Abstract

The angular surface plasmon mediated fluorescence from a two-dimensional Au nanohole array has been studied by reflectivity spectroscopy and Fourier-space photoluminescence microscopy. By using the rate equation model and temporal coupled mode theory, we determine the momentum-dependent coupling rate of light emitters to (−1,0) Bloch-like surface plasmon polaritons (SPPs) in the first Brillouin zone. The rate increases gradually when the SPPs propagate away from the Γ-X direction and split into two at the Γ-M point where two coupled modes are formed. In addition, both the spectral density-of-states (SDOS) and the plasmonic field energy are found to govern the momentum dependence. We also examine the behavior of the field energy as a function of the SPP propagation direction and it agrees well with the finite-difference time-domain simulations, showing the energy plays a major role in controlling the angular emission intensity. Our results devise a new method in studying the momentum-dependent plasmonic field energy and they are expected to provide insight in directional emission from periodic arrays.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface plasmon polariton beams from an electrically excited plasmonic crystal

Damien Canneson, Eric Le Moal, Shuiyan Cao, Xavier Quélin, Hervé Dallaporta, Gérald Dujardin, and Elizabeth Boer-Duchemin
Opt. Express 24(23) 26186-26200 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).
  2. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
    [PubMed]
  3. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [PubMed]
  4. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [PubMed]
  5. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737 (2012).
  6. M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9, 427 (2015).
  7. J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36, 1131 (2002).
  8. F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. ’t Hooft, and M. P. van Exter, “Surface Plasmon Lasing Observed in Metal Hole Arrays,” Phys. Rev. Lett. 110(20), 206802 (2013).
    [PubMed]
  9. Y. Jin and X. Gao, “Plasmonic fluorescent quantum dots,” Nat. Nanotechnol. 4(9), 571–576 (2009).
    [PubMed]
  10. G. Isfort, K. Schierbaum, and D. Zerulla, “Polarization dependence of surface plasmon polariton emission,” Phys. Rev. B 74, 033404 (2006).
  11. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface Plasmon-Coupled Emission with Gold Films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
    [PubMed]
  12. K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly Polarized Light Emission from Semiconductor Planar Chiral Nanostructures,” Phys. Rev. Lett. 106(5), 057402 (2011).
    [PubMed]
  13. Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat. Commun. 2, 283 (2011).
    [PubMed]
  14. I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60, 11564 (1999).
  15. M. Kuttge, E. J. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B 79, 113405 (2009).
  16. M. Frimmer, Y. Chen, and A. F. Koenderink, “Scanning Emitter Lifetime Imaging Microscopy for Spontaneous Emission Control,” Phys. Rev. Lett. 107(12), 123602 (2011).
    [PubMed]
  17. B. Zhen, S. L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
    [PubMed]
  18. R. C. McPhedran, L. C. Botten, J. McOrist, A. A. Asatryan, C. M. De Sterke, and N. A. Nicorovici, “Density of states functions for photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(1 Pt 2), 016609 (2004).
    [PubMed]
  19. M. Barth, A. Gruber, and F. Cichos, “Spectral and angular redistribution of photoluminescence near a photonic stop band,” Phys. Rev. B 72, 085129 (2005).
  20. Z. L. Cao and H. C. Ong, “Determination of coupling rate of light emitter to surface plasmon polaritons supported on nanohole array,” Appl. Phys. Lett. 102, 241109 (2013).
  21. Z. L. Cao and H. C. Ong, “Momentum-dependent group velocity of surface plasmon polaritons in two-dimensional metallic nanohole array,” Opt. Express 24(12), 12489–12500 (2016).
    [PubMed]
  22. Z. Cao, H. Y. Lo, and H. C. Ong, “Determination of absorption and radiative decay rates of surface plasmon polaritons from nanohole array,” Opt. Lett. 37(24), 5166–5168 (2012).
    [PubMed]
  23. C. Liu, C. F. Chan, and H. C. Ong, “Direct deconvolution of electric and magnetic responses of single nanoparticles by Fourier space surface plasmon resonance microscopy,” Opt. Commun. 378, 28 (2016).
  24. I. Sersic, C. Tuambilangana, and A. F. Koenderink, “Fourier microscopy of single plasmonic scatterers,” New J. Phys. 13, 083019 (2011).
  25. M. Lin, Z. L. Cao, and H. C. Ong, “Determination of the excitation rate of quantum dots mediated by momentum-resolved Bloch-like surface plasmon polaritons,” Opt. Express 25(6), 6092–6103 (2017).
    [PubMed]
  26. J. Li, H. Iu, J. T. K. Wan, and H. C. Ong, “Dependence of anisotropic surface plasmon lifetimes of two-dimensional hole arrays on hole geometry,” Appl. Phys. Lett. 94, 033101 (2009).
  27. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370 (1972).

