Abstract

By manipulating the relative amplitude and phase between two incoming lights, coherent control of photonic systems can be realized. Here, we show by temporal coupled mode theory and finite-difference time-domain simulation that a coupled system can be actively controlled to exhibit plenty of different spectral, angular, and excitation behaviors. Electromagnetically induced transparency-like and Fano spectral characteristics as well as strong beam steering have been observed. Remarkably, by selectively exciting the coupled modes, we have developed a new approach to determine the complex Hermitian and anti-Hermitian interaction constants. We find the constants are strongly geometric and material dependent and they are of importance in understanding the non-Hermitian physics arising from the dissipative, open coupled system.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable photon statistics in a non-Hermitian system

Somayeh Shakeri, Mohammad-Hossein Zandi, and Alireza Bahrampour
J. Opt. Soc. Am. B 34(3) 566-573 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-Reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
    [Crossref] [PubMed]
  2. J. W. Yoon, G. M. Koh, S. H. Song, and R. Magnusson, “Measurement and modeling of a complete optical absorption and scattering by coherent Surface Plasmon-Polariton excitation using a silver thin-film grating,” Phys. Rev. Lett. 109(25), 257402 (2012).
    [Crossref] [PubMed]
  3. J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1(7), e18 (2012).
    [Crossref]
  4. S. A. Mousavi, E. Plum, J. Shi, and N. I. Zheludev, “Coherent control of birefringence and optical activity,” Appl. Phys. Lett. 105(1), 011906 (2014).
    [Crossref]
  5. S. A. Mousavi, E. Plum, J. Shi, and N. I. Zheludev, “Coherent control of optical polarization effects in metamaterials,” Sci. Rep. 5(1), 8977 (2015).
    [Crossref] [PubMed]
  6. X. Fang, K. F. MacDonald, and N. I. Zheludev, “Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light Sci. Appl. 4, e292 (2015).
    [Crossref]
  7. S. Zanotto, F. P. Mezzapesa, F. Bianco, G. Biasiol, L. Baldacci, M. Vitiello, L. Sorba, R. Colombelli, and A. Tredicucci, “Perfect energy-feeding into strongly coupled systems and interferometric control of polariton absorption,” Nat. Phys. 10(11), 830–834 (2014).
    [Crossref]
  8. X. Fang, M. L. Tseng, D. P. Tsai, and N. I. Zheludev, “Coherent excitation-selective spectroscopy of multipole resonances,” Phys. Rev. Appl. 5(1), 014010 (2016).
    [Crossref]
  9. M. L. Tseng, X. Fang, V. Savinov, P. C. Wu, J. Y. Ou, N. I. Zheludev, and D. P. Tsai, “Coherent selection of invisible high-order electromagnetic excitations,” Sci. Rep. 7, 44488 (2017).
    [Crossref] [PubMed]
  10. L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett. 108(8), 083902 (2012).
    [Crossref] [PubMed]
  11. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  12. H. Cao and J. Wiersig, “Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics,” Rev. Mod. Phys. 87(1), 61–111 (2015).
    [Crossref]
  13. S. Klaiman, U. Gunther, and N. Moiseyev, “Visualization of branch points in PT-symmetric waveguides,” Phys. Rev. Lett. 101(8), 080402 (2008).
    [Crossref] [PubMed]
  14. S. Åberg, T. Guhr, M. Miski-Oglu, and A. Richter, “Superscars in billiards: a model for doorway states in quantum spectra,” Phys. Rev. Lett. 100(20), 204101 (2008).
    [Crossref] [PubMed]
  15. Z. Cao, H. Y. Lo, and H. C. Ong, “Determination of absorption and radiative decay rates of surface plasmon polaritons from nanohole array,” Opt. Lett. 37(24), 5166–5168 (2012).
    [Crossref] [PubMed]
  16. L. Verslegers, Z. Yu, P. B. Catrysse, Z. Ruan, and S. Fan, “Temporal coupled-mode theory for resonant apertures,” J. Opt. Soc. Am. B 27(10), 1947 (2010).
    [Crossref]
  17. Z. L. Cao and H. C. Ong, “Determination of the absorption and radiative decay rates of dark and bright plasmonic modes,” Opt. Express 22(13), 16112–16129 (2014).
    [Crossref] [PubMed]
  18. S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, and X. Zhang, “Anti-Hermitian Plasmon coupling of an array of gold thin-film antennas for controlling light at the nanoscale,” Phys. Rev. Lett. 109(19), 193902 (2012).
    [Crossref] [PubMed]
  19. R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
    [Crossref] [PubMed]
  20. Q. H. Song and H. Cao, “Improving optical confinement in nanostructures via external mode coupling,” Phys. Rev. Lett. 105(5), 053902 (2010).
    [Crossref] [PubMed]
  21. C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
    [Crossref] [PubMed]
  22. S. B. Raghunathan, H. F. Schouten, W. Ubachs, B. E. Kim, C. H. Gan, and T. D. Visser, “Dynamic beam steering from a subwavelength slit by selective excitation of guided modes,” Phys. Rev. Lett. 111(15), 153901 (2013).
    [Crossref] [PubMed]
  23. Handbook of Optical constants of Solid, E.D. Palik, ed. (Academic Press, 1985).
  24. A. V. Zayats, I. I. Smolyaninovb, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
    [Crossref]

