Abstract

We propose a method for multi-pass non-collinear optical parametric chirped pulse amplification (MNOPCPA) based on two geometries, tangent phase-matching (TPM) and Poynting vector walk-off compensation (PVWC), which optimize the performance of optical parametric chirped pulse amplification (OPCPA). A feasible design scheme is also presented for use in implementing this approach. Employing this design, we construct and perform a numerical simulation, showing that back-conversion from the signal and idler to the pump can be inhibited, and that the conversion efficiency can be boosted dramatically, approaching the theoretical limit of ~64%, when amplification is nearly saturated at full bandwidth. In the MNOPCPA scheme, the output signal has a wider spectrum and a corresponding shorter Fourier-limited pulse duration with the pump being continuously depleted. A barycenter shift of the signal spot results from a spatial walk-off effect due to the pump, which can be offset and corrected well. To the best of our knowledge, this is the first demonstration of a multi-pass non-collinear OPCPA method employed the scheme of regenerative amplification.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design of a highly stable, high-conversion-efficiency, optical parametric chirped-pulse amplification system with good beam quality

M. J. Guardalben, J. Keegan, L. J. Waxer, V. Bagnoud, I. A. Begishev, J. Puth, and J. D. Zuegel
Opt. Express 11(20) 2511-2524 (2003)

Dual-chirped optical parametric amplification for generating few hundred mJ infrared pulses

Qingbin Zhang, Eiji J. Takahashi, Oliver D. Mücke, Peixiang Lu, and Katsumi Midorikawa
Opt. Express 19(8) 7190-7212 (2011)

Design constraints of optical parametric chirped pulse amplification based on chirped quasi-phase-matching gratings