2017 (1)

2016 (2)

C. Liu, C. F. Chan, and H. C. Ong, “Direct deconvolution of electric and magnetic responses of single nanoparticles by Fourier space surface plasmon resonance microscopy,” Opt. Commun. 378, 28 (2016).

Z. L. Cao and H. C. Ong, “Momentum-dependent group velocity of surface plasmon polaritons in two-dimensional metallic nanohole array,” Opt. Express 24(12), 12489–12500 (2016).
[PubMed]

2015 (1)

M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9, 427 (2015).

2013 (3)

B. Zhen, S. L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
[PubMed]

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. ’t Hooft, and M. P. van Exter, “Surface Plasmon Lasing Observed in Metal Hole Arrays,” Phys. Rev. Lett. 110(20), 206802 (2013).
[PubMed]

Z. L. Cao and H. C. Ong, “Determination of coupling rate of light emitter to surface plasmon polaritons supported on nanohole array,” Appl. Phys. Lett. 102, 241109 (2013).

2012 (2)

2011 (4)

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly Polarized Light Emission from Semiconductor Planar Chiral Nanostructures,” Phys. Rev. Lett. 106(5), 057402 (2011).
[PubMed]

Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat. Commun. 2, 283 (2011).
[PubMed]

M. Frimmer, Y. Chen, and A. F. Koenderink, “Scanning Emitter Lifetime Imaging Microscopy for Spontaneous Emission Control,” Phys. Rev. Lett. 107(12), 123602 (2011).
[PubMed]

I. Sersic, C. Tuambilangana, and A. F. Koenderink, “Fourier microscopy of single plasmonic scatterers,” New J. Phys. 13, 083019 (2011).

2010 (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[PubMed]

2009 (3)

Y. Jin and X. Gao, “Plasmonic fluorescent quantum dots,” Nat. Nanotechnol. 4(9), 571–576 (2009).
[PubMed]

M. Kuttge, E. J. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B 79, 113405 (2009).

J. Li, H. Iu, J. T. K. Wan, and H. C. Ong, “Dependence of anisotropic surface plasmon lifetimes of two-dimensional hole arrays on hole geometry,” Appl. Phys. Lett. 94, 033101 (2009).

2008 (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[PubMed]

2006 (1)

G. Isfort, K. Schierbaum, and D. Zerulla, “Polarization dependence of surface plasmon polariton emission,” Phys. Rev. B 74, 033404 (2006).

2005 (1)

M. Barth, A. Gruber, and F. Cichos, “Spectral and angular redistribution of photoluminescence near a photonic stop band,” Phys. Rev. B 72, 085129 (2005).

2004 (3)

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface Plasmon-Coupled Emission with Gold Films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[PubMed]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[PubMed]

R. C. McPhedran, L. C. Botten, J. McOrist, A. A. Asatryan, C. M. De Sterke, and N. A. Nicorovici, “Density of states functions for photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(1 Pt 2), 016609 (2004).
[PubMed]

2002 (1)

J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36, 1131 (2002).

1999 (1)

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60, 11564 (1999).

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370 (1972).

’t Hooft, G. W.

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. ’t Hooft, and M. P. van Exter, “Surface Plasmon Lasing Observed in Metal Hole Arrays,” Phys. Rev. Lett. 110(20), 206802 (2013).
[PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[PubMed]

Arakawa, Y.

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly Polarized Light Emission from Semiconductor Planar Chiral Nanostructures,” Phys. Rev. Lett. 106(5), 057402 (2011).
[PubMed]

Asatryan, A. A.

R. C. McPhedran, L. C. Botten, J. McOrist, A. A. Asatryan, C. M. De Sterke, and N. A. Nicorovici, “Density of states functions for photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(1 Pt 2), 016609 (2004).
[PubMed]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[PubMed]

M. Kuttge, E. J. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B 79, 113405 (2009).

Barth, M.

