(C11), 24955–24968 (1998).

W. S. Pegau, D. Gray, and J. R. V. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity,” Appl. Opt. 36(24), 6035–6046 (1997).
[PubMed]

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res.: Oceans 100(C7), 13201–13220 (1995).

J. R. V. Zaneveld, J. C. Kitchen, and C. M. Moore, “The scattering error correction of reflecting-tube absorption meters,” Proc. SPIE 2258, 44–55 (1994).

J. R. V. Zaneveld, J. C. Kitchen, A. Bricaud, and C. Moore, “Analysis of in situ absorption meter data,” Proc. SPIE 1750, 187–200 (1992).

Zhang, X.

M. S. Twardowski, X. Zhang, S. Vagle, J. M. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res.: Oceans 117(C7), C00H17 (2012).

Appl. Opt. (8)

S. Tassan and G. M. Ferrari, “Variability of light absorption by aquatic particles in the near-infrared spectral region,” Appl. Opt. 42(24), 4802–4810 (2003).
[PubMed]

R. Röttgers and S. Gehnke, “Measurement of light absorption by aquatic particles: improvement of the quantitative filter technique by use of an integrating sphere approach,” Appl. Opt. 51(9), 1336–1351 (2012).
[PubMed]

A. Tonizzo, M. S. Twardowski, S. McLean, K. Voss, M. Lewis, and C. Trees, “Closure and uncertainty assessment for ocean color reflectance using measured volume scattering functions and reflective tube absorption coefficients with novel correction for scattering,” Appl. Opt. 56(1), 130–146 (2017).

W. S. Pegau, D. Gray, and J. R. V. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity,” Appl. Opt. 36(24), 6035–6046 (1997).
[PubMed]

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range,” Appl. Opt. 45(21), 5294–5309 (2006).
[PubMed]

P. J. Werdell, B. A. Franz, S. W. Bailey, G. C. Feldman, E. Boss, V. E. Brando, M. Dowell, T. Hirata, S. J. Lavender, Z. Lee, H. Loisel, S. Maritorena, F. Mélin, T. S. Moore, T. J. Smyth, D. Antoine, E. Devred, O. H. F. d’Andon, and A. Mangin, “Generalized ocean color inversion model for retrieving marine inherent optical properties,” Appl. Opt. 52(10), 2019–2037 (2013).
[PubMed]

R. Röttgers, W. Schönfeld, P.-R. Kipp, and R. Doerffer, “Practical test of a point-source integrating cavity absorption meter: the performance of different collector assemblies,” Appl. Opt. 44(26), 5549–5560 (2005).
[PubMed]

E. Leymarie, D. Doxaran, and M. Babin, “Uncertainties associated to measurements of inherent optical properties in natural waters,” Appl. Opt. 49(28), 5415–5436 (2010).
[PubMed]

J. Atmos. Ocean. Technol. (3)

W. H. Slade, E. Boss, G. Dall’Olmo, M. R. Langner, J. Loftin, M. J. Behrenfeld, C. Roesler, and T. K. Westberry, “Underway and moored methods for improving accuracy in measurement of spectral particulate absorption and attenuation,” J. Atmos. Ocean. Technol. 27, 1733–1746 (2010).

M. S. Twardowski, J. M. Sullivan, P. L. Donaghay, and J. R. V. Zaneveld, “Microscale quantification of the absorption by dissolved and particulate material in coastal waters with an ac-9,” J. Atmos. Ocean. Technol. 16, 691–707 (1999).

D. McKee, J. Piskozub, R. Röttgers, and R. A. Reynolds, “Evaluation and improvement of an iterative scattering correction scheme for in situ absorption and attenuation measurements,” J. Atmos. Ocean. Technol. 30, 1527–1541 (2013).

J. Geophys. Res. Atmos. (1)

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. Atmos. 93(D9), 10909–10924 (1988).