C. R. Phillips, B. W. Mayer, L. Gallmann, M. M. Fejer, and U. Keller
Opt. Express 22(8) 9627-9658 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. Matousek, B. Rus, and I. N. Ross, “Design of a Multi-Petawatt Optical Parametric Chirped Pulse Amplifier for the Iodine Laser ASTERIX IV,” IEEE J. Sel. Top. Quantum Electron. 36(2), 158–163 (2000).
  2. O. V. Chekhlov, J. L. Collier, I. N. Ross, P. K. Bates, M. Notley, C. Hernandez-Gomez, W. Shaikh, C. N. Danson, D. Neely, P. Matousek, S. Hancock, and L. Cardoso, “35 J broadband femtosecond optical parametric chirped pulse amplification system,” Opt. Lett. 31(24), 3665–3667 (2006).
    [PubMed]
  3. L. Xu, L. Yu, X. Liang, Y. Chu, Z. Hu, L. Ma, Y. Xu, C. Wang, X. Lu, H. Lu, Y. Yue, Y. Zhao, F. Fan, H. Tu, Y. Leng, R. Li, and Z. Xu, “High-energy noncollinear optical parametric-chirped pulse amplification in LBO at 800 nm,” Opt. Lett. 38(22), 4837–4840 (2013).
    [PubMed]
  4. L. Yu, X. Liang, L. Xu, W. Li, C. Peng, Z. Hu, C. Wang, X. Lu, Y. Chu, Z. Gan, X. Liu, Y. Liu, X. Wang, H. Lu, D. Yin, Y. Leng, R. Li, and Z. Xu, “Optimization for high-energy and high-efficiency broadband optical parametric chirped-pulse amplification in LBO near 800 nm,” Opt. Lett. 40(14), 3412–3415 (2015).
    [PubMed]
  5. J. Schwarz, P. Rambo, D. Armstrong, M. Schollmeier, I. Smith, J. Shores, M. Geissel, M. Kimmel, and J. Porter, “Recent laser upgrades at Sandia’s Z-backlighter facility in order to accommodate new requirements for magnetized liner inertial fusion on the Z-machine,” High Power Laser Sci. 4, e36 (2016).
  6. X. Zeng, K. Zhou, Y. Zuo, Q. Zhu, J. Su, X. Wang, X. Wang, X. Huang, X. Jiang, D. Jiang, Y. Guo, N. Xie, S. Zhou, Z. Wu, J. Mu, H. Peng, and F. Jing, “Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification,” Opt. Lett. 42(10), 2014–2017 (2017).
    [PubMed]
  7. J. Moses, C. Manzoni, S. W. Huang, G. Cerullo, and F. X. Kärtner, “Temporal optimization of ultrabroadband high-energy OPCPA,” Opt. Express 17(7), 5540–5555 (2009).
    [PubMed]
  8. X. Lu, Y. Peng, Y. Li, X. Guo, Y. Leng, Z. Sui, Y. Xu, and X. Wang, “High contrast amplification at 1053 nm limited by pulse stretching-compressing process,” Chin. Opt. Lett. 14(2), 023201 (2016).
  9. J. Moses and S. Huang, “Conformal profile theory for performance scaling of ultra-broadband optical parametric chirped pulse amplification,” J. Opt. Soc. Am. B 28(4), 812–831 (2011).
  10. S. Witte and K. Eikema, “Ultrafast optical parametric chirped pulse amplification,” IEEE J. Sel. Top. Quantum Electron. 18(1), 296–307 (2012).
  11. I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun. 144, 125–133 (1997).
  12. I. N. Ross, P. Matousek, G. H. C. New, and K. Osvay, “Analysis and optimization of optical parametric chirped pulse amplification,” J. Opt. Soc. Am. B 19(12), 2945–2956 (2002).
  13. S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, “Numerical simulations for performance optimization of a few-cycle terawatt NOPCPA system,” Appl. Phys. B 87, 677–684 (2007).
  14. L. Cardoso and G. Figueira, “Bandwidth increase by controlled angular dispersion of signal beam in optical parametric amplification,” Opt. Express 12(14), 3108–3113 (2004).
    [PubMed]
  15. L. Cardoso, H. Pires, and G. Figueira, “Increased bandwidth optical parametric amplification of supercontinuum pulses with angular dispersion,” Opt. Lett. 34(9), 1369–1371 (2009).
    [PubMed]
  16. D. Herrmann, R. Tautz, F. Tavella, F. Krausz, and L. Veisz, “Investigation of two-beam-pumped noncollinear optical parametric chirped-pulse amplification for the generation of few-cycle light pulses,” Opt. Express 18(5), 4170–4183 (2010).
    [PubMed]
  17. J. Rothhardt, S. Hädrich, T. Gottschall, J. Limpert, A. Tünnermann, M. Rothhardt, M. Becker, S. Brückner, and H. Bartelt, “Generation of flattop pump pulses for OPCPA by coherent pulse stacking with fiber Bragg gratings,” Opt. Express 17(18), 16332–16341 (2009).
    [PubMed]
  18. M. Guardalben, J. Keegan, L. Waxer, V. Bagnoud, I. Begishev, J. Puth, and J. Zuegel, “Design of a highly stable, high-conversion-efficiency, optical parametric chirped-pulse amplification system with good beam quality,” Opt. Express 11(20), 2511–2524 (2003).
    [PubMed]
  19. J. A. Fülöp, Z. S. Major, B. Horváth, F. Tavella, A. Baltuška, and F. Krausz, “Shaping of picosecond pulses for pumping optical parametric amplification,” Appl. Phys. B 87, 79–84 (2007).
  20. L. J. Waxer, V. Bagnoud, I. A. Begishev, M. J. Guardalben, J. Puth, and J. D. Zuegel, “High-conversion-efficiency optical parametric chirped-pulse amplification system using spatiotemporally shaped pump pulses,” Opt. Lett. 28(14), 1245–1247 (2003).
    [PubMed]
  21. V. Bagnoud, I. A. Begishev, M. J. Guardalben, J. Puth, and J. D. Zuegel, “5 Hz, > 250 mJ optical parametric chirped-pulse amplifier at 1053 nm,” Opt. Lett. 30(14), 1843–1845 (2005).
    [PubMed]
  22. Y. Stepanenko and C. Radzewicz, “High-gain multipass noncollinear optical parametric chirped pulse amplifier,” Appl. Phys. Lett. 86, 211120 (2005).
  23. Y. Stepanenko and C. Radzewicz, “Multipass non-collinear optical parametric amplifier for femtosecond pulses,” Opt. Express 14(2), 779–785 (2006).
    [PubMed]
  24. X. Li, H. Liu, H. Wang, W. Zhao, Y. Wang, and S. Shi, “Compact high gain double-pass optical parametric chirped pulse amplifier,” Eur. Phys. J. D 47, 309–312 (2008).
  25. J. Ma, J. Wang, P. Yuan, G. Xie, K. Xiong, Y. Tu, X. Tu, E. Shi, Y. Zheng, and L. Qian, “Quasi-parametric amplification of chirped pulses based on a Sm3+-doped yttrium calcium oxyborate crystal,” Optica 2(11), 1006–1009 (2015).
  26. X. Liu, L. Xu, and X. Liang, “Numerical investigation of output beam quality in efficient broadband optical parametric chirped pulse amplification,” Opt. Commun. 383, 197–207 (2017).
  27. X. Liu, L. Xu, and X. Liang, “Output features of optical parametric chirped pulse amplification in LiB3O5 near 800 nm at different phase-matching geometries,” Opt. Lett. 41(24), 5809–5812 (2016).
    [PubMed]
  28. X. Guo, Y. Xu, X. Zou, X. Lu, Y. Li, C. Wang, Y. Leng, and R. Li, “Non-collinear phase-matching geometries in optical parametric chirped-pulse amplification,” Opt. Commun. 330, 24–29 (2014).
  29. A. L. Oien, I. T. McKinnie, P. Jain, N. A. Russell, D. M. Warrington, and L. A. W. Gloster, “Efficient, low-threshold collinear and noncollinear β-barium borate optical parametric oscillators,” Opt. Lett. 22(12), 859–861 (1997).
    [PubMed]
  30. J. Bromage, J. Rothhardt, S. Hädrich, C. Dorrer, C. Jocher, S. Demmler, J. Limpert, A. Tünnermann, and J. D. Zuegel, “Analysis and suppression of parasitic processes in noncollinear optical parametric amplifiers,” Opt. Express 19(18), 16797–16808 (2011).
    [PubMed]
  31. T. Lang, A. Harth, J. Matyschok, T. Binhammer, M. Schultze, and U. Morgner, “Impact of temporal, spatial and cascaded effects on the pulse formation in ultra-broadband parametric amplifiers,” Opt. Express 21(1), 949–959 (2013).
    [PubMed]
  32. J. A. Armstrong, N. Blgemeergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. Lett. 127(6), 1918–1939 (1962).
  33. D. Eimerl, J. M. Auerbach, and P. W. Milonni, “Paraxial wave theory of second and third harmonic generation in uniaxial crystals,” J. Mod. Opt. 42(5), 1037–1067 (1995).
  34. J. W. Haus, A. Pandey, and P. E. Powers, “Boosting quantum efficiency using multi-stage parametric amplification,” Opt. Commun. 269, 378–384 (2007).
  35. J. M. Auerbach and D. Eimerl, “Frequency conversion modeling with spatially and temporally varying beams,” Proc. SPIE 2633, 230–241 (1997).
  36. A. Andrianov, A. Szabo, A. Sergeev, A. Kim, V. Chvykov, and M. Kalashnikov, “Computationally efficient method for Fourier transform of highly chirped pulses for laser and parametric amplifier modeling,” Opt. Express 24(23), 25974–25982 (2016).
    [PubMed]
  37. K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30(12), 2950–2952 (1994).
  38. F. Brthat and B. Wyncke, “Calculation of double-refraction walk-off angle along the phase-matching directions in non-linear biaxial crystals,” J. Phys. At. Mol. Opt. Phys. 22, 1891–1898 (1989).
  39. I. A. Begishev, A. A. Gulamov, E. A. Erofeev, E. A. Ibragimov, Sh. R. Kamalov, T. Usmanov, and A. D. Khadzhaev, “Highly efficient parametric amplification of optical beams. I. Optimization of the profiles of interacting waves in parametric amplification,” Sov. J. Quantum Electron. 20(9), 1100–1103 (1990).
  40. I. A. Begishev, A. A. Gulamov, E. A. Erofeev, E. A. Ibragimov, Sh. R. Kamalov, T. Usmanov, and A. D. Khadzhaev, “Highly efficient parametric amplification of optical beams. II. Parametric interaction of waves with conformal profiles,” Sov. J. Quantum Electron. 20(9), 1104–1106 (1990).

2017 (2)

2016 (4)

2015 (2)

2014 (1)

X. Guo, Y. Xu, X. Zou, X. Lu, Y. Li, C. Wang, Y. Leng, and R. Li, “Non-collinear phase-matching geometries in optical parametric chirped-pulse amplification,” Opt. Commun. 330, 24–29 (2014).

2013 (2)

2012 (1)

S. Witte and K. Eikema, “Ultrafast optical parametric chirped pulse amplification,” IEEE J. Sel. Top. Quantum Electron. 18(1), 296–307 (2012).

2011 (2)

2010 (1)

2009 (3)

2008 (1)

X. Li, H. Liu, H. Wang, W. Zhao, Y. Wang, and S. Shi, “Compact high gain double-pass optical parametric chirped pulse amplifier,” Eur. Phys. J. D 47, 309–312 (2008).

2007 (3)

J. A. Fülöp, Z. S. Major, B. Horváth, F. Tavella, A. Baltuška, and F. Krausz, “Shaping of picosecond pulses for pumping optical parametric amplification,” Appl. Phys. B 87, 79–84 (2007).

S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, “Numerical simulations for performance optimization of a few-cycle terawatt NOPCPA system,” Appl. Phys. B 87, 677–684 (2007).

J. W. Haus, A. Pandey, and P. E. Powers, “Boosting quantum efficiency using multi-stage parametric amplification,” Opt. Commun. 269, 378–384 (2007).

