Abstract

Intense emission from an InGaN quantum disc (QDisc) embedded in a GaN nanowire p-n junction is directly resolved by performing cathodoluminescence spectroscopy. The luminescence observed from the p-type GaN region is exclusively dominated by the emission at 380 nm, which has been usually reported as the emission from Mg induced impurity bands. Here, we confirm that the robust emission from 380 nm is actually not due to the Mg induced impurity bands, but rather due to being the recombination between electrons in the QDisc and holes in the p-type GaN. This identification helps to get a better understanding of the confused luminescence from nanowires with thin QDiscs embedded for fabricating electrically driven single photon emitters.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced hole transport in InGaN/GaN multiple quantum well light-emitting diodes with a p-type doped quantum barrier

Yun Ji, Zi-Hui Zhang, Swee Tiam Tan, Zhen Gang Ju, Zabu Kyaw, Namig Hasanov, Wei Liu, Xiao Wei Sun, and Hilmi Volkan Demir
Opt. Lett. 38(2) 202-204 (2013)

Effects of overgrown p-layer on the emission characteristics of the InGaN/GaN quantum wells in a high-indium light-emitting diode

Chih-Yen Chen, Chieh Hsieh, Che-Hao Liao, Wei-Lun Chung, Hao-Tsung Chen, Wenyu Cao, Wen-Ming Chang, Horng-Shyang Chen, Yu-Feng Yao, Shao-Ying Ting, Yean-Woei Kiang, Chih-Chung (C. C.) Yang, and Xiaodong Hu
Opt. Express 20(10) 11321-11335 (2012)

Geometry and composition comparisons between c-plane disc-like and m-plane core-shell InGaN/GaN quantum wells in a nitride nanorod

Che-Hao Liao, Wen-Ming Chang, Horng-Shyang Chen, Chih-Yen Chen, Yu-Feng Yao, Hao-Tsung Chen, Chia-Ying Su, Shao-Ying Ting, Yean-Woei Kiang, and C. C. Yang
Opt. Express 20(14) 15859-15871 (2012)

References

  • View by:
  • |
  • |
  • |

  1. C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
    [PubMed]
  2. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306(5700), 1330–1336 (2004).
    [PubMed]
  3. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
    [PubMed]
  4. A. Bennett, D. Unitt, A. Shields, P. Atkinson, and D. Ritchie, “Influence of exciton dynamics on the interference of two photons from a microcavity single-photon source,” Opt. Express 13(20), 7772–7778 (2005).
    [PubMed]
  5. A. Lochmann, E. Stock, J. A. To, W. Unrau, A. Toropov, A. Bakarov, V. Haisler, and D. Bimberg, “Electrically pumped microcavity based single photon source driven at 1 GHz,” Electron. Lett. 45, 566 (2009).
  6. A. J. Shields, E. Limited, and C. S. Park, “Semiconductor quantum light sources,” Nat. Photonics 1, 215–223 (2007).
  7. R. Arians, A. Gust, T. Kümmell, C. Kruse, S. Zaitsev, G. Bacher, and D. Hommel, “Electrically driven single quantum dot emitter operating at room temperature,” Appl. Phys. Lett. 93, 173506 (2008).
  8. A. Jamil, J. Skiba-Szymanska, S. Kalliakos, A. Schwagmann, M. B. Ward, Y. Brody, D. J. P. Ellis, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip generation and guiding of quantum light from a site-controlled quantum dot,” Appl. Phys. Lett. 104, 101108 (2014).
  9. C. Bentham, I. E. Itskevich, R. J. Coles, B. Royall, E. Clarke, J. O. Hara, N. Prtljaga, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “On-chip electrically controlled routing of photons from a single quantum dot,” Appl. Phys. Lett. 106, 221101 (2015).
  10. Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
    [PubMed]
  11. T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
  12. S. Strauf, N. G. Stoltz, M. T. Rakher, L. a. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1, 704–708 (2007).
  13. M. Reischle, G. J. Beirne, W.-M. Schulz, M. Eichfelder, R. Rossbach, M. Jetter, and P. Michler, “Electrically pumped single-photon emission in the visible spectral range up to 80 K,” Opt. Express 16(17), 12771–12776 (2008).
    [PubMed]
  14. S. Deshpande, T. Frost, A. Hazari, and P. Bhattacharya, “Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot,” Appl. Phys. Lett. 105, 141109 (2014).
  15. B. Monemar, “Fundamental energy gap of GaN from photoluminescence excitation spectra,” Phys. Rev. B 10, 676 (1974).
  16. S. Deshpande, J. Heo, A. Das, and P. Bhattacharya, “Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire,” Nat. Commun. 4, 1675 (2013).
    [PubMed]
  17. L. Zhang, C.-H. Teng, P.C. Ku, and H. Deng, “Electrically driven single-photon emission from site-controlled InGaN/GaN quantum dots” CLEO 2014 Postdeadline Pap. Dig. 1, JTh5B.6 (2014).
  18. W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
    [PubMed]
  19. P. Wang, X. Wang, T. Wang, C. S. Tan, B. Sheng, X. Sun, M. Li, X. Rong, X. Zheng, Z. Chen, X. Yang, F. Xu, Z. Qin, J. Zhang, X. Zhang, and B. Shen, “Lattice-Symmetry-Driven Epitaxy of Hierarchical GaN Nanotripods,” Adv. Funct. Mater. 27, 1604854 (2017).
  20. M. Shahmohammadi, J. D. Ganière, H. Zhang, R. Ciechonski, G. Vescovi, O. Kryliouk, M. Tchernycheva, and G. Jacopin, “Excitonic Diffusion in InGaN/GaN Core-Shell Nanowires,” Nano Lett. 16(1), 243–249 (2016).
    [PubMed]
  21. L. Yan, S. Jahangir, S. A. Wight, B. Nikoobakht, P. Bhattacharya, and J. M. Millunchick, “Structural and Optical Properties of Disc-in-Wire InGaN/GaN LEDs,” Nano Lett. 15(3), 1535–1539 (2015).
    [PubMed]
  22. S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Recombination of Localized Excitons in InGaN Single- and Multiquantum-Well Structures,” Appl. Phys. Lett. 69, 4188 (1996).
  23. Y. D. Jho, J. S. Yahng, E. Oh, and D. S. Kim, “Field-dependent carrier decay dynamics in strained InxGa1-x/GaN quantum wells,” Phys. Rev. B 66, 35334 (2002).
  24. M. G. Kibria, F. A. Chowdhury, S. Zhao, M. L. Trudeau, H. Guo, and Z. Mi, “Defect-engineered GaN : Mg nanowire arrays for overall water splitting under violet light,” Appl. Phys. Lett. 106, 113105 (2015).
  25. Y. S. Park, J. H. Na, R. A. Taylor, C. M. Park, K. H. Lee, and T. W. Kang, “The recombination mechanism of Mg-doped GaN nanorods grown by plasma-assisted molecular-beam epitaxy,” Nanotechnology 17, 913 (2006).
  26. F. Furtmayr, M. Vielemeyer, M. Stutzmann, A. Laufer, B. K. Meyer, and M. Eickhoff, “Optical properties of Si- and Mg-doped gallium nitride nanowires grown by plasma-assisted molecular beam epitaxy,” J. Appl. Phys. 104, 074309 (2008).
  27. M. A. Reshchikov and H. Morkoç, “Luminescence properties of defects in GaN,” J. Appl. Phys. 97, 061301 (2005).
  28. C. Hsiao, H. Hsu, L. Chen, C. Wu, C. Chen, M. Chen, L. Tu, and K. Chen, “Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors,” Appl. Phys. Lett. 91, 181912 (2007).
  29. M. A. Reshchikov, G.-C. Yi, and B. W. Wessels, “Behavior of 2.8- and 3.2-eV photoluminescence bands in Mg-doped GaN at different temperatures and excitation densities,” Phys. Rev. B 59, 176–183 (1999).
  30. U. Kaufmann, M. Kunzer, H. Obloh, M. Maier, C. Manz, A. Ramakrishnan, and B. Santic, “Origin of defect-related photoluminescence bands in doped and nominally undoped GaN,” Phys. Rev. B 59, 5561–5567 (1999).
  31. J. Wallentin, P. Wickert, M. Ek, A. Gustafsson, L. R. Wallenberg, M. H. Magnusson, L. Samuelson, K. Deppert, and M. T. Borgstro, “Degenerate p-doping of InP nanowires for large area tunnel diodes Degenerate p-doping of InP nanowires for large area tunnel diodes,” Appl. Phys. Lett. 99, 253105 (2012).
  32. N. M. Haegel, T. J. Mills, M. Talmadge, C. Scandrett, C. L. Frenzen, H. Yoon, C. M. Fetzer, and R. R. King, “Direct imaging of anisotropic minority-carrier diffusion in ordered GaInP Direct imaging of anisotropic minority-carrier diffusion in ordered GaInP,” J. Appl. Phys. 105, 023711 (2009).
  33. B. J. M. Brenny, D. R. Abujetas, D. Van Dam, J. A. Sa, J. Go, and A. Polman, “Directional Emission from Leaky and Guided Modes in GaAs Nanowires Measured by Cathodoluminescence,” ACS Photonics 3, 677–684 (2016).