J. Geophys. Res.: Oceans (4)

A. H. Barnard, W. S. Pegau, and J. R. V. Zaneveld, “Global relationships of the inherent optical properties of the oceans,” J. Geophys. Res.: Oceans 103(C11), 24955–24968 (1998).

Z. P. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, and J. S. Patch, “An empirical algorithm for light absorption by ocean water based on color,” J. Geophys. Res.: Oceans 103(C12), 27967–27978 (1998).

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res.: Oceans 100(C7), 13201–13220 (1995).

M. S. Twardowski, X. Zhang, S. Vagle, J. M. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res.: Oceans 117(C7), C00H17 (2012).

J. Plankton Res. (1)

S. Tassan and G. M. Ferrari, “Measurement of light absorption by aquatic particles retained on filters: determination of the optical pathlength amplification by the ‘transmittance-reflectance’ method,” J. Plankton Res. 20(9), 1699–1709 (1998).

Limnol. Oceanogr. (4)

D. Stramski, S. B. Woźniak, and P. J. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49(3), 749–755 (2004).

D. Stramski, M. Babin, and S. B. Woźniak, “Variations in the optical properties of terrigenous mineral-rich particulate matter,” Limnol. Oceanogr. 52(6), 2418–2433 (2007).

S. Tassan and G. M. Ferrari, “An alternative approach to absorption measurements of aquatic particles retained on filters,” Limnol. Oceanogr. 40(8), 1358–1368 (1995).

R. Röttgers, C. Dupouy, B. B. Taylor, A. Bracher, and S. B. Woźniak, “Mass-specific light absorption coefficients of natural aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 59(5), 1449–1460 (2014).

Limnol. Oceanogr. Methods (1)

R. Röttgers, C. Häse, and R. Doerffer, “Determination of the particulate absorption of microalgae using a point-source integrating-cavity absorption meter: verification with a photometric technique, improvements for pigment bleaching, and correction for chlorophyll fluorescence,” Limnol. Oceanogr. Methods 5(1), 1–12 (2007).

Methods Oceanogr. (1)

R. Röttgers, D. McKee, and S. B. Woźniak, “Evaluation of scatter corrections for ac-9 absorption measurements in coastal waters,” Methods Oceanogr. 7, 21–39 (2013).

Proc. SPIE (2)

J. R. V. Zaneveld, J. C. Kitchen, A. Bricaud, and C. Moore, “Analysis of in situ absorption meter data,” Proc. SPIE 1750, 187–200 (1992).

J. R. V. Zaneveld, J. C. Kitchen, and C. M. Moore, “The scattering error correction of reflecting-tube absorption meters,” Proc. SPIE 2258, 44–55 (1994).

Science (1)

D. Stramski, R. A. Reynolds, M. Kahru, and B. G. Mitchell, “Estimation of particulate organic carbon in the ocean from satellite remote sensing,” Science 285(5425), 239–242 (1999).
[PubMed]

Other (4)

IOCCG, Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications, Z.-P. Lee ed. (IOCCG, 2006).

M. Jonasz and G. R. Fournier, Light Scattering by Particles in Water: Theoretical and Experimental Foundations (Academic, 2007).

J. M. Sullivan, M. S. Twardowski, and J. R. V. Zaneveld, “Measuring optical backscattering in water,” in Light Scattering Reviews 7: Radiative Transfer and Optical Properties of Atmosphere and Underlying Surface, A. A. Kokhanovsky, ed. (Springer-Praxis Books, 2013).