M. Barth, A. Gruber, and F. Cichos, “Spectral and angular redistribution of photoluminescence near a photonic stop band,” Phys. Rev. B 72, 085129 (2005).

Boroditsky, M.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60, 11564 (1999).

Botten, L. C.

R. C. McPhedran, L. C. Botten, J. McOrist, A. A. Asatryan, C. M. De Sterke, and N. A. Nicorovici, “Density of states functions for photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(1 Pt 2), 016609 (2004).
[PubMed]

Brongersma, M. L.

Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat. Commun. 2, 283 (2011).
[PubMed]

Cao, Z.

Cao, Z. L.

Chan, C. F.

C. Liu, C. F. Chan, and H. C. Ong, “Direct deconvolution of electric and magnetic responses of single nanoparticles by Fourier space surface plasmon resonance microscopy,” Opt. Commun. 378, 28 (2016).

Chen, Y.

M. Frimmer, Y. Chen, and A. F. Koenderink, “Scanning Emitter Lifetime Imaging Microscopy for Spontaneous Emission Control,” Phys. Rev. Lett. 107(12), 123602 (2011).
[PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370 (1972).

Chua, S. L.

B. Zhen, S. L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
[PubMed]

Cichos, F.

M. Barth, A. Gruber, and F. Cichos, “Spectral and angular redistribution of photoluminescence near a photonic stop band,” Phys. Rev. B 72, 085129 (2005).

de Dood, M. J. A.

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. ’t Hooft, and M. P. van Exter, “Surface Plasmon Lasing Observed in Metal Hole Arrays,” Phys. Rev. Lett. 110(20), 206802 (2013).
[PubMed]

De Sterke, C. M.

R. C. McPhedran, L. C. Botten, J. McOrist, A. A. Asatryan, C. M. De Sterke, and N. A. Nicorovici, “Density of states functions for photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(1 Pt 2), 016609 (2004).
[PubMed]

DenBaars, S. P.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60, 11564 (1999).

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).

Frimmer, M.

M. Frimmer, Y. Chen, and A. F. Koenderink, “Scanning Emitter Lifetime Imaging Microscopy for Spontaneous Emission Control,” Phys. Rev. Lett. 107(12), 123602 (2011).
[PubMed]

Gao, X.

Y. Jin and X. Gao, “Plasmonic fluorescent quantum dots,” Nat. Nanotechnol. 4(9), 571–576 (2009).
[PubMed]

García de Abajo, F. J.

M. Kuttge, E. J. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B 79, 113405 (2009).

Geluk, E. J.

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. ’t Hooft, and M. P. van Exter, “Surface Plasmon Lasing Observed in Metal Hole Arrays,” Phys. Rev. Lett. 110(20), 206802 (2013).
[PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).

Gontijo, I.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60, 11564 (1999).

Gruber, A.

M. Barth, A. Gruber, and F. Cichos, “Spectral and angular redistribution of photoluminescence near a photonic stop band,” Phys. Rev. B 72, 085129 (2005).

Gryczynski, I.

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface Plasmon-Coupled Emission with Gold Films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[PubMed]

Gryczynski, Z.

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface Plasmon-Coupled Emission with Gold Films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[PubMed]

Huang, K. C. Y.

Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat. Commun. 2, 283 (2011).
[PubMed]

Isfort, G.

G. Isfort, K. Schierbaum, and D. Zerulla, “Polarization dependence of surface plasmon polariton emission,” Phys. Rev. B 74, 033404 (2006).

Iu, H.

J. Li, H. Iu, J. T. K. Wan, and H. C. Ong, “Dependence of anisotropic surface plasmon lifetimes of two-dimensional hole arrays on hole geometry,” Appl. Phys. Lett. 94, 033101 (2009).

Iwamoto, S.

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly Polarized Light Emission from Semiconductor Planar Chiral Nanostructures,” Phys. Rev. Lett. 106(5), 057402 (2011).
[PubMed]

Jin, Y.

Y. Jin and X. Gao, “Plasmonic fluorescent quantum dots,” Nat. Nanotechnol. 4(9), 571–576 (2009).
[PubMed]

Joannopoulos, J. D.

B. Zhen, S. L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
[PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370 (1972).

Johnson, S. G.

B. Zhen, S. L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
[PubMed]

Jun, Y. C.

Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat. Commun. 2, 283 (2011).
[PubMed]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737 (2012).

Keller, S.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60, 11564 (1999).

Koenderink, A. F.

M. Frimmer, Y. Chen, and A. F. Koenderink, “Scanning Emitter Lifetime Imaging Microscopy for Spontaneous Emission Control,” Phys. Rev. Lett. 107(12), 123602 (2011).
[PubMed]

I. Sersic, C. Tuambilangana, and A. F. Koenderink, “Fourier microscopy of single plasmonic scatterers,” New J. Phys. 13, 083019 (2011).

M. Kuttge, E. J. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B 79, 113405 (2009).

Konishi, K.

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly Polarized Light Emission from Semiconductor Planar Chiral Nanostructures,” Phys. Rev. Lett. 106(5), 057402 (2011).
[PubMed]

Kumagai, N.

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly Polarized Light Emission from Semiconductor Planar Chiral Nanostructures,” Phys. Rev. Lett. 106(5), 057402 (2011).
[PubMed]

Kuttge, M.

M. Kuttge, E. J. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B 79, 113405 (2009).

Kuwata-Gonokami, M.

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly Polarized Light Emission from Semiconductor Planar Chiral Nanostructures,” Phys. Rev. Lett. 106(5), 057402 (2011).
[PubMed]

Lakowicz, J. R.

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface Plasmon-Coupled Emission with Gold Films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[PubMed]

Lee, J.

B. Zhen, S. L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
[PubMed]

Lezec, H. J.

M. Kuttge, E. J. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B 79, 113405 (2009).

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).

Li, J.

J. Li, H. Iu, J. T. K. Wan, and H. C. Ong, “Dependence of anisotropic surface plasmon lifetimes of two-dimensional hole arrays on hole geometry,” Appl. Phys. Lett. 94, 033101 (2009).

Liang, X.

B. Zhen, S. L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
[PubMed]

Lin, M.

Liu, C.

C. Liu, C. F. Chan, and H. C. Ong, “Direct deconvolution of electric and magnetic responses of single nanoparticles by Fourier space surface plasmon resonance microscopy,” Opt. Commun. 378, 28 (2016).

Lo, H. Y.

Loncar, M.

J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36, 1131 (2002).

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[PubMed]

Malicka, J.

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface Plasmon-Coupled Emission with Gold Films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[PubMed]

McOrist, J.

R. C. McPhedran, L. C. Botten, J. McOrist, A. A. Asatryan, C. M. De Sterke, and N. A. Nicorovici, “Density of states functions for photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(1 Pt 2), 016609 (2004).
[PubMed]

McPhedran, R. C.

R. C. McPhedran, L. C. Botten, J. McOrist, A. A. Asatryan, C. M. De Sterke, and N. A. Nicorovici, “Density of states functions for photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(1 Pt 2), 016609 (2004).
[PubMed]

Mishra, U. K.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60, 11564 (1999).

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[PubMed]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[PubMed]

Nicorovici, N. A.

R. C. McPhedran, L. C. Botten, J. McOrist, A. A. Asatryan, C. M. De Sterke, and N. A. Nicorovici, “Density of states functions for photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(1 Pt 2), 016609 (2004).
[PubMed]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[PubMed]

Nomura, M.

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly Polarized Light Emission from Semiconductor Planar Chiral Nanostructures,” Phys. Rev. Lett. 106(5), 057402 (2011).
[PubMed]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[PubMed]

Ong, H. C.

M. Lin, Z. L. Cao, and H. C. Ong, “Determination of the excitation rate of quantum dots mediated by momentum-resolved Bloch-like surface plasmon polaritons,” Opt. Express 25(6), 6092–6103 (2017).
[PubMed]

C. Liu, C. F. Chan, and H. C. Ong, “Direct deconvolution of electric and magnetic responses of single nanoparticles by Fourier space surface plasmon resonance microscopy,” Opt. Commun. 378, 28 (2016).

Z. L. Cao and H. C. Ong, “Momentum-dependent group velocity of surface plasmon polaritons in two-dimensional metallic nanohole array,” Opt. Express 24(12), 12489–12500 (2016).
[PubMed]

Z. L. Cao and H. C. Ong, “Determination of coupling rate of light emitter to surface plasmon polaritons supported on nanohole array,” Appl. Phys. Lett. 102, 241109 (2013).