2006 (2)

2005 (2)

V. Bagnoud, I. A. Begishev, M. J. Guardalben, J. Puth, and J. D. Zuegel, “5 Hz, > 250 mJ optical parametric chirped-pulse amplifier at 1053 nm,” Opt. Lett. 30(14), 1843–1845 (2005).
[PubMed]

Y. Stepanenko and C. Radzewicz, “High-gain multipass noncollinear optical parametric chirped pulse amplifier,” Appl. Phys. Lett. 86, 211120 (2005).

2004 (1)

2003 (2)

2002 (1)

2000 (1)

P. Matousek, B. Rus, and I. N. Ross, “Design of a Multi-Petawatt Optical Parametric Chirped Pulse Amplifier for the Iodine Laser ASTERIX IV,” IEEE J. Sel. Top. Quantum Electron. 36(2), 158–163 (2000).

1997 (3)

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun. 144, 125–133 (1997).

A. L. Oien, I. T. McKinnie, P. Jain, N. A. Russell, D. M. Warrington, and L. A. W. Gloster, “Efficient, low-threshold collinear and noncollinear β-barium borate optical parametric oscillators,” Opt. Lett. 22(12), 859–861 (1997).
[PubMed]

J. M. Auerbach and D. Eimerl, “Frequency conversion modeling with spatially and temporally varying beams,” Proc. SPIE 2633, 230–241 (1997).

1995 (1)

D. Eimerl, J. M. Auerbach, and P. W. Milonni, “Paraxial wave theory of second and third harmonic generation in uniaxial crystals,” J. Mod. Opt. 42(5), 1037–1067 (1995).

1994 (1)

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30(12), 2950–2952 (1994).

1990 (2)

I. A. Begishev, A. A. Gulamov, E. A. Erofeev, E. A. Ibragimov, Sh. R. Kamalov, T. Usmanov, and A. D. Khadzhaev, “Highly efficient parametric amplification of optical beams. I. Optimization of the profiles of interacting waves in parametric amplification,” Sov. J. Quantum Electron. 20(9), 1100–1103 (1990).

I. A. Begishev, A. A. Gulamov, E. A. Erofeev, E. A. Ibragimov, Sh. R. Kamalov, T. Usmanov, and A. D. Khadzhaev, “Highly efficient parametric amplification of optical beams. II. Parametric interaction of waves with conformal profiles,” Sov. J. Quantum Electron. 20(9), 1104–1106 (1990).

1989 (1)

F. Brthat and B. Wyncke, “Calculation of double-refraction walk-off angle along the phase-matching directions in non-linear biaxial crystals,” J. Phys. At. Mol. Opt. Phys. 22, 1891–1898 (1989).

1962 (1)

J. A. Armstrong, N. Blgemeergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. Lett. 127(6), 1918–1939 (1962).

Andrianov, A.

Armstrong, D.

J. Schwarz, P. Rambo, D. Armstrong, M. Schollmeier, I. Smith, J. Shores, M. Geissel, M. Kimmel, and J. Porter, “Recent laser upgrades at Sandia’s Z-backlighter facility in order to accommodate new requirements for magnetized liner inertial fusion on the Z-machine,” High Power Laser Sci. 4, e36 (2016).

Armstrong, J. A.

J. A. Armstrong, N. Blgemeergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. Lett. 127(6), 1918–1939 (1962).

Auerbach, J. M.

J. M. Auerbach and D. Eimerl, “Frequency conversion modeling with spatially and temporally varying beams,” Proc. SPIE 2633, 230–241 (1997).

D. Eimerl, J. M. Auerbach, and P. W. Milonni, “Paraxial wave theory of second and third harmonic generation in uniaxial crystals,” J. Mod. Opt. 42(5), 1037–1067 (1995).

Bagnoud, V.

Baltuška, A.

J. A. Fülöp, Z. S. Major, B. Horváth, F. Tavella, A. Baltuška, and F. Krausz, “Shaping of picosecond pulses for pumping optical parametric amplification,” Appl. Phys. B 87, 79–84 (2007).

Bartelt, H.

Bates, P. K.

Becker, M.

Begishev, I.

Begishev, I. A.

V. Bagnoud, I. A. Begishev, M. J. Guardalben, J. Puth, and J. D. Zuegel, “5 Hz, > 250 mJ optical parametric chirped-pulse amplifier at 1053 nm,” Opt. Lett. 30(14), 1843–1845 (2005).
[PubMed]

L. J. Waxer, V. Bagnoud, I. A. Begishev, M. J. Guardalben, J. Puth, and J. D. Zuegel, “High-conversion-efficiency optical parametric chirped-pulse amplification system using spatiotemporally shaped pump pulses,” Opt. Lett. 28(14), 1245–1247 (2003).
[PubMed]

I. A. Begishev, A. A. Gulamov, E. A. Erofeev, E. A. Ibragimov, Sh. R. Kamalov, T. Usmanov, and A. D. Khadzhaev, “Highly efficient parametric amplification of optical beams. I. Optimization of the profiles of interacting waves in parametric amplification,” Sov. J. Quantum Electron. 20(9), 1100–1103 (1990).

I. A. Begishev, A. A. Gulamov, E. A. Erofeev, E. A. Ibragimov, Sh. R. Kamalov, T. Usmanov, and A. D. Khadzhaev, “Highly efficient parametric amplification of optical beams. II. Parametric interaction of waves with conformal profiles,” Sov. J. Quantum Electron. 20(9), 1104–1106 (1990).

Binhammer, T.

Blgemeergen, N.

J. A. Armstrong, N. Blgemeergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. Lett. 127(6), 1918–1939 (1962).

Bromage, J.

Brthat, F.

F. Brthat and B. Wyncke, “Calculation of double-refraction walk-off angle along the phase-matching directions in non-linear biaxial crystals,” J. Phys. At. Mol. Opt. Phys. 22, 1891–1898 (1989).

Brückner, S.

Cardoso, L.

Cerullo, G.

Chekhlov, O. V.

Chu, Y.

Chvykov, V.

Collier, J. L.

O. V. Chekhlov, J. L. Collier, I. N. Ross, P. K. Bates, M. Notley, C. Hernandez-Gomez, W. Shaikh, C. N. Danson, D. Neely, P. Matousek, S. Hancock, and L. Cardoso, “35 J broadband femtosecond optical parametric chirped pulse amplification system,” Opt. Lett. 31(24), 3665–3667 (2006).
[PubMed]

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun. 144, 125–133 (1997).

Danson, C. N.

Demmler, S.

Dorrer, C.

Ducuing, J.

J. A. Armstrong, N. Blgemeergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. Lett. 127(6), 1918–1939 (1962).

Eikema, K.

S. Witte and K. Eikema, “Ultrafast optical parametric chirped pulse amplification,” IEEE J. Sel. Top. Quantum Electron. 18(1), 296–307 (2012).

Eikema, K. S. E.

S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, “Numerical simulations for performance optimization of a few-cycle terawatt NOPCPA system,” Appl. Phys. B 87, 677–684 (2007).