2017 (1)

P. Wang, X. Wang, T. Wang, C. S. Tan, B. Sheng, X. Sun, M. Li, X. Rong, X. Zheng, Z. Chen, X. Yang, F. Xu, Z. Qin, J. Zhang, X. Zhang, and B. Shen, “Lattice-Symmetry-Driven Epitaxy of Hierarchical GaN Nanotripods,” Adv. Funct. Mater. 27, 1604854 (2017).

2016 (2)

M. Shahmohammadi, J. D. Ganière, H. Zhang, R. Ciechonski, G. Vescovi, O. Kryliouk, M. Tchernycheva, and G. Jacopin, “Excitonic Diffusion in InGaN/GaN Core-Shell Nanowires,” Nano Lett. 16(1), 243–249 (2016).
[PubMed]

B. J. M. Brenny, D. R. Abujetas, D. Van Dam, J. A. Sa, J. Go, and A. Polman, “Directional Emission from Leaky and Guided Modes in GaAs Nanowires Measured by Cathodoluminescence,” ACS Photonics 3, 677–684 (2016).

2015 (3)

L. Yan, S. Jahangir, S. A. Wight, B. Nikoobakht, P. Bhattacharya, and J. M. Millunchick, “Structural and Optical Properties of Disc-in-Wire InGaN/GaN LEDs,” Nano Lett. 15(3), 1535–1539 (2015).
[PubMed]

M. G. Kibria, F. A. Chowdhury, S. Zhao, M. L. Trudeau, H. Guo, and Z. Mi, “Defect-engineered GaN : Mg nanowire arrays for overall water splitting under violet light,” Appl. Phys. Lett. 106, 113105 (2015).

C. Bentham, I. E. Itskevich, R. J. Coles, B. Royall, E. Clarke, J. O. Hara, N. Prtljaga, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “On-chip electrically controlled routing of photons from a single quantum dot,” Appl. Phys. Lett. 106, 221101 (2015).

2014 (2)

S. Deshpande, T. Frost, A. Hazari, and P. Bhattacharya, “Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot,” Appl. Phys. Lett. 105, 141109 (2014).

A. Jamil, J. Skiba-Szymanska, S. Kalliakos, A. Schwagmann, M. B. Ward, Y. Brody, D. J. P. Ellis, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip generation and guiding of quantum light from a site-controlled quantum dot,” Appl. Phys. Lett. 104, 101108 (2014).

2013 (1)

S. Deshpande, J. Heo, A. Das, and P. Bhattacharya, “Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire,” Nat. Commun. 4, 1675 (2013).
[PubMed]

2012 (1)

J. Wallentin, P. Wickert, M. Ek, A. Gustafsson, L. R. Wallenberg, M. H. Magnusson, L. Samuelson, K. Deppert, and M. T. Borgstro, “Degenerate p-doping of InP nanowires for large area tunnel diodes Degenerate p-doping of InP nanowires for large area tunnel diodes,” Appl. Phys. Lett. 99, 253105 (2012).

2010 (2)

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
[PubMed]

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).

2009 (2)

A. Lochmann, E. Stock, J. A. To, W. Unrau, A. Toropov, A. Bakarov, V. Haisler, and D. Bimberg, “Electrically pumped microcavity based single photon source driven at 1 GHz,” Electron. Lett. 45, 566 (2009).

N. M. Haegel, T. J. Mills, M. Talmadge, C. Scandrett, C. L. Frenzen, H. Yoon, C. M. Fetzer, and R. R. King, “Direct imaging of anisotropic minority-carrier diffusion in ordered GaInP Direct imaging of anisotropic minority-carrier diffusion in ordered GaInP,” J. Appl. Phys. 105, 023711 (2009).

2008 (3)

F. Furtmayr, M. Vielemeyer, M. Stutzmann, A. Laufer, B. K. Meyer, and M. Eickhoff, “Optical properties of Si- and Mg-doped gallium nitride nanowires grown by plasma-assisted molecular beam epitaxy,” J. Appl. Phys. 104, 074309 (2008).

M. Reischle, G. J. Beirne, W.-M. Schulz, M. Eichfelder, R. Rossbach, M. Jetter, and P. Michler, “Electrically pumped single-photon emission in the visible spectral range up to 80 K,” Opt. Express 16(17), 12771–12776 (2008).
[PubMed]

R. Arians, A. Gust, T. Kümmell, C. Kruse, S. Zaitsev, G. Bacher, and D. Hommel, “Electrically driven single quantum dot emitter operating at room temperature,” Appl. Phys. Lett. 93, 173506 (2008).

2007 (3)

A. J. Shields, E. Limited, and C. S. Park, “Semiconductor quantum light sources,” Nat. Photonics 1, 215–223 (2007).

S. Strauf, N. G. Stoltz, M. T. Rakher, L. a. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1, 704–708 (2007).

C. Hsiao, H. Hsu, L. Chen, C. Wu, C. Chen, M. Chen, L. Tu, and K. Chen, “Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors,” Appl. Phys. Lett. 91, 181912 (2007).

2006 (1)

Y. S. Park, J. H. Na, R. A. Taylor, C. M. Park, K. H. Lee, and T. W. Kang, “The recombination mechanism of Mg-doped GaN nanorods grown by plasma-assisted molecular-beam epitaxy,” Nanotechnology 17, 913 (2006).

2005 (2)

2004 (1)

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306(5700), 1330–1336 (2004).
[PubMed]

2002 (3)

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[PubMed]

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[PubMed]

Y. D. Jho, J. S. Yahng, E. Oh, and D. S. Kim, “Field-dependent carrier decay dynamics in strained InxGa1-x/GaN quantum wells,” Phys. Rev. B 66, 35334 (2002).

2001 (1)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[PubMed]

1999 (2)

M. A. Reshchikov, G.-C. Yi, and B. W. Wessels, “Behavior of 2.8- and 3.2-eV photoluminescence bands in Mg-doped GaN at different temperatures and excitation densities,” Phys. Rev. B 59, 176–183 (1999).

U. Kaufmann, M. Kunzer, H. Obloh, M. Maier, C. Manz, A. Ramakrishnan, and B. Santic, “Origin of defect-related photoluminescence bands in doped and nominally undoped GaN,” Phys. Rev. B 59, 5561–5567 (1999).

1996 (1)

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Recombination of Localized Excitons in InGaN Single- and Multiquantum-Well Structures,” Appl. Phys. Lett. 69, 4188 (1996).

1974 (1)

B. Monemar, “Fundamental energy gap of GaN from photoluminescence excitation spectra,” Phys. Rev. B 10, 676 (1974).

Abujetas, D. R.

B. J. M. Brenny, D. R. Abujetas, D. Van Dam, J. A. Sa, J. Go, and A. Polman, “Directional Emission from Leaky and Guided Modes in GaAs Nanowires Measured by Cathodoluminescence,” ACS Photonics 3, 677–684 (2016).

Arians, R.

R. Arians, A. Gust, T. Kümmell, C. Kruse, S. Zaitsev, G. Bacher, and D. Hommel, “Electrically driven single quantum dot emitter operating at room temperature,” Appl. Phys. Lett. 93, 173506 (2008).

Atkinson, P.

Azuhata, T.

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Recombination of Localized Excitons in InGaN Single- and Multiquantum-Well Structures,” Appl. Phys. Lett. 69, 4188 (1996).

Bacher, G.

R. Arians, A. Gust, T. Kümmell, C. Kruse, S. Zaitsev, G. Bacher, and D. Hommel, “Electrically driven single quantum dot emitter operating at room temperature,” Appl. Phys. Lett. 93, 173506 (2008).

Bakarov, A.

A. Lochmann, E. Stock, J. A. To, W. Unrau, A. Toropov, A. Bakarov, V. Haisler, and D. Bimberg, “Electrically pumped microcavity based single photon source driven at 1 GHz,” Electron. Lett. 45, 566 (2009).

Banerjee, A.

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
[PubMed]

Beattie, N. S.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[PubMed]

Beirne, G. J.

Bennett, A.

Bentham, C.

C. Bentham, I. E. Itskevich, R. J. Coles, B. Royall, E. Clarke, J. O. Hara, N. Prtljaga, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “On-chip electrically controlled routing of photons from a single quantum dot,” Appl. Phys. Lett. 106, 221101 (2015).

Bhattacharya, P.

L. Yan, S. Jahangir, S. A. Wight, B. Nikoobakht, P. Bhattacharya, and J. M. Millunchick, “Structural and Optical Properties of Disc-in-Wire InGaN/GaN LEDs,” Nano Lett. 15(3), 1535–1539 (2015).
[PubMed]

S. Deshpande, T. Frost, A. Hazari, and P. Bhattacharya, “Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot,” Appl. Phys. Lett. 105, 141109 (2014).