2017 (1)

M. L. Tseng, X. Fang, V. Savinov, P. C. Wu, J. Y. Ou, N. I. Zheludev, and D. P. Tsai, “Coherent selection of invisible high-order electromagnetic excitations,” Sci. Rep. 7, 44488 (2017).
[Crossref] [PubMed]

2016 (1)

X. Fang, M. L. Tseng, D. P. Tsai, and N. I. Zheludev, “Coherent excitation-selective spectroscopy of multipole resonances,” Phys. Rev. Appl. 5(1), 014010 (2016).
[Crossref]

2015 (3)

S. A. Mousavi, E. Plum, J. Shi, and N. I. Zheludev, “Coherent control of optical polarization effects in metamaterials,” Sci. Rep. 5(1), 8977 (2015).
[Crossref] [PubMed]

X. Fang, K. F. MacDonald, and N. I. Zheludev, “Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light Sci. Appl. 4, e292 (2015).
[Crossref]

H. Cao and J. Wiersig, “Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics,” Rev. Mod. Phys. 87(1), 61–111 (2015).
[Crossref]

2014 (3)

Z. L. Cao and H. C. Ong, “Determination of the absorption and radiative decay rates of dark and bright plasmonic modes,” Opt. Express 22(13), 16112–16129 (2014).
[Crossref] [PubMed]

S. Zanotto, F. P. Mezzapesa, F. Bianco, G. Biasiol, L. Baldacci, M. Vitiello, L. Sorba, R. Colombelli, and A. Tredicucci, “Perfect energy-feeding into strongly coupled systems and interferometric control of polariton absorption,” Nat. Phys. 10(11), 830–834 (2014).
[Crossref]

S. A. Mousavi, E. Plum, J. Shi, and N. I. Zheludev, “Coherent control of birefringence and optical activity,” Appl. Phys. Lett. 105(1), 011906 (2014).
[Crossref]

2013 (1)

S. B. Raghunathan, H. F. Schouten, W. Ubachs, B. E. Kim, C. H. Gan, and T. D. Visser, “Dynamic beam steering from a subwavelength slit by selective excitation of guided modes,” Phys. Rev. Lett. 111(15), 153901 (2013).
[Crossref] [PubMed]

2012 (6)

J. W. Yoon, G. M. Koh, S. H. Song, and R. Magnusson, “Measurement and modeling of a complete optical absorption and scattering by coherent Surface Plasmon-Polariton excitation using a silver thin-film grating,” Phys. Rev. Lett. 109(25), 257402 (2012).
[Crossref] [PubMed]

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1(7), e18 (2012).
[Crossref]

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett. 108(8), 083902 (2012).
[Crossref] [PubMed]

S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, and X. Zhang, “Anti-Hermitian Plasmon coupling of an array of gold thin-film antennas for controlling light at the nanoscale,” Phys. Rev. Lett. 109(19), 193902 (2012).
[Crossref] [PubMed]