Eimerl, D.

J. M. Auerbach and D. Eimerl, “Frequency conversion modeling with spatially and temporally varying beams,” Proc. SPIE 2633, 230–241 (1997).

D. Eimerl, J. M. Auerbach, and P. W. Milonni, “Paraxial wave theory of second and third harmonic generation in uniaxial crystals,” J. Mod. Opt. 42(5), 1037–1067 (1995).

Erofeev, E. A.

I. A. Begishev, A. A. Gulamov, E. A. Erofeev, E. A. Ibragimov, Sh. R. Kamalov, T. Usmanov, and A. D. Khadzhaev, “Highly efficient parametric amplification of optical beams. I. Optimization of the profiles of interacting waves in parametric amplification,” Sov. J. Quantum Electron. 20(9), 1100–1103 (1990).

I. A. Begishev, A. A. Gulamov, E. A. Erofeev, E. A. Ibragimov, Sh. R. Kamalov, T. Usmanov, and A. D. Khadzhaev, “Highly efficient parametric amplification of optical beams. II. Parametric interaction of waves with conformal profiles,” Sov. J. Quantum Electron. 20(9), 1104–1106 (1990).

Fan, F.

Figueira, G.

Fülöp, J. A.

J. A. Fülöp, Z. S. Major, B. Horváth, F. Tavella, A. Baltuška, and F. Krausz, “Shaping of picosecond pulses for pumping optical parametric amplification,” Appl. Phys. B 87, 79–84 (2007).

Gan, Z.

Geissel, M.

J. Schwarz, P. Rambo, D. Armstrong, M. Schollmeier, I. Smith, J. Shores, M. Geissel, M. Kimmel, and J. Porter, “Recent laser upgrades at Sandia’s Z-backlighter facility in order to accommodate new requirements for magnetized liner inertial fusion on the Z-machine,” High Power Laser Sci. 4, e36 (2016).

Gloster, L. A. W.

Gottschall, T.

Guardalben, M.

Guardalben, M. J.

Gulamov, A. A.

I. A. Begishev, A. A. Gulamov, E. A. Erofeev, E. A. Ibragimov, Sh. R. Kamalov, T. Usmanov, and A. D. Khadzhaev, “Highly efficient parametric amplification of optical beams. II. Parametric interaction of waves with conformal profiles,” Sov. J. Quantum Electron. 20(9), 1104–1106 (1990).

I. A. Begishev, A. A. Gulamov, E. A. Erofeev, E. A. Ibragimov, Sh. R. Kamalov, T. Usmanov, and A. D. Khadzhaev, “Highly efficient parametric amplification of optical beams. I. Optimization of the profiles of interacting waves in parametric amplification,” Sov. J. Quantum Electron. 20(9), 1100–1103 (1990).

Guo, X.

X. Lu, Y. Peng, Y. Li, X. Guo, Y. Leng, Z. Sui, Y. Xu, and X. Wang, “High contrast amplification at 1053 nm limited by pulse stretching-compressing process,” Chin. Opt. Lett. 14(2), 023201 (2016).

X. Guo, Y. Xu, X. Zou, X. Lu, Y. Li, C. Wang, Y. Leng, and R. Li, “Non-collinear phase-matching geometries in optical parametric chirped-pulse amplification,” Opt. Commun. 330, 24–29 (2014).

Guo, Y.

Hädrich, S.

Hancock, S.

Harth, A.

Haus, J. W.

J. W. Haus, A. Pandey, and P. E. Powers, “Boosting quantum efficiency using multi-stage parametric amplification,” Opt. Commun. 269, 378–384 (2007).

Hernandez-Gomez, C.

Herrmann, D.

Hogervorst, W.

S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, “Numerical simulations for performance optimization of a few-cycle terawatt NOPCPA system,” Appl. Phys. B 87, 677–684 (2007).

Horváth, B.

J. A. Fülöp, Z. S. Major, B. Horváth, F. Tavella, A. Baltuška, and F. Krausz, “Shaping of picosecond pulses for pumping optical parametric amplification,” Appl. Phys. B 87, 79–84 (2007).

Hu, Z.

Huang, S.

Huang, S. W.

Huang, X.

Ibragimov, E. A.

I. A. Begishev, A. A. Gulamov, E. A. Erofeev, E. A. Ibragimov, Sh. R. Kamalov, T. Usmanov, and A. D. Khadzhaev, “Highly efficient parametric amplification of optical beams. I. Optimization of the profiles of interacting waves in parametric amplification,” Sov. J. Quantum Electron. 20(9), 1100–1103 (1990).

I. A. Begishev, A. A. Gulamov, E. A. Erofeev, E. A. Ibragimov, Sh. R. Kamalov, T. Usmanov, and A. D. Khadzhaev, “Highly efficient parametric amplification of optical beams. II. Parametric interaction of waves with conformal profiles,” Sov. J. Quantum Electron. 20(9), 1104–1106 (1990).

Jain, P.

Jiang, D.

Jiang, X.

Jing, F.

Jocher, C.

Kalashnikov, M.

Kamalov, Sh. R.

I. A. Begishev, A. A. Gulamov, E. A. Erofeev, E. A. Ibragimov, Sh. R. Kamalov, T. Usmanov, and A. D. Khadzhaev, “Highly efficient parametric amplification of optical beams. I. Optimization of the profiles of interacting waves in parametric amplification,” Sov. J. Quantum Electron. 20(9), 1100–1103 (1990).

I. A. Begishev, A. A. Gulamov, E. A. Erofeev, E. A. Ibragimov, Sh. R. Kamalov, T. Usmanov, and A. D. Khadzhaev, “Highly efficient parametric amplification of optical beams. II. Parametric interaction of waves with conformal profiles,” Sov. J. Quantum Electron. 20(9), 1104–1106 (1990).

Kärtner, F. X.

Kato, K.

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30(12), 2950–2952 (1994).

Keegan, J.

Khadzhaev, A. D.

I. A. Begishev, A. A. Gulamov, E. A. Erofeev, E. A. Ibragimov, Sh. R. Kamalov, T. Usmanov, and A. D. Khadzhaev, “Highly efficient parametric amplification of optical beams. I. Optimization of the profiles of interacting waves in parametric amplification,” Sov. J. Quantum Electron. 20(9), 1100–1103 (1990).

I. A. Begishev, A. A. Gulamov, E. A. Erofeev, E. A. Ibragimov, Sh. R. Kamalov, T. Usmanov, and A. D. Khadzhaev, “Highly efficient parametric amplification of optical beams. II. Parametric interaction of waves with conformal profiles,” Sov. J. Quantum Electron. 20(9), 1104–1106 (1990).

Kim, A.

Kimmel, M.

J. Schwarz, P. Rambo, D. Armstrong, M. Schollmeier, I. Smith, J. Shores, M. Geissel, M. Kimmel, and J. Porter, “Recent laser upgrades at Sandia’s Z-backlighter facility in order to accommodate new requirements for magnetized liner inertial fusion on the Z-machine,” High Power Laser Sci. 4, e36 (2016).