S. Deshpande, J. Heo, A. Das, and P. Bhattacharya, “Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire,” Nat. Commun. 4, 1675 (2013).
[PubMed]

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
[PubMed]

Bimberg, D.

A. Lochmann, E. Stock, J. A. To, W. Unrau, A. Toropov, A. Bakarov, V. Haisler, and D. Bimberg, “Electrically pumped microcavity based single photon source driven at 1 GHz,” Electron. Lett. 45, 566 (2009).

Borgstro, M. T.

J. Wallentin, P. Wickert, M. Ek, A. Gustafsson, L. R. Wallenberg, M. H. Magnusson, L. Samuelson, K. Deppert, and M. T. Borgstro, “Degenerate p-doping of InP nanowires for large area tunnel diodes Degenerate p-doping of InP nanowires for large area tunnel diodes,” Appl. Phys. Lett. 99, 253105 (2012).

Bouwmeester, D.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. a. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1, 704–708 (2007).

Braun, T.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).

Brenny, B. J. M.

B. J. M. Brenny, D. R. Abujetas, D. Van Dam, J. A. Sa, J. Go, and A. Polman, “Directional Emission from Leaky and Guided Modes in GaAs Nanowires Measured by Cathodoluminescence,” ACS Photonics 3, 677–684 (2016).

Brody, Y.

A. Jamil, J. Skiba-Szymanska, S. Kalliakos, A. Schwagmann, M. B. Ward, Y. Brody, D. J. P. Ellis, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip generation and guiding of quantum light from a site-controlled quantum dot,” Appl. Phys. Lett. 104, 101108 (2014).

Chen, C.

C. Hsiao, H. Hsu, L. Chen, C. Wu, C. Chen, M. Chen, L. Tu, and K. Chen, “Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors,” Appl. Phys. Lett. 91, 181912 (2007).

Chen, K.

C. Hsiao, H. Hsu, L. Chen, C. Wu, C. Chen, M. Chen, L. Tu, and K. Chen, “Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors,” Appl. Phys. Lett. 91, 181912 (2007).

Chen, L.

C. Hsiao, H. Hsu, L. Chen, C. Wu, C. Chen, M. Chen, L. Tu, and K. Chen, “Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors,” Appl. Phys. Lett. 91, 181912 (2007).

Chen, M.

C. Hsiao, H. Hsu, L. Chen, C. Wu, C. Chen, M. Chen, L. Tu, and K. Chen, “Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors,” Appl. Phys. Lett. 91, 181912 (2007).

Chen, Z.

P. Wang, X. Wang, T. Wang, C. S. Tan, B. Sheng, X. Sun, M. Li, X. Rong, X. Zheng, Z. Chen, X. Yang, F. Xu, Z. Qin, J. Zhang, X. Zhang, and B. Shen, “Lattice-Symmetry-Driven Epitaxy of Hierarchical GaN Nanotripods,” Adv. Funct. Mater. 27, 1604854 (2017).

Chichibu, S.

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Recombination of Localized Excitons in InGaN Single- and Multiquantum-Well Structures,” Appl. Phys. Lett. 69, 4188 (1996).

Chowdhury, F. A.

M. G. Kibria, F. A. Chowdhury, S. Zhao, M. L. Trudeau, H. Guo, and Z. Mi, “Defect-engineered GaN : Mg nanowire arrays for overall water splitting under violet light,” Appl. Phys. Lett. 106, 113105 (2015).

Ciechonski, R.

M. Shahmohammadi, J. D. Ganière, H. Zhang, R. Ciechonski, G. Vescovi, O. Kryliouk, M. Tchernycheva, and G. Jacopin, “Excitonic Diffusion in InGaN/GaN Core-Shell Nanowires,” Nano Lett. 16(1), 243–249 (2016).
[PubMed]

Clarke, E.

C. Bentham, I. E. Itskevich, R. J. Coles, B. Royall, E. Clarke, J. O. Hara, N. Prtljaga, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “On-chip electrically controlled routing of photons from a single quantum dot,” Appl. Phys. Lett. 106, 221101 (2015).

Coldren, L. a.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. a. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1, 704–708 (2007).

Coles, R. J.

C. Bentham, I. E. Itskevich, R. J. Coles, B. Royall, E. Clarke, J. O. Hara, N. Prtljaga, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “On-chip electrically controlled routing of photons from a single quantum dot,” Appl. Phys. Lett. 106, 221101 (2015).

Cooper, K.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[PubMed]

Das, A.

S. Deshpande, J. Heo, A. Das, and P. Bhattacharya, “Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire,” Nat. Commun. 4, 1675 (2013).
[PubMed]

Deppert, K.

J. Wallentin, P. Wickert, M. Ek, A. Gustafsson, L. R. Wallenberg, M. H. Magnusson, L. Samuelson, K. Deppert, and M. T. Borgstro, “Degenerate p-doping of InP nanowires for large area tunnel diodes Degenerate p-doping of InP nanowires for large area tunnel diodes,” Appl. Phys. Lett. 99, 253105 (2012).

Deshpande, S.

S. Deshpande, T. Frost, A. Hazari, and P. Bhattacharya, “Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot,” Appl. Phys. Lett. 105, 141109 (2014).

S. Deshpande, J. Heo, A. Das, and P. Bhattacharya, “Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire,” Nat. Commun. 4, 1675 (2013).
[PubMed]

Eichfelder, M.

Eickhoff, M.

F. Furtmayr, M. Vielemeyer, M. Stutzmann, A. Laufer, B. K. Meyer, and M. Eickhoff, “Optical properties of Si- and Mg-doped gallium nitride nanowires grown by plasma-assisted molecular beam epitaxy,” J. Appl. Phys. 104, 074309 (2008).

Ek, M.

J. Wallentin, P. Wickert, M. Ek, A. Gustafsson, L. R. Wallenberg, M. H. Magnusson, L. Samuelson, K. Deppert, and M. T. Borgstro, “Degenerate p-doping of InP nanowires for large area tunnel diodes Degenerate p-doping of InP nanowires for large area tunnel diodes,” Appl. Phys. Lett. 99, 253105 (2012).

Ellis, D. J. P.

A. Jamil, J. Skiba-Szymanska, S. Kalliakos, A. Schwagmann, M. B. Ward, Y. Brody, D. J. P. Ellis, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip generation and guiding of quantum light from a site-controlled quantum dot,” Appl. Phys. Lett. 104, 101108 (2014).

Farrer, I.

A. Jamil, J. Skiba-Szymanska, S. Kalliakos, A. Schwagmann, M. B. Ward, Y. Brody, D. J. P. Ellis, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip generation and guiding of quantum light from a site-controlled quantum dot,” Appl. Phys. Lett. 104, 101108 (2014).

Fattal, D.

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[PubMed]

Fetzer, C. M.

N. M. Haegel, T. J. Mills, M. Talmadge, C. Scandrett, C. L. Frenzen, H. Yoon, C. M. Fetzer, and R. R. King, “Direct imaging of anisotropic minority-carrier diffusion in ordered GaInP Direct imaging of anisotropic minority-carrier diffusion in ordered GaInP,” J. Appl. Phys. 105, 023711 (2009).

Forchel, A.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).

Fox, A. M.

C. Bentham, I. E. Itskevich, R. J. Coles, B. Royall, E. Clarke, J. O. Hara, N. Prtljaga, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “On-chip electrically controlled routing of photons from a single quantum dot,” Appl. Phys. Lett. 106, 221101 (2015).

Frenzen, C. L.

N. M. Haegel, T. J. Mills, M. Talmadge, C. Scandrett, C. L. Frenzen, H. Yoon, C. M. Fetzer, and R. R. King, “Direct imaging of anisotropic minority-carrier diffusion in ordered GaInP Direct imaging of anisotropic minority-carrier diffusion in ordered GaInP,” J. Appl. Phys. 105, 023711 (2009).

Frost, T.

S. Deshpande, T. Frost, A. Hazari, and P. Bhattacharya, “Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot,” Appl. Phys. Lett. 105, 141109 (2014).

Furtmayr, F.

F. Furtmayr, M. Vielemeyer, M. Stutzmann, A. Laufer, B. K. Meyer, and M. Eickhoff, “Optical properties of Si- and Mg-doped gallium nitride nanowires grown by plasma-assisted molecular beam epitaxy,” J. Appl. Phys. 104, 074309 (2008).

Ganière, J. D.

M. Shahmohammadi, J. D. Ganière, H. Zhang, R. Ciechonski, G. Vescovi, O. Kryliouk, M. Tchernycheva, and G. Jacopin, “Excitonic Diffusion in InGaN/GaN Core-Shell Nanowires,” Nano Lett. 16(1), 243–249 (2016).
[PubMed]

Giovannetti, V.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306(5700), 1330–1336 (2004).
[PubMed]

Go, J.