Z. Cao, H. Y. Lo, and H. C. Ong, “Determination of absorption and radiative decay rates of surface plasmon polaritons from nanohole array,” Opt. Lett. 37(24), 5166–5168 (2012).
[PubMed]

J. Li, H. Iu, J. T. K. Wan, and H. C. Ong, “Dependence of anisotropic surface plasmon lifetimes of two-dimensional hole arrays on hole geometry,” Appl. Phys. Lett. 94, 033101 (2009).

Pelton, M.

M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9, 427 (2015).

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[PubMed]

M. Kuttge, E. J. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B 79, 113405 (2009).

Rodriguez, A. W.

B. Zhen, S. L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
[PubMed]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[PubMed]

J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36, 1131 (2002).

Schierbaum, K.

G. Isfort, K. Schierbaum, and D. Zerulla, “Polarization dependence of surface plasmon polariton emission,” Phys. Rev. B 74, 033404 (2006).

Sersic, I.

I. Sersic, C. Tuambilangana, and A. F. Koenderink, “Fourier microscopy of single plasmonic scatterers,” New J. Phys. 13, 083019 (2011).

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[PubMed]

Shapira, O.

B. Zhen, S. L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
[PubMed]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[PubMed]

Soljacic, M.

B. Zhen, S. L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
[PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).

Tuambilangana, C.

I. Sersic, C. Tuambilangana, and A. F. Koenderink, “Fourier microscopy of single plasmonic scatterers,” New J. Phys. 13, 083019 (2011).

van Beijnum, F.

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. ’t Hooft, and M. P. van Exter, “Surface Plasmon Lasing Observed in Metal Hole Arrays,” Phys. Rev. Lett. 110(20), 206802 (2013).
[PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[PubMed]

van Exter, M. P.

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. ’t Hooft, and M. P. van Exter, “Surface Plasmon Lasing Observed in Metal Hole Arrays,” Phys. Rev. Lett. 110(20), 206802 (2013).
[PubMed]

van Veldhoven, P. J.

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. ’t Hooft, and M. P. van Exter, “Surface Plasmon Lasing Observed in Metal Hole Arrays,” Phys. Rev. Lett. 110(20), 206802 (2013).
[PubMed]

Vesseur, E. J.

M. Kuttge, E. J. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B 79, 113405 (2009).

Vuckovic, J.

J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36, 1131 (2002).

Wan, J. T. K.

J. Li, H. Iu, J. T. K. Wan, and H. C. Ong, “Dependence of anisotropic surface plasmon lifetimes of two-dimensional hole arrays on hole geometry,” Appl. Phys. Lett. 94, 033101 (2009).

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).

Yablonovitch, E.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60, 11564 (1999).

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737 (2012).

Zerulla, D.

G. Isfort, K. Schierbaum, and D. Zerulla, “Polarization dependence of surface plasmon polariton emission,” Phys. Rev. B 74, 033404 (2006).

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[PubMed]

Zhen, B.

B. Zhen, S. L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
[PubMed]

Appl. Phys. Lett. (2)

Z. L. Cao and H. C. Ong, “Determination of coupling rate of light emitter to surface plasmon polaritons supported on nanohole array,” Appl. Phys. Lett. 102, 241109 (2013).

J. Li, H. Iu, J. T. K. Wan, and H. C. Ong, “Dependence of anisotropic surface plasmon lifetimes of two-dimensional hole arrays on hole geometry,” Appl. Phys. Lett. 94, 033101 (2009).

IEEE J. Quantum Electron. (1)

J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36, 1131 (2002).

J. Phys. Chem. B (1)

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface Plasmon-Coupled Emission with Gold Films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[PubMed]

Nat. Commun. (1)

Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat. Commun. 2, 283 (2011).
[PubMed]

Nat. Mater. (3)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[PubMed]

Nat. Nanotechnol. (1)

Y. Jin and X. Gao, “Plasmonic fluorescent quantum dots,” Nat. Nanotechnol. 4(9), 571–576 (2009).
[PubMed]

Nat. Photonics (2)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737 (2012).

M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9, 427 (2015).

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).

New J. Phys. (1)

I. Sersic, C. Tuambilangana, and A. F. Koenderink, “Fourier microscopy of single plasmonic scatterers,” New J. Phys. 13, 083019 (2011).