Krausz, F.

D. Herrmann, R. Tautz, F. Tavella, F. Krausz, and L. Veisz, “Investigation of two-beam-pumped noncollinear optical parametric chirped-pulse amplification for the generation of few-cycle light pulses,” Opt. Express 18(5), 4170–4183 (2010).
[PubMed]

J. A. Fülöp, Z. S. Major, B. Horváth, F. Tavella, A. Baltuška, and F. Krausz, “Shaping of picosecond pulses for pumping optical parametric amplification,” Appl. Phys. B 87, 79–84 (2007).

Lang, T.

Langley, A. J.

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun. 144, 125–133 (1997).

Leng, Y.

Li, R.

Li, W.

Li, X.

X. Li, H. Liu, H. Wang, W. Zhao, Y. Wang, and S. Shi, “Compact high gain double-pass optical parametric chirped pulse amplifier,” Eur. Phys. J. D 47, 309–312 (2008).

Li, Y.

X. Lu, Y. Peng, Y. Li, X. Guo, Y. Leng, Z. Sui, Y. Xu, and X. Wang, “High contrast amplification at 1053 nm limited by pulse stretching-compressing process,” Chin. Opt. Lett. 14(2), 023201 (2016).

X. Guo, Y. Xu, X. Zou, X. Lu, Y. Li, C. Wang, Y. Leng, and R. Li, “Non-collinear phase-matching geometries in optical parametric chirped-pulse amplification,” Opt. Commun. 330, 24–29 (2014).

Liang, X.

Limpert, J.

Liu, H.

X. Li, H. Liu, H. Wang, W. Zhao, Y. Wang, and S. Shi, “Compact high gain double-pass optical parametric chirped pulse amplifier,” Eur. Phys. J. D 47, 309–312 (2008).

Liu, X.

Liu, Y.

Lu, H.

Lu, X.

Ma, J.

Ma, L.

Major, Z. S.

J. A. Fülöp, Z. S. Major, B. Horváth, F. Tavella, A. Baltuška, and F. Krausz, “Shaping of picosecond pulses for pumping optical parametric amplification,” Appl. Phys. B 87, 79–84 (2007).

Manzoni, C.

Matousek, P.

O. V. Chekhlov, J. L. Collier, I. N. Ross, P. K. Bates, M. Notley, C. Hernandez-Gomez, W. Shaikh, C. N. Danson, D. Neely, P. Matousek, S. Hancock, and L. Cardoso, “35 J broadband femtosecond optical parametric chirped pulse amplification system,” Opt. Lett. 31(24), 3665–3667 (2006).
[PubMed]

I. N. Ross, P. Matousek, G. H. C. New, and K. Osvay, “Analysis and optimization of optical parametric chirped pulse amplification,” J. Opt. Soc. Am. B 19(12), 2945–2956 (2002).

P. Matousek, B. Rus, and I. N. Ross, “Design of a Multi-Petawatt Optical Parametric Chirped Pulse Amplifier for the Iodine Laser ASTERIX IV,” IEEE J. Sel. Top. Quantum Electron. 36(2), 158–163 (2000).

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun. 144, 125–133 (1997).

Matyschok, J.

McKinnie, I. T.

Milonni, P. W.

D. Eimerl, J. M. Auerbach, and P. W. Milonni, “Paraxial wave theory of second and third harmonic generation in uniaxial crystals,” J. Mod. Opt. 42(5), 1037–1067 (1995).

Morgner, U.

Moses, J.

Mu, J.

Neely, D.

New, G. H. C.

Notley, M.

Oien, A. L.

Osvay, K.

Pandey, A.

J. W. Haus, A. Pandey, and P. E. Powers, “Boosting quantum efficiency using multi-stage parametric amplification,” Opt. Commun. 269, 378–384 (2007).

Peng, C.

Peng, H.

Peng, Y.

Pershan, P. S.

J. A. Armstrong, N. Blgemeergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. Lett. 127(6), 1918–1939 (1962).

Pires, H.

Porter, J.

J. Schwarz, P. Rambo, D. Armstrong, M. Schollmeier, I. Smith, J. Shores, M. Geissel, M. Kimmel, and J. Porter, “Recent laser upgrades at Sandia’s Z-backlighter facility in order to accommodate new requirements for magnetized liner inertial fusion on the Z-machine,” High Power Laser Sci. 4, e36 (2016).

Powers, P. E.

J. W. Haus, A. Pandey, and P. E. Powers, “Boosting quantum efficiency using multi-stage parametric amplification,” Opt. Commun. 269, 378–384 (2007).

Puth, J.

Qian, L.

Radzewicz, C.

Y. Stepanenko and C. Radzewicz, “Multipass non-collinear optical parametric amplifier for femtosecond pulses,” Opt. Express 14(2), 779–785 (2006).
[PubMed]

Y. Stepanenko and C. Radzewicz, “High-gain multipass noncollinear optical parametric chirped pulse amplifier,” Appl. Phys. Lett. 86, 211120 (2005).

Rambo, P.

J. Schwarz, P. Rambo, D. Armstrong, M. Schollmeier, I. Smith, J. Shores, M. Geissel, M. Kimmel, and J. Porter, “Recent laser upgrades at Sandia’s Z-backlighter facility in order to accommodate new requirements for magnetized liner inertial fusion on the Z-machine,” High Power Laser Sci. 4, e36 (2016).

Ross, I. N.

O. V. Chekhlov, J. L. Collier, I. N. Ross, P. K. Bates, M. Notley, C. Hernandez-Gomez, W. Shaikh, C. N. Danson, D. Neely, P. Matousek, S. Hancock, and L. Cardoso, “35 J broadband femtosecond optical parametric chirped pulse amplification system,” Opt. Lett. 31(24), 3665–3667 (2006).
[PubMed]

I. N. Ross, P. Matousek, G. H. C. New, and K. Osvay, “Analysis and optimization of optical parametric chirped pulse amplification,” J. Opt. Soc. Am. B 19(12), 2945–2956 (2002).

P. Matousek, B. Rus, and I. N. Ross, “Design of a Multi-Petawatt Optical Parametric Chirped Pulse Amplifier for the Iodine Laser ASTERIX IV,” IEEE J. Sel. Top. Quantum Electron. 36(2), 158–163 (2000).

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun. 144, 125–133 (1997).

Rothhardt, J.

Rothhardt, M.

Rus, B.

P. Matousek, B. Rus, and I. N. Ross, “Design of a Multi-Petawatt Optical Parametric Chirped Pulse Amplifier for the Iodine Laser ASTERIX IV,” IEEE J. Sel. Top. Quantum Electron. 36(2), 158–163 (2000).

Russell, N. A.

Schollmeier, M.