B. J. M. Brenny, D. R. Abujetas, D. Van Dam, J. A. Sa, J. Go, and A. Polman, “Directional Emission from Leaky and Guided Modes in GaAs Nanowires Measured by Cathodoluminescence,” ACS Photonics 3, 677–684 (2016).

Griffiths, J. P.

A. Jamil, J. Skiba-Szymanska, S. Kalliakos, A. Schwagmann, M. B. Ward, Y. Brody, D. J. P. Ellis, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip generation and guiding of quantum light from a site-controlled quantum dot,” Appl. Phys. Lett. 104, 101108 (2014).

Guo, H.

M. G. Kibria, F. A. Chowdhury, S. Zhao, M. L. Trudeau, H. Guo, and Z. Mi, “Defect-engineered GaN : Mg nanowire arrays for overall water splitting under violet light,” Appl. Phys. Lett. 106, 113105 (2015).

Guo, W.

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
[PubMed]

Gust, A.

R. Arians, A. Gust, T. Kümmell, C. Kruse, S. Zaitsev, G. Bacher, and D. Hommel, “Electrically driven single quantum dot emitter operating at room temperature,” Appl. Phys. Lett. 93, 173506 (2008).

Gustafsson, A.

J. Wallentin, P. Wickert, M. Ek, A. Gustafsson, L. R. Wallenberg, M. H. Magnusson, L. Samuelson, K. Deppert, and M. T. Borgstro, “Degenerate p-doping of InP nanowires for large area tunnel diodes Degenerate p-doping of InP nanowires for large area tunnel diodes,” Appl. Phys. Lett. 99, 253105 (2012).

Haegel, N. M.

N. M. Haegel, T. J. Mills, M. Talmadge, C. Scandrett, C. L. Frenzen, H. Yoon, C. M. Fetzer, and R. R. King, “Direct imaging of anisotropic minority-carrier diffusion in ordered GaInP Direct imaging of anisotropic minority-carrier diffusion in ordered GaInP,” J. Appl. Phys. 105, 023711 (2009).

Haisler, V.

A. Lochmann, E. Stock, J. A. To, W. Unrau, A. Toropov, A. Bakarov, V. Haisler, and D. Bimberg, “Electrically pumped microcavity based single photon source driven at 1 GHz,” Electron. Lett. 45, 566 (2009).

Hara, J. O.

C. Bentham, I. E. Itskevich, R. J. Coles, B. Royall, E. Clarke, J. O. Hara, N. Prtljaga, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “On-chip electrically controlled routing of photons from a single quantum dot,” Appl. Phys. Lett. 106, 221101 (2015).

Hazari, A.

S. Deshpande, T. Frost, A. Hazari, and P. Bhattacharya, “Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot,” Appl. Phys. Lett. 105, 141109 (2014).

Heindel, T.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).

Heo, J.

S. Deshpande, J. Heo, A. Das, and P. Bhattacharya, “Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire,” Nat. Commun. 4, 1675 (2013).
[PubMed]

Höfling, S.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).

Hommel, D.

R. Arians, A. Gust, T. Kümmell, C. Kruse, S. Zaitsev, G. Bacher, and D. Hommel, “Electrically driven single quantum dot emitter operating at room temperature,” Appl. Phys. Lett. 93, 173506 (2008).

Hsiao, C.

C. Hsiao, H. Hsu, L. Chen, C. Wu, C. Chen, M. Chen, L. Tu, and K. Chen, “Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors,” Appl. Phys. Lett. 91, 181912 (2007).

Hsu, H.

C. Hsiao, H. Hsu, L. Chen, C. Wu, C. Chen, M. Chen, L. Tu, and K. Chen, “Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors,” Appl. Phys. Lett. 91, 181912 (2007).

Itskevich, I. E.

C. Bentham, I. E. Itskevich, R. J. Coles, B. Royall, E. Clarke, J. O. Hara, N. Prtljaga, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “On-chip electrically controlled routing of photons from a single quantum dot,” Appl. Phys. Lett. 106, 221101 (2015).

Jacopin, G.

M. Shahmohammadi, J. D. Ganière, H. Zhang, R. Ciechonski, G. Vescovi, O. Kryliouk, M. Tchernycheva, and G. Jacopin, “Excitonic Diffusion in InGaN/GaN Core-Shell Nanowires,” Nano Lett. 16(1), 243–249 (2016).
[PubMed]

Jahangir, S.

L. Yan, S. Jahangir, S. A. Wight, B. Nikoobakht, P. Bhattacharya, and J. M. Millunchick, “Structural and Optical Properties of Disc-in-Wire InGaN/GaN LEDs,” Nano Lett. 15(3), 1535–1539 (2015).
[PubMed]

Jamil, A.

A. Jamil, J. Skiba-Szymanska, S. Kalliakos, A. Schwagmann, M. B. Ward, Y. Brody, D. J. P. Ellis, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip generation and guiding of quantum light from a site-controlled quantum dot,” Appl. Phys. Lett. 104, 101108 (2014).

Jetter, M.

Jho, Y. D.

Y. D. Jho, J. S. Yahng, E. Oh, and D. S. Kim, “Field-dependent carrier decay dynamics in strained InxGa1-x/GaN quantum wells,” Phys. Rev. B 66, 35334 (2002).

Jones, G. A. C.

A. Jamil, J. Skiba-Szymanska, S. Kalliakos, A. Schwagmann, M. B. Ward, Y. Brody, D. J. P. Ellis, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip generation and guiding of quantum light from a site-controlled quantum dot,” Appl. Phys. Lett. 104, 101108 (2014).

Kalliakos, S.

A. Jamil, J. Skiba-Szymanska, S. Kalliakos, A. Schwagmann, M. B. Ward, Y. Brody, D. J. P. Ellis, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip generation and guiding of quantum light from a site-controlled quantum dot,” Appl. Phys. Lett. 104, 101108 (2014).

Kamp, M.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).

Kang, T. W.

Y. S. Park, J. H. Na, R. A. Taylor, C. M. Park, K. H. Lee, and T. W. Kang, “The recombination mechanism of Mg-doped GaN nanorods grown by plasma-assisted molecular-beam epitaxy,” Nanotechnology 17, 913 (2006).

Kardynal, B. E.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[PubMed]

Kaufmann, U.

U. Kaufmann, M. Kunzer, H. Obloh, M. Maier, C. Manz, A. Ramakrishnan, and B. Santic, “Origin of defect-related photoluminescence bands in doped and nominally undoped GaN,” Phys. Rev. B 59, 5561–5567 (1999).

Kibria, M. G.

M. G. Kibria, F. A. Chowdhury, S. Zhao, M. L. Trudeau, H. Guo, and Z. Mi, “Defect-engineered GaN : Mg nanowire arrays for overall water splitting under violet light,” Appl. Phys. Lett. 106, 113105 (2015).

Kim, D. S.

Y. D. Jho, J. S. Yahng, E. Oh, and D. S. Kim, “Field-dependent carrier decay dynamics in strained InxGa1-x/GaN quantum wells,” Phys. Rev. B 66, 35334 (2002).

King, R. R.

N. M. Haegel, T. J. Mills, M. Talmadge, C. Scandrett, C. L. Frenzen, H. Yoon, C. M. Fetzer, and R. R. King, “Direct imaging of anisotropic minority-carrier diffusion in ordered GaInP Direct imaging of anisotropic minority-carrier diffusion in ordered GaInP,” J. Appl. Phys. 105, 023711 (2009).

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[PubMed]

Kruse, C.

R. Arians, A. Gust, T. Kümmell, C. Kruse, S. Zaitsev, G. Bacher, and D. Hommel, “Electrically driven single quantum dot emitter operating at room temperature,” Appl. Phys. Lett. 93, 173506 (2008).

Kryliouk, O.

M. Shahmohammadi, J. D. Ganière, H. Zhang, R. Ciechonski, G. Vescovi, O. Kryliouk, M. Tchernycheva, and G. Jacopin, “Excitonic Diffusion in InGaN/GaN Core-Shell Nanowires,” Nano Lett. 16(1), 243–249 (2016).
[PubMed]

Kümmell, T.

R. Arians, A. Gust, T. Kümmell, C. Kruse, S. Zaitsev, G. Bacher, and D. Hommel, “Electrically driven single quantum dot emitter operating at room temperature,” Appl. Phys. Lett. 93, 173506 (2008).

Kunzer, M.

U. Kaufmann, M. Kunzer, H. Obloh, M. Maier, C. Manz, A. Ramakrishnan, and B. Santic, “Origin of defect-related photoluminescence bands in doped and nominally undoped GaN,” Phys. Rev. B 59, 5561–5567 (1999).

Kwon, S. H.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[PubMed]

Laufer, A.