Opt. Commun. (1)

C. Liu, C. F. Chan, and H. C. Ong, “Direct deconvolution of electric and magnetic responses of single nanoparticles by Fourier space surface plasmon resonance microscopy,” Opt. Commun. 378, 28 (2016).

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (5)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370 (1972).

M. Barth, A. Gruber, and F. Cichos, “Spectral and angular redistribution of photoluminescence near a photonic stop band,” Phys. Rev. B 72, 085129 (2005).

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60, 11564 (1999).

M. Kuttge, E. J. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B 79, 113405 (2009).

G. Isfort, K. Schierbaum, and D. Zerulla, “Polarization dependence of surface plasmon polariton emission,” Phys. Rev. B 74, 033404 (2006).

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

R. C. McPhedran, L. C. Botten, J. McOrist, A. A. Asatryan, C. M. De Sterke, and N. A. Nicorovici, “Density of states functions for photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(1 Pt 2), 016609 (2004).
[PubMed]

Phys. Rev. Lett. (3)

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly Polarized Light Emission from Semiconductor Planar Chiral Nanostructures,” Phys. Rev. Lett. 106(5), 057402 (2011).
[PubMed]

M. Frimmer, Y. Chen, and A. F. Koenderink, “Scanning Emitter Lifetime Imaging Microscopy for Spontaneous Emission Control,” Phys. Rev. Lett. 107(12), 123602 (2011).
[PubMed]

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. ’t Hooft, and M. P. van Exter, “Surface Plasmon Lasing Observed in Metal Hole Arrays,” Phys. Rev. Lett. 110(20), 206802 (2013).
[PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

B. Zhen, S. L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The p-polarized reflectivity mapping of the dye/nanohole array taken along the Γ-X direction. The dash line is calculated by using the phase-matching equation, indicating the (−1,0) SPP mode is excited. Inset: the plane-view SEM image of the array. (b) The p-polarized reflectivity spectra (solid lines) for different φinc and the best fits (dash lines) using CMT. They all have dips at λ = 700 nm. At φinc = 45° the spectra taken under p- and s-polarizations are shown. All the spectra are vertical shifted for visualization. (c) The plot of fitted total (Γtot) and radiative decay (Γrad) rates of the plasmonic modes as a function of φinc.
Fig. 2
Fig. 2 (a) The photoluminescence isofrequency surface of the dye/nanohole array taken at λem = 700 nm. Four arcs indicate the emissions from the ( ± 1, 0) and (0, ± 1) SPPs whereas the background arises from the direct emission. (b) The plot of power ratio P SPP k SPP / P d as a function of φ. The splitting of the power ratio, or the formation of the dark and bright modes, is seen at φ = 45°.
Fig. 3
Fig. 3 The plot of (a) coupling rate ratio Γ c k SPP / Γ r , (b) SDOS and (c) plasmonic energy EF as a function of φ.
Fig. 4
Fig. 4 (a) – (r) The p-polarized reflectivity mappings taken at different φinc. At φinc = 45°, both p- and s-reflectivity spectra are shown. The dash lines are calculated by using the phase-matching equation, indicating (−1,0), (−1,-1) and (0,-1) SPPs are excited.
Fig. 5
Fig. 5 (a) The unit cell for FDTD simulation. (b) The reflectivity spectra for different φ. All the spectra have the same spectral position at λem = 700 nm. Simulated field intensity pattern taken at φ = (c) 0°, (d) 45° (s incidence), (e) 45° (p incidence), and (f) 49.7° for λem = 700 nm. The dash lines are the incident planes. (g) The FDTD simulated EF as a function of φ.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Γ c k SPP [EM]=( Γ abs k SPP + m Γ rad k SPP ,m )[SP P k SPP ],
P SPP k SPP,n P d = Γ c k SPP Γ r Γ rad k SPP,n Γ tot k SPP .
Γ c (ω)=N Γ( r ,ω ) d r =N | μ | 2 3 ε o k SPP ,ω ε( r ) | E k SPP ,ω ( r ) | 2 ω Δ ω k SPP ,ω d r ,
Γ c k SPP = NA | μ | 2 12 π 2 ε o ( ε( r ) | E k SPP , ω em ( r ) | 2 d r ) ω em Δ ω k SPP , ω em .
Γ c k SPP = Nπ | μ | 2 ω em 3 ε o SDO S k SPP ×E F k SPP ,

Metrics