J. Schwarz, P. Rambo, D. Armstrong, M. Schollmeier, I. Smith, J. Shores, M. Geissel, M. Kimmel, and J. Porter, “Recent laser upgrades at Sandia’s Z-backlighter facility in order to accommodate new requirements for magnetized liner inertial fusion on the Z-machine,” High Power Laser Sci. 4, e36 (2016).

Schultze, M.

Schwarz, J.

J. Schwarz, P. Rambo, D. Armstrong, M. Schollmeier, I. Smith, J. Shores, M. Geissel, M. Kimmel, and J. Porter, “Recent laser upgrades at Sandia’s Z-backlighter facility in order to accommodate new requirements for magnetized liner inertial fusion on the Z-machine,” High Power Laser Sci. 4, e36 (2016).

Sergeev, A.

Shaikh, W.

Shi, E.

Shi, S.

X. Li, H. Liu, H. Wang, W. Zhao, Y. Wang, and S. Shi, “Compact high gain double-pass optical parametric chirped pulse amplifier,” Eur. Phys. J. D 47, 309–312 (2008).

Shores, J.

J. Schwarz, P. Rambo, D. Armstrong, M. Schollmeier, I. Smith, J. Shores, M. Geissel, M. Kimmel, and J. Porter, “Recent laser upgrades at Sandia’s Z-backlighter facility in order to accommodate new requirements for magnetized liner inertial fusion on the Z-machine,” High Power Laser Sci. 4, e36 (2016).

Smith, I.

J. Schwarz, P. Rambo, D. Armstrong, M. Schollmeier, I. Smith, J. Shores, M. Geissel, M. Kimmel, and J. Porter, “Recent laser upgrades at Sandia’s Z-backlighter facility in order to accommodate new requirements for magnetized liner inertial fusion on the Z-machine,” High Power Laser Sci. 4, e36 (2016).

Stepanenko, Y.

Y. Stepanenko and C. Radzewicz, “Multipass non-collinear optical parametric amplifier for femtosecond pulses,” Opt. Express 14(2), 779–785 (2006).
[PubMed]

Y. Stepanenko and C. Radzewicz, “High-gain multipass noncollinear optical parametric chirped pulse amplifier,” Appl. Phys. Lett. 86, 211120 (2005).

Su, J.

Sui, Z.

Szabo, A.

Tautz, R.

Tavella, F.

D. Herrmann, R. Tautz, F. Tavella, F. Krausz, and L. Veisz, “Investigation of two-beam-pumped noncollinear optical parametric chirped-pulse amplification for the generation of few-cycle light pulses,” Opt. Express 18(5), 4170–4183 (2010).
[PubMed]

J. A. Fülöp, Z. S. Major, B. Horváth, F. Tavella, A. Baltuška, and F. Krausz, “Shaping of picosecond pulses for pumping optical parametric amplification,” Appl. Phys. B 87, 79–84 (2007).

Towrie, M.

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun. 144, 125–133 (1997).

Tu, H.

Tu, X.

Tu, Y.

Tünnermann, A.

Usmanov, T.

I. A. Begishev, A. A. Gulamov, E. A. Erofeev, E. A. Ibragimov, Sh. R. Kamalov, T. Usmanov, and A. D. Khadzhaev, “Highly efficient parametric amplification of optical beams. I. Optimization of the profiles of interacting waves in parametric amplification,” Sov. J. Quantum Electron. 20(9), 1100–1103 (1990).

I. A. Begishev, A. A. Gulamov, E. A. Erofeev, E. A. Ibragimov, Sh. R. Kamalov, T. Usmanov, and A. D. Khadzhaev, “Highly efficient parametric amplification of optical beams. II. Parametric interaction of waves with conformal profiles,” Sov. J. Quantum Electron. 20(9), 1104–1106 (1990).

Veisz, L.

Wang, C.

Wang, H.

X. Li, H. Liu, H. Wang, W. Zhao, Y. Wang, and S. Shi, “Compact high gain double-pass optical parametric chirped pulse amplifier,” Eur. Phys. J. D 47, 309–312 (2008).

Wang, J.

Wang, X.

Wang, Y.

X. Li, H. Liu, H. Wang, W. Zhao, Y. Wang, and S. Shi, “Compact high gain double-pass optical parametric chirped pulse amplifier,” Eur. Phys. J. D 47, 309–312 (2008).

Warrington, D. M.

Waxer, L.

Waxer, L. J.

Witte, S.

S. Witte and K. Eikema, “Ultrafast optical parametric chirped pulse amplification,” IEEE J. Sel. Top. Quantum Electron. 18(1), 296–307 (2012).

S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, “Numerical simulations for performance optimization of a few-cycle terawatt NOPCPA system,” Appl. Phys. B 87, 677–684 (2007).

Wu, Z.

Wyncke, B.

F. Brthat and B. Wyncke, “Calculation of double-refraction walk-off angle along the phase-matching directions in non-linear biaxial crystals,” J. Phys. At. Mol. Opt. Phys. 22, 1891–1898 (1989).

Xie, G.

Xie, N.

Xiong, K.

Xu, L.

Xu, Y.

Xu, Z.

Yin, D.

Yu, L.

Yuan, P.

Yue, Y.

Zeng, X.

Zhao, W.

X. Li, H. Liu, H. Wang, W. Zhao, Y. Wang, and S. Shi, “Compact high gain double-pass optical parametric chirped pulse amplifier,” Eur. Phys. J. D 47, 309–312 (2008).

Zhao, Y.

Zheng, Y.

Zhou, K.

Zhou, S.

Zhu, Q.

Zinkstok, R. T.

S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, “Numerical simulations for performance optimization of a few-cycle terawatt NOPCPA system,” Appl. Phys. B 87, 677–684 (2007).

Zou, X.

X. Guo, Y. Xu, X. Zou, X. Lu, Y. Li, C. Wang, Y. Leng, and R. Li, “Non-collinear phase-matching geometries in optical parametric chirped-pulse amplification,” Opt. Commun. 330, 24–29 (2014).

Zuegel, J.

Zuegel, J. D.

Zuo, Y.

Appl. Phys. B (2)

S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, “Numerical simulations for performance optimization of a few-cycle terawatt NOPCPA system,” Appl. Phys. B 87, 677–684 (2007).

J. A. Fülöp, Z. S. Major, B. Horváth, F. Tavella, A. Baltuška, and F. Krausz, “Shaping of picosecond pulses for pumping optical parametric amplification,” Appl. Phys. B 87, 79–84 (2007).

Appl. Phys. Lett. (1)

Y. Stepanenko and C. Radzewicz, “High-gain multipass noncollinear optical parametric chirped pulse amplifier,” Appl. Phys. Lett. 86, 211120 (2005).

Chin. Opt. Lett. (1)

Eur. Phys. J. D (1)

X. Li, H. Liu, H. Wang, W. Zhao, Y. Wang, and S. Shi, “Compact high gain double-pass optical parametric chirped pulse amplifier,” Eur. Phys. J. D 47, 309–312 (2008).