F. Furtmayr, M. Vielemeyer, M. Stutzmann, A. Laufer, B. K. Meyer, and M. Eickhoff, “Optical properties of Si- and Mg-doped gallium nitride nanowires grown by plasma-assisted molecular beam epitaxy,” J. Appl. Phys. 104, 074309 (2008).

Lee, K. H.

Y. S. Park, J. H. Na, R. A. Taylor, C. M. Park, K. H. Lee, and T. W. Kang, “The recombination mechanism of Mg-doped GaN nanorods grown by plasma-assisted molecular-beam epitaxy,” Nanotechnology 17, 913 (2006).

Lermer, M.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).

Li, M.

P. Wang, X. Wang, T. Wang, C. S. Tan, B. Sheng, X. Sun, M. Li, X. Rong, X. Zheng, Z. Chen, X. Yang, F. Xu, Z. Qin, J. Zhang, X. Zhang, and B. Shen, “Lattice-Symmetry-Driven Epitaxy of Hierarchical GaN Nanotripods,” Adv. Funct. Mater. 27, 1604854 (2017).

Limited, E.

A. J. Shields, E. Limited, and C. S. Park, “Semiconductor quantum light sources,” Nat. Photonics 1, 215–223 (2007).

Lloyd, S.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306(5700), 1330–1336 (2004).
[PubMed]

Lobo, C. J.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[PubMed]

Lochmann, A.

A. Lochmann, E. Stock, J. A. To, W. Unrau, A. Toropov, A. Bakarov, V. Haisler, and D. Bimberg, “Electrically pumped microcavity based single photon source driven at 1 GHz,” Electron. Lett. 45, 566 (2009).

Maccone, L.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306(5700), 1330–1336 (2004).
[PubMed]

Magnusson, M. H.

J. Wallentin, P. Wickert, M. Ek, A. Gustafsson, L. R. Wallenberg, M. H. Magnusson, L. Samuelson, K. Deppert, and M. T. Borgstro, “Degenerate p-doping of InP nanowires for large area tunnel diodes Degenerate p-doping of InP nanowires for large area tunnel diodes,” Appl. Phys. Lett. 99, 253105 (2012).

Maier, M.

U. Kaufmann, M. Kunzer, H. Obloh, M. Maier, C. Manz, A. Ramakrishnan, and B. Santic, “Origin of defect-related photoluminescence bands in doped and nominally undoped GaN,” Phys. Rev. B 59, 5561–5567 (1999).

Manz, C.

U. Kaufmann, M. Kunzer, H. Obloh, M. Maier, C. Manz, A. Ramakrishnan, and B. Santic, “Origin of defect-related photoluminescence bands in doped and nominally undoped GaN,” Phys. Rev. B 59, 5561–5567 (1999).

Meyer, B. K.

F. Furtmayr, M. Vielemeyer, M. Stutzmann, A. Laufer, B. K. Meyer, and M. Eickhoff, “Optical properties of Si- and Mg-doped gallium nitride nanowires grown by plasma-assisted molecular beam epitaxy,” J. Appl. Phys. 104, 074309 (2008).

Mi, Z.

M. G. Kibria, F. A. Chowdhury, S. Zhao, M. L. Trudeau, H. Guo, and Z. Mi, “Defect-engineered GaN : Mg nanowire arrays for overall water splitting under violet light,” Appl. Phys. Lett. 106, 113105 (2015).

Michler, P.

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[PubMed]

Mills, T. J.

N. M. Haegel, T. J. Mills, M. Talmadge, C. Scandrett, C. L. Frenzen, H. Yoon, C. M. Fetzer, and R. R. King, “Direct imaging of anisotropic minority-carrier diffusion in ordered GaInP Direct imaging of anisotropic minority-carrier diffusion in ordered GaInP,” J. Appl. Phys. 105, 023711 (2009).

Millunchick, J. M.

L. Yan, S. Jahangir, S. A. Wight, B. Nikoobakht, P. Bhattacharya, and J. M. Millunchick, “Structural and Optical Properties of Disc-in-Wire InGaN/GaN LEDs,” Nano Lett. 15(3), 1535–1539 (2015).
[PubMed]

Monemar, B.

B. Monemar, “Fundamental energy gap of GaN from photoluminescence excitation spectra,” Phys. Rev. B 10, 676 (1974).

Morkoç, H.

M. A. Reshchikov and H. Morkoç, “Luminescence properties of defects in GaN,” J. Appl. Phys. 97, 061301 (2005).

Na, J. H.

Y. S. Park, J. H. Na, R. A. Taylor, C. M. Park, K. H. Lee, and T. W. Kang, “The recombination mechanism of Mg-doped GaN nanorods grown by plasma-assisted molecular-beam epitaxy,” Nanotechnology 17, 913 (2006).

Nakamura, S.

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Recombination of Localized Excitons in InGaN Single- and Multiquantum-Well Structures,” Appl. Phys. Lett. 69, 4188 (1996).

Nikoobakht, B.

L. Yan, S. Jahangir, S. A. Wight, B. Nikoobakht, P. Bhattacharya, and J. M. Millunchick, “Structural and Optical Properties of Disc-in-Wire InGaN/GaN LEDs,” Nano Lett. 15(3), 1535–1539 (2015).
[PubMed]

Obloh, H.

U. Kaufmann, M. Kunzer, H. Obloh, M. Maier, C. Manz, A. Ramakrishnan, and B. Santic, “Origin of defect-related photoluminescence bands in doped and nominally undoped GaN,” Phys. Rev. B 59, 5561–5567 (1999).

Oh, E.

Y. D. Jho, J. S. Yahng, E. Oh, and D. S. Kim, “Field-dependent carrier decay dynamics in strained InxGa1-x/GaN quantum wells,” Phys. Rev. B 66, 35334 (2002).

Park, C. M.

Y. S. Park, J. H. Na, R. A. Taylor, C. M. Park, K. H. Lee, and T. W. Kang, “The recombination mechanism of Mg-doped GaN nanorods grown by plasma-assisted molecular-beam epitaxy,” Nanotechnology 17, 913 (2006).

Park, C. S.

A. J. Shields, E. Limited, and C. S. Park, “Semiconductor quantum light sources,” Nat. Photonics 1, 215–223 (2007).

Park, Y. S.

Y. S. Park, J. H. Na, R. A. Taylor, C. M. Park, K. H. Lee, and T. W. Kang, “The recombination mechanism of Mg-doped GaN nanorods grown by plasma-assisted molecular-beam epitaxy,” Nanotechnology 17, 913 (2006).

Pepper, M.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[PubMed]

Petroff, P. M.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. a. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1, 704–708 (2007).

Polman, A.

B. J. M. Brenny, D. R. Abujetas, D. Van Dam, J. A. Sa, J. Go, and A. Polman, “Directional Emission from Leaky and Guided Modes in GaAs Nanowires Measured by Cathodoluminescence,” ACS Photonics 3, 677–684 (2016).

Prtljaga, N.

C. Bentham, I. E. Itskevich, R. J. Coles, B. Royall, E. Clarke, J. O. Hara, N. Prtljaga, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “On-chip electrically controlled routing of photons from a single quantum dot,” Appl. Phys. Lett. 106, 221101 (2015).

Qin, Z.

P. Wang, X. Wang, T. Wang, C. S. Tan, B. Sheng, X. Sun, M. Li, X. Rong, X. Zheng, Z. Chen, X. Yang, F. Xu, Z. Qin, J. Zhang, X. Zhang, and B. Shen, “Lattice-Symmetry-Driven Epitaxy of Hierarchical GaN Nanotripods,” Adv. Funct. Mater. 27, 1604854 (2017).

Rakher, M. T.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. a. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1, 704–708 (2007).

Ramakrishnan, A.

U. Kaufmann, M. Kunzer, H. Obloh, M. Maier, C. Manz, A. Ramakrishnan, and B. Santic, “Origin of defect-related photoluminescence bands in doped and nominally undoped GaN,” Phys. Rev. B 59, 5561–5567 (1999).

Reischle, M.

Reitzenstein, S.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).

Reshchikov, M. A.

M. A. Reshchikov and H. Morkoç, “Luminescence properties of defects in GaN,” J. Appl. Phys. 97, 061301 (2005).

M. A. Reshchikov, G.-C. Yi, and B. W. Wessels, “Behavior of 2.8- and 3.2-eV photoluminescence bands in Mg-doped GaN at different temperatures and excitation densities,” Phys. Rev. B 59, 176–183 (1999).

Ritchie, D.

Ritchie, D. A.

A. Jamil, J. Skiba-Szymanska, S. Kalliakos, A. Schwagmann, M. B. Ward, Y. Brody, D. J. P. Ellis, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip generation and guiding of quantum light from a site-controlled quantum dot,” Appl. Phys. Lett. 104, 101108 (2014).

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[PubMed]

Rong, X.