J. Piskozub, Institute of Oceanology of Polish Academy of Sciences, Powstańców Warszawy 55, 81–712 Sopot, Poland (personal communication, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Weighting functions for absorption flow cell reflectivities (r) from 95% to 100%. (Adapted from [21]).
Fig. 2
Fig. 2 Map of stations at which IOP data were collected. Colors denote the group based on the magnitude of apg(716) (see text).
Fig. 3
Fig. 3 (a) Absolute apg spectra measured by the PSICAM at the 54 included stations. Colors denote the group based on the value of apg(716) described in the text; (b) PSICAM apg normalized to the spectral integral, 400 720 a pg ( λ ) dλ.
Fig. 4
Fig. 4 ag(412) measured by the ac-9 as a function of FWHM-weighted ag(412) measured by the PSICAM. The dashed line shows the 1:1 relationship. See text for group descriptions.
Fig. 5
Fig. 5 Representative station from each of the four water type groups: (a) negligible apg(716); (b) low apg(716); (c) moderate apg(716); (d) high apg(716), showing the spectral fit for selected scattering correction methods. Solid line is the FWHM-weighted PSICAM apg spectrum.
Fig. 6
Fig. 6 (a) %δabs for BL method; (b) %δabs for PROP method; (c) %δrel for BL method; %δrel for PROP method. See Fig. 3 for color legend and text for group descriptions. Dashed gray line is for the entire data set (n = 54).
Fig. 7
Fig. 7 (a) %δabs for BL-IC method; (b) %δabs for PROP-IC method; (c) %δrel for BL-IC method; %δrel for PROP-IC method. See Fig. 3 for color legend and text for group descriptions. Dashed gray line is for the entire data set (n = 54).
Fig. 8
Fig. 8 (a) %δabs for BL-RR method; (b) %δabs for PROP-RR method; (c) %δrel for BL-RR method; %δrel for PROP-RR method. See Fig. 3 for color legend and text for group descriptions. Dashed gray line is for the entire data set (n = 54).
Fig. 9
Fig. 9 (a) %δabs for BL-VSF98 method; (b) %δabs for PROP-VSF98 method; (c) %δrel for BL-VSF98 method; %δrel for PROP-VSF98 method. See Fig. 3 for color legend and text for group descriptions. Dashed gray line is for the entire data set (n = 54).
Fig. 10
Fig. 10 (a) Histogram of F values for the full spectrum selected from lowest %δabs compared to PSICAM data for the FRAC method; (b) Spectral values of F calculated from the difference between ac-9 am and PSICAM apg at each wavelength for each station. Dotted line is fitted through the mean values from all stations. See Fig. 3 for color legend.
Fig. 11
Fig. 11 (a) PSICAM apg(715) values as a function of ac-9 am(715) values. The solid colored lines are the linear fits of each group individually: negligible, 6%; low, 11%; moderate, 13%; high, 16%. The dashed line is a linear fit of all of the data points and the dotted line is the empirical fit from Eq. (6) [11]; (b) Histogram of the percent of ac-9 am(715) that is represented by the PSICAM apg(715).
Fig. 12
Fig. 12 Results of a BaSO4 suspension series showing the variability of ε for 5 different ac reflective flow cells of approximately three different ages. One of the tubes was then reassessed after the inside was scoured with steel wool and sandpaper (not recommended in practice) in an effort to intentionally modify the reflectivity. Dashed lines are errors derived from Eq. (8) using MASCOT phase function measurements and the weighting functions for different reflectivities shown in Fig. 1 from [21].

Tables (1)

Tables Icon

Table 1 Summary of scattering correction methods.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ε( λ )=2π θ TIR π sin( θ ) β( θ,λ )dθ.
a sc ( λ )= a m ( λ )ε( λ ).
ε( λ )= a m ( λ ref ).
ε( λ )=F( c m ( λ ) a m ( λ ) ).
ε( λ )= a m ( λ ref )( c m ( λ ) a m ( λ ) c m ( λ ref ) a m ( λ ref ) ).
ε( 715 )= a m ( 715 )0.212 a m ( 715 ) 1.135 .
ε( λ ref )= a m ( λ ref ) a IC ( λ ref ),
ε( λ )=2π 0 π sin( θ ) β( θ,λ )W( θ )dθ.
% δ abs =100 δ abs y ¯ , δ abs = i=1 n | y i y ^ i | n ;
% δ rel =100 δ rel y ¯ , δ rel = i=1 n ( y i y ^ i ) n ;

Metrics