High Power Laser Sci. (1)

J. Schwarz, P. Rambo, D. Armstrong, M. Schollmeier, I. Smith, J. Shores, M. Geissel, M. Kimmel, and J. Porter, “Recent laser upgrades at Sandia’s Z-backlighter facility in order to accommodate new requirements for magnetized liner inertial fusion on the Z-machine,” High Power Laser Sci. 4, e36 (2016).

IEEE J. Quantum Electron. (1)

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30(12), 2950–2952 (1994).

IEEE J. Sel. Top. Quantum Electron. (2)

P. Matousek, B. Rus, and I. N. Ross, “Design of a Multi-Petawatt Optical Parametric Chirped Pulse Amplifier for the Iodine Laser ASTERIX IV,” IEEE J. Sel. Top. Quantum Electron. 36(2), 158–163 (2000).

S. Witte and K. Eikema, “Ultrafast optical parametric chirped pulse amplification,” IEEE J. Sel. Top. Quantum Electron. 18(1), 296–307 (2012).

J. Mod. Opt. (1)

D. Eimerl, J. M. Auerbach, and P. W. Milonni, “Paraxial wave theory of second and third harmonic generation in uniaxial crystals,” J. Mod. Opt. 42(5), 1037–1067 (1995).

J. Opt. Soc. Am. B (2)

J. Phys. At. Mol. Opt. Phys. (1)

F. Brthat and B. Wyncke, “Calculation of double-refraction walk-off angle along the phase-matching directions in non-linear biaxial crystals,” J. Phys. At. Mol. Opt. Phys. 22, 1891–1898 (1989).

Opt. Commun. (4)

J. W. Haus, A. Pandey, and P. E. Powers, “Boosting quantum efficiency using multi-stage parametric amplification,” Opt. Commun. 269, 378–384 (2007).

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun. 144, 125–133 (1997).

X. Liu, L. Xu, and X. Liang, “Numerical investigation of output beam quality in efficient broadband optical parametric chirped pulse amplification,” Opt. Commun. 383, 197–207 (2017).

X. Guo, Y. Xu, X. Zou, X. Lu, Y. Li, C. Wang, Y. Leng, and R. Li, “Non-collinear phase-matching geometries in optical parametric chirped-pulse amplification,” Opt. Commun. 330, 24–29 (2014).

Opt. Express (9)

J. Bromage, J. Rothhardt, S. Hädrich, C. Dorrer, C. Jocher, S. Demmler, J. Limpert, A. Tünnermann, and J. D. Zuegel, “Analysis and suppression of parasitic processes in noncollinear optical parametric amplifiers,” Opt. Express 19(18), 16797–16808 (2011).
[PubMed]

T. Lang, A. Harth, J. Matyschok, T. Binhammer, M. Schultze, and U. Morgner, “Impact of temporal, spatial and cascaded effects on the pulse formation in ultra-broadband parametric amplifiers,” Opt. Express 21(1), 949–959 (2013).
[PubMed]

A. Andrianov, A. Szabo, A. Sergeev, A. Kim, V. Chvykov, and M. Kalashnikov, “Computationally efficient method for Fourier transform of highly chirped pulses for laser and parametric amplifier modeling,” Opt. Express 24(23), 25974–25982 (2016).
[PubMed]

M. Guardalben, J. Keegan, L. Waxer, V. Bagnoud, I. Begishev, J. Puth, and J. Zuegel, “Design of a highly stable, high-conversion-efficiency, optical parametric chirped-pulse amplification system with good beam quality,” Opt. Express 11(20), 2511–2524 (2003).
[PubMed]

L. Cardoso and G. Figueira, “Bandwidth increase by controlled angular dispersion of signal beam in optical parametric amplification,” Opt. Express 12(14), 3108–3113 (2004).
[PubMed]

Y. Stepanenko and C. Radzewicz, “Multipass non-collinear optical parametric amplifier for femtosecond pulses,” Opt. Express 14(2), 779–785 (2006).
[PubMed]

J. Moses, C. Manzoni, S. W. Huang, G. Cerullo, and F. X. Kärtner, “Temporal optimization of ultrabroadband high-energy OPCPA,” Opt. Express 17(7), 5540–5555 (2009).
[PubMed]

J. Rothhardt, S. Hädrich, T. Gottschall, J. Limpert, A. Tünnermann, M. Rothhardt, M. Becker, S. Brückner, and H. Bartelt, “Generation of flattop pump pulses for OPCPA by coherent pulse stacking with fiber Bragg gratings,” Opt. Express 17(18), 16332–16341 (2009).
[PubMed]

D. Herrmann, R. Tautz, F. Tavella, F. Krausz, and L. Veisz, “Investigation of two-beam-pumped noncollinear optical parametric chirped-pulse amplification for the generation of few-cycle light pulses,” Opt. Express 18(5), 4170–4183 (2010).
[PubMed]

Opt. Lett. (9)

L. Cardoso, H. Pires, and G. Figueira, “Increased bandwidth optical parametric amplification of supercontinuum pulses with angular dispersion,” Opt. Lett. 34(9), 1369–1371 (2009).
[PubMed]

O. V. Chekhlov, J. L. Collier, I. N. Ross, P. K. Bates, M. Notley, C. Hernandez-Gomez, W. Shaikh, C. N. Danson, D. Neely, P. Matousek, S. Hancock, and L. Cardoso, “35 J broadband femtosecond optical parametric chirped pulse amplification system,” Opt. Lett. 31(24), 3665–3667 (2006).
[PubMed]

V. Bagnoud, I. A. Begishev, M. J. Guardalben, J. Puth, and J. D. Zuegel, “5 Hz, > 250 mJ optical parametric chirped-pulse amplifier at 1053 nm,” Opt. Lett. 30(14), 1843–1845 (2005).
[PubMed]

X. Liu, L. Xu, and X. Liang, “Output features of optical parametric chirped pulse amplification in LiB3O5 near 800 nm at different phase-matching geometries,” Opt. Lett. 41(24), 5809–5812 (2016).
[PubMed]

X. Zeng, K. Zhou, Y. Zuo, Q. Zhu, J. Su, X. Wang, X. Wang, X. Huang, X. Jiang, D. Jiang, Y. Guo, N. Xie, S. Zhou, Z. Wu, J. Mu, H. Peng, and F. Jing, “Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification,” Opt. Lett. 42(10), 2014–2017 (2017).
[PubMed]

L. Xu, L. Yu, X. Liang, Y. Chu, Z. Hu, L. Ma, Y. Xu, C. Wang, X. Lu, H. Lu, Y. Yue, Y. Zhao, F. Fan, H. Tu, Y. Leng, R. Li, and Z. Xu, “High-energy noncollinear optical parametric-chirped pulse amplification in LBO at 800 nm,” Opt. Lett. 38(22), 4837–4840 (2013).
[PubMed]

L. Yu, X. Liang, L. Xu, W. Li, C. Peng, Z. Hu, C. Wang, X. Lu, Y. Chu, Z. Gan, X. Liu, Y. Liu, X. Wang, H. Lu, D. Yin, Y. Leng, R. Li, and Z. Xu, “Optimization for high-energy and high-efficiency broadband optical parametric chirped-pulse amplification in LBO near 800 nm,” Opt. Lett. 40(14), 3412–3415 (2015).
[PubMed]