P. Wang, X. Wang, T. Wang, C. S. Tan, B. Sheng, X. Sun, M. Li, X. Rong, X. Zheng, Z. Chen, X. Yang, F. Xu, Z. Qin, J. Zhang, X. Zhang, and B. Shen, “Lattice-Symmetry-Driven Epitaxy of Hierarchical GaN Nanotripods,” Adv. Funct. Mater. 27, 1604854 (2017).

Rossbach, R.

Royall, B.

C. Bentham, I. E. Itskevich, R. J. Coles, B. Royall, E. Clarke, J. O. Hara, N. Prtljaga, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “On-chip electrically controlled routing of photons from a single quantum dot,” Appl. Phys. Lett. 106, 221101 (2015).

Sa, J. A.

B. J. M. Brenny, D. R. Abujetas, D. Van Dam, J. A. Sa, J. Go, and A. Polman, “Directional Emission from Leaky and Guided Modes in GaAs Nanowires Measured by Cathodoluminescence,” ACS Photonics 3, 677–684 (2016).

Samuelson, L.

J. Wallentin, P. Wickert, M. Ek, A. Gustafsson, L. R. Wallenberg, M. H. Magnusson, L. Samuelson, K. Deppert, and M. T. Borgstro, “Degenerate p-doping of InP nanowires for large area tunnel diodes Degenerate p-doping of InP nanowires for large area tunnel diodes,” Appl. Phys. Lett. 99, 253105 (2012).

Santic, B.

U. Kaufmann, M. Kunzer, H. Obloh, M. Maier, C. Manz, A. Ramakrishnan, and B. Santic, “Origin of defect-related photoluminescence bands in doped and nominally undoped GaN,” Phys. Rev. B 59, 5561–5567 (1999).

Santori, C.

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[PubMed]

Scandrett, C.

N. M. Haegel, T. J. Mills, M. Talmadge, C. Scandrett, C. L. Frenzen, H. Yoon, C. M. Fetzer, and R. R. King, “Direct imaging of anisotropic minority-carrier diffusion in ordered GaInP Direct imaging of anisotropic minority-carrier diffusion in ordered GaInP,” J. Appl. Phys. 105, 023711 (2009).

Schneider, C.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).

Schulz, W.-M.

Schwagmann, A.

A. Jamil, J. Skiba-Szymanska, S. Kalliakos, A. Schwagmann, M. B. Ward, Y. Brody, D. J. P. Ellis, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip generation and guiding of quantum light from a site-controlled quantum dot,” Appl. Phys. Lett. 104, 101108 (2014).

Shahmohammadi, M.

M. Shahmohammadi, J. D. Ganière, H. Zhang, R. Ciechonski, G. Vescovi, O. Kryliouk, M. Tchernycheva, and G. Jacopin, “Excitonic Diffusion in InGaN/GaN Core-Shell Nanowires,” Nano Lett. 16(1), 243–249 (2016).
[PubMed]

Shen, B.

P. Wang, X. Wang, T. Wang, C. S. Tan, B. Sheng, X. Sun, M. Li, X. Rong, X. Zheng, Z. Chen, X. Yang, F. Xu, Z. Qin, J. Zhang, X. Zhang, and B. Shen, “Lattice-Symmetry-Driven Epitaxy of Hierarchical GaN Nanotripods,” Adv. Funct. Mater. 27, 1604854 (2017).

Sheng, B.

P. Wang, X. Wang, T. Wang, C. S. Tan, B. Sheng, X. Sun, M. Li, X. Rong, X. Zheng, Z. Chen, X. Yang, F. Xu, Z. Qin, J. Zhang, X. Zhang, and B. Shen, “Lattice-Symmetry-Driven Epitaxy of Hierarchical GaN Nanotripods,” Adv. Funct. Mater. 27, 1604854 (2017).

Shields, A.

Shields, A. J.

A. Jamil, J. Skiba-Szymanska, S. Kalliakos, A. Schwagmann, M. B. Ward, Y. Brody, D. J. P. Ellis, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip generation and guiding of quantum light from a site-controlled quantum dot,” Appl. Phys. Lett. 104, 101108 (2014).

A. J. Shields, E. Limited, and C. S. Park, “Semiconductor quantum light sources,” Nat. Photonics 1, 215–223 (2007).

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[PubMed]

Skiba-Szymanska, J.

A. Jamil, J. Skiba-Szymanska, S. Kalliakos, A. Schwagmann, M. B. Ward, Y. Brody, D. J. P. Ellis, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip generation and guiding of quantum light from a site-controlled quantum dot,” Appl. Phys. Lett. 104, 101108 (2014).

Skolnick, M. S.

C. Bentham, I. E. Itskevich, R. J. Coles, B. Royall, E. Clarke, J. O. Hara, N. Prtljaga, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “On-chip electrically controlled routing of photons from a single quantum dot,” Appl. Phys. Lett. 106, 221101 (2015).

Solomon, G. S.

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[PubMed]

Sota, T.

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Recombination of Localized Excitons in InGaN Single- and Multiquantum-Well Structures,” Appl. Phys. Lett. 69, 4188 (1996).

Stevenson, R. M.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[PubMed]

Stock, E.

A. Lochmann, E. Stock, J. A. To, W. Unrau, A. Toropov, A. Bakarov, V. Haisler, and D. Bimberg, “Electrically pumped microcavity based single photon source driven at 1 GHz,” Electron. Lett. 45, 566 (2009).

Stoltz, N. G.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. a. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1, 704–708 (2007).

Strauf, S.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. a. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1, 704–708 (2007).

Stutzmann, M.

F. Furtmayr, M. Vielemeyer, M. Stutzmann, A. Laufer, B. K. Meyer, and M. Eickhoff, “Optical properties of Si- and Mg-doped gallium nitride nanowires grown by plasma-assisted molecular beam epitaxy,” J. Appl. Phys. 104, 074309 (2008).

Sun, X.

P. Wang, X. Wang, T. Wang, C. S. Tan, B. Sheng, X. Sun, M. Li, X. Rong, X. Zheng, Z. Chen, X. Yang, F. Xu, Z. Qin, J. Zhang, X. Zhang, and B. Shen, “Lattice-Symmetry-Driven Epitaxy of Hierarchical GaN Nanotripods,” Adv. Funct. Mater. 27, 1604854 (2017).

Talmadge, M.

N. M. Haegel, T. J. Mills, M. Talmadge, C. Scandrett, C. L. Frenzen, H. Yoon, C. M. Fetzer, and R. R. King, “Direct imaging of anisotropic minority-carrier diffusion in ordered GaInP Direct imaging of anisotropic minority-carrier diffusion in ordered GaInP,” J. Appl. Phys. 105, 023711 (2009).

Tan, C. S.

P. Wang, X. Wang, T. Wang, C. S. Tan, B. Sheng, X. Sun, M. Li, X. Rong, X. Zheng, Z. Chen, X. Yang, F. Xu, Z. Qin, J. Zhang, X. Zhang, and B. Shen, “Lattice-Symmetry-Driven Epitaxy of Hierarchical GaN Nanotripods,” Adv. Funct. Mater. 27, 1604854 (2017).

Taylor, R. A.

Y. S. Park, J. H. Na, R. A. Taylor, C. M. Park, K. H. Lee, and T. W. Kang, “The recombination mechanism of Mg-doped GaN nanorods grown by plasma-assisted molecular-beam epitaxy,” Nanotechnology 17, 913 (2006).

Tchernycheva, M.

M. Shahmohammadi, J. D. Ganière, H. Zhang, R. Ciechonski, G. Vescovi, O. Kryliouk, M. Tchernycheva, and G. Jacopin, “Excitonic Diffusion in InGaN/GaN Core-Shell Nanowires,” Nano Lett. 16(1), 243–249 (2016).
[PubMed]

To, J. A.

A. Lochmann, E. Stock, J. A. To, W. Unrau, A. Toropov, A. Bakarov, V. Haisler, and D. Bimberg, “Electrically pumped microcavity based single photon source driven at 1 GHz,” Electron. Lett. 45, 566 (2009).

Toropov, A.

A. Lochmann, E. Stock, J. A. To, W. Unrau, A. Toropov, A. Bakarov, V. Haisler, and D. Bimberg, “Electrically pumped microcavity based single photon source driven at 1 GHz,” Electron. Lett. 45, 566 (2009).

Trudeau, M. L.

M. G. Kibria, F. A. Chowdhury, S. Zhao, M. L. Trudeau, H. Guo, and Z. Mi, “Defect-engineered GaN : Mg nanowire arrays for overall water splitting under violet light,” Appl. Phys. Lett. 106, 113105 (2015).

Tu, L.

C. Hsiao, H. Hsu, L. Chen, C. Wu, C. Chen, M. Chen, L. Tu, and K. Chen, “Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors,” Appl. Phys. Lett. 91, 181912 (2007).

Unitt, D.

Unrau, W.

A. Lochmann, E. Stock, J. A. To, W. Unrau, A. Toropov, A. Bakarov, V. Haisler, and D. Bimberg, “Electrically pumped microcavity based single photon source driven at 1 GHz,” Electron. Lett. 45, 566 (2009).

Van Dam, D.

B. J. M. Brenny, D. R. Abujetas, D. Van Dam, J. A. Sa, J. Go, and A. Polman, “Directional Emission from Leaky and Guided Modes in GaAs Nanowires Measured by Cathodoluminescence,” ACS Photonics 3, 677–684 (2016).

Vescovi, G.

M. Shahmohammadi, J. D. Ganière, H. Zhang, R. Ciechonski, G. Vescovi, O. Kryliouk, M. Tchernycheva, and G. Jacopin, “Excitonic Diffusion in InGaN/GaN Core-Shell Nanowires,” Nano Lett. 16(1), 243–249 (2016).
[PubMed]

Vielemeyer, M.

F. Furtmayr, M. Vielemeyer, M. Stutzmann, A. Laufer, B. K. Meyer, and M. Eickhoff, “Optical properties of Si- and Mg-doped gallium nitride nanowires grown by plasma-assisted molecular beam epitaxy,” J. Appl. Phys. 104, 074309 (2008).

Vuckovic, J.

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[PubMed]

Wallenberg, L. R.

J. Wallentin, P. Wickert, M. Ek, A. Gustafsson, L. R. Wallenberg, M. H. Magnusson, L. Samuelson, K. Deppert, and M. T. Borgstro, “Degenerate p-doping of InP nanowires for large area tunnel diodes Degenerate p-doping of InP nanowires for large area tunnel diodes,” Appl. Phys. Lett. 99, 253105 (2012).

Wallentin, J.

J. Wallentin, P. Wickert, M. Ek, A. Gustafsson, L. R. Wallenberg, M. H. Magnusson, L. Samuelson, K. Deppert, and M. T. Borgstro, “Degenerate p-doping of InP nanowires for large area tunnel diodes Degenerate p-doping of InP nanowires for large area tunnel diodes,” Appl. Phys. Lett. 99, 253105 (2012).

Wang, P.

P. Wang, X. Wang, T. Wang, C. S. Tan, B. Sheng, X. Sun, M. Li, X. Rong, X. Zheng, Z. Chen, X. Yang, F. Xu, Z. Qin, J. Zhang, X. Zhang, and B. Shen, “Lattice-Symmetry-Driven Epitaxy of Hierarchical GaN Nanotripods,” Adv. Funct. Mater. 27, 1604854 (2017).

Wang, T.

P. Wang, X. Wang, T. Wang, C. S. Tan, B. Sheng, X. Sun, M. Li, X. Rong, X. Zheng, Z. Chen, X. Yang, F. Xu, Z. Qin, J. Zhang, X. Zhang, and B. Shen, “Lattice-Symmetry-Driven Epitaxy of Hierarchical GaN Nanotripods,” Adv. Funct. Mater. 27, 1604854 (2017).

Wang, X.

P. Wang, X. Wang, T. Wang, C. S. Tan, B. Sheng, X. Sun, M. Li, X. Rong, X. Zheng, Z. Chen, X. Yang, F. Xu, Z. Qin, J. Zhang, X. Zhang, and B. Shen, “Lattice-Symmetry-Driven Epitaxy of Hierarchical GaN Nanotripods,” Adv. Funct. Mater. 27, 1604854 (2017).

Ward, M. B.

A. Jamil, J. Skiba-Szymanska, S. Kalliakos, A. Schwagmann, M. B. Ward, Y. Brody, D. J. P. Ellis, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip generation and guiding of quantum light from a site-controlled quantum dot,” Appl. Phys. Lett. 104, 101108 (2014).

Wessels, B. W.

M. A. Reshchikov, G.-C. Yi, and B. W. Wessels, “Behavior of 2.8- and 3.2-eV photoluminescence bands in Mg-doped GaN at different temperatures and excitation densities,” Phys. Rev. B 59, 176–183 (1999).

Wickert, P.

J. Wallentin, P. Wickert, M. Ek, A. Gustafsson, L. R. Wallenberg, M. H. Magnusson, L. Samuelson, K. Deppert, and M. T. Borgstro, “Degenerate p-doping of InP nanowires for large area tunnel diodes Degenerate p-doping of InP nanowires for large area tunnel diodes,” Appl. Phys. Lett. 99, 253105 (2012).

Wight, S. A.

L. Yan, S. Jahangir, S. A. Wight, B. Nikoobakht, P. Bhattacharya, and J. M. Millunchick, “Structural and Optical Properties of Disc-in-Wire InGaN/GaN LEDs,” Nano Lett. 15(3), 1535–1539 (2015).
[PubMed]

Wilson, L. R.

C. Bentham, I. E. Itskevich, R. J. Coles, B. Royall, E. Clarke, J. O. Hara, N. Prtljaga, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “On-chip electrically controlled routing of photons from a single quantum dot,” Appl. Phys. Lett. 106, 221101 (2015).

Wu, C.

C. Hsiao, H. Hsu, L. Chen, C. Wu, C. Chen, M. Chen, L. Tu, and K. Chen, “Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors,” Appl. Phys. Lett. 91, 181912 (2007).

Xu, F.

P. Wang, X. Wang, T. Wang, C. S. Tan, B. Sheng, X. Sun, M. Li, X. Rong, X. Zheng, Z. Chen, X. Yang, F. Xu, Z. Qin, J. Zhang, X. Zhang, and B. Shen, “Lattice-Symmetry-Driven Epitaxy of Hierarchical GaN Nanotripods,” Adv. Funct. Mater. 27, 1604854 (2017).

Yahng, J. S.

Y. D. Jho, J. S. Yahng, E. Oh, and D. S. Kim, “Field-dependent carrier decay dynamics in strained InxGa1-x/GaN quantum wells,” Phys. Rev. B 66, 35334 (2002).

Yamamoto, Y.

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[PubMed]

Yan, L.

L. Yan, S. Jahangir, S. A. Wight, B. Nikoobakht, P. Bhattacharya, and J. M. Millunchick, “Structural and Optical Properties of Disc-in-Wire InGaN/GaN LEDs,” Nano Lett. 15(3), 1535–1539 (2015).
[PubMed]

Yang, X.

P. Wang, X. Wang, T. Wang, C. S. Tan, B. Sheng, X. Sun, M. Li, X. Rong, X. Zheng, Z. Chen, X. Yang, F. Xu, Z. Qin, J. Zhang, X. Zhang, and B. Shen, “Lattice-Symmetry-Driven Epitaxy of Hierarchical GaN Nanotripods,” Adv. Funct. Mater. 27, 1604854 (2017).

Yi, G.-C.

M. A. Reshchikov, G.-C. Yi, and B. W. Wessels, “Behavior of 2.8- and 3.2-eV photoluminescence bands in Mg-doped GaN at different temperatures and excitation densities,” Phys. Rev. B 59, 176–183 (1999).

Yoon, H.

N. M. Haegel, T. J. Mills, M. Talmadge, C. Scandrett, C. L. Frenzen, H. Yoon, C. M. Fetzer, and R. R. King, “Direct imaging of anisotropic minority-carrier diffusion in ordered GaInP Direct imaging of anisotropic minority-carrier diffusion in ordered GaInP,” J. Appl. Phys. 105, 023711 (2009).

Yuan, Z.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[PubMed]

Zaitsev, S.

R. Arians, A. Gust, T. Kümmell, C. Kruse, S. Zaitsev, G. Bacher, and D. Hommel, “Electrically driven single quantum dot emitter operating at room temperature,” Appl. Phys. Lett. 93, 173506 (2008).

Zhang, H.

M. Shahmohammadi, J. D. Ganière, H. Zhang, R. Ciechonski, G. Vescovi, O. Kryliouk, M. Tchernycheva, and G. Jacopin, “Excitonic Diffusion in InGaN/GaN Core-Shell Nanowires,” Nano Lett. 16(1), 243–249 (2016).
[PubMed]

Zhang, J.

P. Wang, X. Wang, T. Wang, C. S. Tan, B. Sheng, X. Sun, M. Li, X. Rong, X. Zheng, Z. Chen, X. Yang, F. Xu, Z. Qin, J. Zhang, X. Zhang, and B. Shen, “Lattice-Symmetry-Driven Epitaxy of Hierarchical GaN Nanotripods,” Adv. Funct. Mater. 27, 1604854 (2017).

Zhang, M.

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
[PubMed]

Zhang, X.

P. Wang, X. Wang, T. Wang, C. S. Tan, B. Sheng, X. Sun, M. Li, X. Rong, X. Zheng, Z. Chen, X. Yang, F. Xu, Z. Qin, J. Zhang, X. Zhang, and B. Shen, “Lattice-Symmetry-Driven Epitaxy of Hierarchical GaN Nanotripods,” Adv. Funct. Mater. 27, 1604854 (2017).

Zhao, S.