L. J. Waxer, V. Bagnoud, I. A. Begishev, M. J. Guardalben, J. Puth, and J. D. Zuegel, “High-conversion-efficiency optical parametric chirped-pulse amplification system using spatiotemporally shaped pump pulses,” Opt. Lett. 28(14), 1245–1247 (2003).
[PubMed]

A. L. Oien, I. T. McKinnie, P. Jain, N. A. Russell, D. M. Warrington, and L. A. W. Gloster, “Efficient, low-threshold collinear and noncollinear β-barium borate optical parametric oscillators,” Opt. Lett. 22(12), 859–861 (1997).
[PubMed]

Optica (1)

Phys. Rev. Lett. (1)

J. A. Armstrong, N. Blgemeergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. Lett. 127(6), 1918–1939 (1962).

Proc. SPIE (1)

J. M. Auerbach and D. Eimerl, “Frequency conversion modeling with spatially and temporally varying beams,” Proc. SPIE 2633, 230–241 (1997).

Sov. J. Quantum Electron. (2)

I. A. Begishev, A. A. Gulamov, E. A. Erofeev, E. A. Ibragimov, Sh. R. Kamalov, T. Usmanov, and A. D. Khadzhaev, “Highly efficient parametric amplification of optical beams. I. Optimization of the profiles of interacting waves in parametric amplification,” Sov. J. Quantum Electron. 20(9), 1100–1103 (1990).

I. A. Begishev, A. A. Gulamov, E. A. Erofeev, E. A. Ibragimov, Sh. R. Kamalov, T. Usmanov, and A. D. Khadzhaev, “Highly efficient parametric amplification of optical beams. II. Parametric interaction of waves with conformal profiles,” Sov. J. Quantum Electron. 20(9), 1104–1106 (1990).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Red line: input temporal and spectral distribution of broadband signal. Green line: temporal input intensity of pump. Black line: phase mismatches ΔkL. Blue, cyan and purple regions are the signal wavelengths at ΔkL = 0, 1 and 2, respectively. (b) OPA process corresponding to signals at ΔkL = 0, 1 and 2, respectively. Is, Ip, and η denote to the intensities of signal and pump, and the conversion efficiency, respectively. The triplets (P1, P2, P3), (P4, P5, P6), and (P7, P8, P9) label the three positions corresponding to ΔkL = 0, 1, and 2, respectively, showing that the signal intensity is higher than the pump intensity. (c) - (e) Signal and pump intensities (left vertical axis) and the conversion efficiency (right vertical axis) as a function of the crystal length for inputting signal and pump spatiotemporal intensities at three positions corresponding to different phase mismatches. Red, brown and gray lines refer to different positions.
Fig. 2
Fig. 2 (a) Conversion efficiency as a function of crystal length with the idler periodically returning to zero. (b), (d) and (f) Output signal spots corresponding to ΔkL = 0, 1 and 2, respectively. (c), (e) and (g) Residual pump spots corresponding to ΔkL = 0, 1 and 2, respectively.
Fig. 3
Fig. 3 (a) Schematic diagram of the axisymmetric type-I phase matching using LBO. XC and YC are the crystallographic coordinate axes. ks, ki, and kp refer to the signal, idler, and pump wave vectors, respectively. Sp is the pump Poynting vector. The two small block diagrams show the two non-collinear geometries used. The parameters ρs, ρi, and ρp have the same meaning as described in Section 2.1. (b) Design scheme of MNOPCPA. Red and green refer to the signal and pump paths, respectively. M1 to M12 are reflecting mirrors. Dichroic mirror-1 and Dichroic mirror-2 reflect the pump and transmit the signal. Half-wave plate-1 and Half-wave plate-2 are used for rotating the polarization states of the signal and pump by 90 °, respectively. Pockels-1, Pockels-2, Pockels-3 and Pockels-4 are electro-optical modulators, and can rotate the polarization state of the beams by 90 ° when they are given ½λ voltages, where Pockels-1 and Pockels-2 (Pockels-3 and Pockels-4) act on signal (pump). Polarizer-1 and Polarizer-4 reflect p-polarized light and transmit s-polarized light, while Polarizer-2 and Polarizer-3 reflect s-polarized light and transmit p-polarized light.
Fig. 4
Fig. 4 Numerical model of MNOPCPA based on the design scheme in Section 3.1. Green and red lines refer to the pump and signal beams. The dashed green line is the direction of the pump Poynting vector in the crystal. The purple region is the interaction of OPCPA among the three beams, signal, idler, and pump. The crystals arranged at the even number are placed as mirror images. The geometry configurations of neighboring groups are inversed, and each group includes two crystals.
Fig. 5
Fig. 5 Conversion efficiency as a function of the cumulative crystal length for different numbers of MNOPCPA passes.
Fig. 6
Fig. 6 (a) Comparison of the conversion efficiency between MNOPCPA and traditional OPCPA. (b) and (c) Evolution of the signal spectrum and the residual pump.
Fig. 7
Fig. 7 Black, red, and cyan express the curves came from MNOPCPA, OPCPA based on TPM, and OPCPA based on PVWC, respectively. (a) Solid and dashed lines refer to the spectrum intensity and phases, respectively. (b) Fourier-limit pulses corresponding to (a).
Fig. 8
Fig. 8 (a) and (d) Input spots of signal and pump. (b) and (e) ((c) and (f)) Spots of the output signal and the corresponding residual pump in traditional OPCPA based on TPM and PVWC configurations at the maximum conversion efficiency in Fig. 6(a), respectively. (g) and (h) ((i) and (j)) Evolution of signal and pump spots after each pass.
Fig. 9
Fig. 9 The simplified scheme of MNOPCPA. The meaning of the signs and the principle of operation are same to Fig. 3(b).

Tables (1)

Tables Icon

Table 1 Optimized crystal lengths for increasing MNOPCPA passes, showing conversion efficiency maxima.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

2 E s +j 2 n s ω s c ( E s z ρ s E s y )= 2 ω s 2 χ (2) c 2 E p E i * exp(iΔkz),
2 E i +j 2 n i ω i c ( E i z ρ i E i y )= 2 ω i 2 χ (2) c 2 E p E s * exp(iΔkz),
2 E p +j 2 n p ω p c ( E p z ρ p E p y )= 2 ω p 2 χ (2) c 2 E s E i exp(iΔkz).
I s (x,y,0,t)= I os exp[ 2( x 2 + y 2 ) σ s 2 ]exp( 2 t 2 t s 2 / 4ln2 ),
I p (x,y,0,t)= I op exp{ [ 2( x 2 + y 2 ) σ p 2 ] 4 }exp[ ( 2 t 2 t p 2 / 4 (ln2) 1/4 ) 4 ].
η= ε sout ε sin ε pin .

Metrics