M. G. Kibria, F. A. Chowdhury, S. Zhao, M. L. Trudeau, H. Guo, and Z. Mi, “Defect-engineered GaN : Mg nanowire arrays for overall water splitting under violet light,” Appl. Phys. Lett. 106, 113105 (2015).

Zheng, X.

P. Wang, X. Wang, T. Wang, C. S. Tan, B. Sheng, X. Sun, M. Li, X. Rong, X. Zheng, Z. Chen, X. Yang, F. Xu, Z. Qin, J. Zhang, X. Zhang, and B. Shen, “Lattice-Symmetry-Driven Epitaxy of Hierarchical GaN Nanotripods,” Adv. Funct. Mater. 27, 1604854 (2017).

ACS Photonics (1)

B. J. M. Brenny, D. R. Abujetas, D. Van Dam, J. A. Sa, J. Go, and A. Polman, “Directional Emission from Leaky and Guided Modes in GaAs Nanowires Measured by Cathodoluminescence,” ACS Photonics 3, 677–684 (2016).

Adv. Funct. Mater. (1)

P. Wang, X. Wang, T. Wang, C. S. Tan, B. Sheng, X. Sun, M. Li, X. Rong, X. Zheng, Z. Chen, X. Yang, F. Xu, Z. Qin, J. Zhang, X. Zhang, and B. Shen, “Lattice-Symmetry-Driven Epitaxy of Hierarchical GaN Nanotripods,” Adv. Funct. Mater. 27, 1604854 (2017).

Appl. Phys. Lett. (9)

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Recombination of Localized Excitons in InGaN Single- and Multiquantum-Well Structures,” Appl. Phys. Lett. 69, 4188 (1996).

M. G. Kibria, F. A. Chowdhury, S. Zhao, M. L. Trudeau, H. Guo, and Z. Mi, “Defect-engineered GaN : Mg nanowire arrays for overall water splitting under violet light,” Appl. Phys. Lett. 106, 113105 (2015).

C. Hsiao, H. Hsu, L. Chen, C. Wu, C. Chen, M. Chen, L. Tu, and K. Chen, “Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors,” Appl. Phys. Lett. 91, 181912 (2007).

J. Wallentin, P. Wickert, M. Ek, A. Gustafsson, L. R. Wallenberg, M. H. Magnusson, L. Samuelson, K. Deppert, and M. T. Borgstro, “Degenerate p-doping of InP nanowires for large area tunnel diodes Degenerate p-doping of InP nanowires for large area tunnel diodes,” Appl. Phys. Lett. 99, 253105 (2012).

R. Arians, A. Gust, T. Kümmell, C. Kruse, S. Zaitsev, G. Bacher, and D. Hommel, “Electrically driven single quantum dot emitter operating at room temperature,” Appl. Phys. Lett. 93, 173506 (2008).

A. Jamil, J. Skiba-Szymanska, S. Kalliakos, A. Schwagmann, M. B. Ward, Y. Brody, D. J. P. Ellis, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip generation and guiding of quantum light from a site-controlled quantum dot,” Appl. Phys. Lett. 104, 101108 (2014).

C. Bentham, I. E. Itskevich, R. J. Coles, B. Royall, E. Clarke, J. O. Hara, N. Prtljaga, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “On-chip electrically controlled routing of photons from a single quantum dot,” Appl. Phys. Lett. 106, 221101 (2015).

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).

S. Deshpande, T. Frost, A. Hazari, and P. Bhattacharya, “Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot,” Appl. Phys. Lett. 105, 141109 (2014).

Electron. Lett. (1)

A. Lochmann, E. Stock, J. A. To, W. Unrau, A. Toropov, A. Bakarov, V. Haisler, and D. Bimberg, “Electrically pumped microcavity based single photon source driven at 1 GHz,” Electron. Lett. 45, 566 (2009).

J. Appl. Phys. (3)

N. M. Haegel, T. J. Mills, M. Talmadge, C. Scandrett, C. L. Frenzen, H. Yoon, C. M. Fetzer, and R. R. King, “Direct imaging of anisotropic minority-carrier diffusion in ordered GaInP Direct imaging of anisotropic minority-carrier diffusion in ordered GaInP,” J. Appl. Phys. 105, 023711 (2009).

F. Furtmayr, M. Vielemeyer, M. Stutzmann, A. Laufer, B. K. Meyer, and M. Eickhoff, “Optical properties of Si- and Mg-doped gallium nitride nanowires grown by plasma-assisted molecular beam epitaxy,” J. Appl. Phys. 104, 074309 (2008).

M. A. Reshchikov and H. Morkoç, “Luminescence properties of defects in GaN,” J. Appl. Phys. 97, 061301 (2005).

Nano Lett. (3)

M. Shahmohammadi, J. D. Ganière, H. Zhang, R. Ciechonski, G. Vescovi, O. Kryliouk, M. Tchernycheva, and G. Jacopin, “Excitonic Diffusion in InGaN/GaN Core-Shell Nanowires,” Nano Lett. 16(1), 243–249 (2016).
[PubMed]

L. Yan, S. Jahangir, S. A. Wight, B. Nikoobakht, P. Bhattacharya, and J. M. Millunchick, “Structural and Optical Properties of Disc-in-Wire InGaN/GaN LEDs,” Nano Lett. 15(3), 1535–1539 (2015).
[PubMed]

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
[PubMed]

Nanotechnology (1)

Y. S. Park, J. H. Na, R. A. Taylor, C. M. Park, K. H. Lee, and T. W. Kang, “The recombination mechanism of Mg-doped GaN nanorods grown by plasma-assisted molecular-beam epitaxy,” Nanotechnology 17, 913 (2006).

Nat. Commun. (1)

S. Deshpande, J. Heo, A. Das, and P. Bhattacharya, “Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire,” Nat. Commun. 4, 1675 (2013).
[PubMed]

Nat. Photonics (2)

S. Strauf, N. G. Stoltz, M. T. Rakher, L. a. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1, 704–708 (2007).

A. J. Shields, E. Limited, and C. S. Park, “Semiconductor quantum light sources,” Nat. Photonics 1, 215–223 (2007).

Nature (2)

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[PubMed]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[PubMed]

Opt. Express (2)

Phys. Rev. B (4)

B. Monemar, “Fundamental energy gap of GaN from photoluminescence excitation spectra,” Phys. Rev. B 10, 676 (1974).

Y. D. Jho, J. S. Yahng, E. Oh, and D. S. Kim, “Field-dependent carrier decay dynamics in strained InxGa1-x/GaN quantum wells,” Phys. Rev. B 66, 35334 (2002).

M. A. Reshchikov, G.-C. Yi, and B. W. Wessels, “Behavior of 2.8- and 3.2-eV photoluminescence bands in Mg-doped GaN at different temperatures and excitation densities,” Phys. Rev. B 59, 176–183 (1999).

U. Kaufmann, M. Kunzer, H. Obloh, M. Maier, C. Manz, A. Ramakrishnan, and B. Santic, “Origin of defect-related photoluminescence bands in doped and nominally undoped GaN,” Phys. Rev. B 59, 5561–5567 (1999).

Science (2)

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306(5700), 1330–1336 (2004).
[PubMed]

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[PubMed]

Other (1)

L. Zhang, C.-H. Teng, P.C. Ku, and H. Deng, “Electrically driven single-photon emission from site-controlled InGaN/GaN quantum dots” CLEO 2014 Postdeadline Pap. Dig. 1, JTh5B.6 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of an InGaN disc-in-GaN NW p-n junction grown on Si (111). (b) SEM image of the as-grown NW sample. The GaN NWs are around 40 nm in diameter at the bottom, and about 100 nm at the top due to the relative low growth temperature during p-GaN epitaxy. (c) TEM image in HAADF contrast presents one representative nanowire. The QDisc is located at 200 nm away from the top of the NW p-n junction, with diameter being around 70 nm. Higher magnified HADDF image shows the InGaN QDisc in bright contrast surrounded by darker GaN layer (d) Temperature dependent PL spectra from the as-grown NWs.
Fig. 2
Fig. 2 (a) SEM image of dispersed NWs and (b) the corresponding panchromatic CL intensity recorded at 25 K. The scale bar represents length of 1 μm. (c) CL spectrum spatially integrated over the whole area shown in (b).
Fig. 3
Fig. 3 CL spectra of different positions along the NW, point 1 to point 10 correspond to the positions as shown in the inset.
Fig. 4
Fig. 4 CL monochromatic images recorded for different detection wavelengths at various temperatures. (a)-(d) represent the wavelength at 356 nm, and (e)-(h) represent the wavelength at 380 nm. The scale bars are 250 nm.
Fig. 5
Fig. 5 Temperature dependent CL spectra (normalized by the GaN peak at 25 K) extracting from a spot in the p-type region of a p-i-n GaN NW without InGaN QDisc.
Fig. 6
Fig. 6 Energy band diagram illustrating how the luminescence coming out from the p-type region with the emission wavelength of the QDisc.

Metrics