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

Z. Cao, H. Y. Lo, and H. C. Ong, “Determination of absorption and radiative decay rates of surface plasmon polaritons from nanohole array,” Opt. Lett. 37(24), 5166–5168 (2012).
[Crossref] [PubMed]

2011 (1)

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-Reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

2010 (2)

L. Verslegers, Z. Yu, P. B. Catrysse, Z. Ruan, and S. Fan, “Temporal coupled-mode theory for resonant apertures,” J. Opt. Soc. Am. B 27(10), 1947 (2010).
[Crossref]

Q. H. Song and H. Cao, “Improving optical confinement in nanostructures via external mode coupling,” Phys. Rev. Lett. 105(5), 053902 (2010).
[Crossref] [PubMed]

2008 (2)

S. Klaiman, U. Gunther, and N. Moiseyev, “Visualization of branch points in PT-symmetric waveguides,” Phys. Rev. Lett. 101(8), 080402 (2008).
[Crossref] [PubMed]

S. Åberg, T. Guhr, M. Miski-Oglu, and A. Richter, “Superscars in billiards: a model for doorway states in quantum spectra,” Phys. Rev. Lett. 100(20), 204101 (2008).
[Crossref] [PubMed]

2005 (2)

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[Crossref] [PubMed]

A. V. Zayats, I. I. Smolyaninovb, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Åberg, S.

S. Åberg, T. Guhr, M. Miski-Oglu, and A. Richter, “Superscars in billiards: a model for doorway states in quantum spectra,” Phys. Rev. Lett. 100(20), 204101 (2008).
[Crossref] [PubMed]

Baldacci, L.

S. Zanotto, F. P. Mezzapesa, F. Bianco, G. Biasiol, L. Baldacci, M. Vitiello, L. Sorba, R. Colombelli, and A. Tredicucci, “Perfect energy-feeding into strongly coupled systems and interferometric control of polariton absorption,” Nat. Phys. 10(11), 830–834 (2014).
[Crossref]

Bartal, G.

S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, and X. Zhang, “Anti-Hermitian Plasmon coupling of an array of gold thin-film antennas for controlling light at the nanoscale,” Phys. Rev. Lett. 109(19), 193902 (2012).
[Crossref] [PubMed]

Bianco, F.

S. Zanotto, F. P. Mezzapesa, F. Bianco, G. Biasiol, L. Baldacci, M. Vitiello, L. Sorba, R. Colombelli, and A. Tredicucci, “Perfect energy-feeding into strongly coupled systems and interferometric control of polariton absorption,” Nat. Phys. 10(11), 830–834 (2014).
[Crossref]

Biasiol, G.

S. Zanotto, F. P. Mezzapesa, F. Bianco, G. Biasiol, L. Baldacci, M. Vitiello, L. Sorba, R. Colombelli, and A. Tredicucci, “Perfect energy-feeding into strongly coupled systems and interferometric control of polariton absorption,” Nat. Phys. 10(11), 830–834 (2014).
[Crossref]

Cao, H.

H. Cao and J. Wiersig, “Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics,” Rev. Mod. Phys. 87(1), 61–111 (2015).
[Crossref]

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-Reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Q. H. Song and H. Cao, “Improving optical confinement in nanostructures via external mode coupling,” Phys. Rev. Lett. 105(5), 053902 (2010).
[Crossref] [PubMed]

Cao, Z.

Cao, Z. L.

Catrysse, P. B.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett. 108(8), 083902 (2012).
[Crossref] [PubMed]

L. Verslegers, Z. Yu, P. B. Catrysse, Z. Ruan, and S. Fan, “Temporal coupled-mode theory for resonant apertures,” J. Opt. Soc. Am. B 27(10), 1947 (2010).
[Crossref]

Chong, Y.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-Reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Colombelli, R.

S. Zanotto, F. P. Mezzapesa, F. Bianco, G. Biasiol, L. Baldacci, M. Vitiello, L. Sorba, R. Colombelli, and A. Tredicucci, “Perfect energy-feeding into strongly coupled systems and interferometric control of polariton absorption,” Nat. Phys. 10(11), 830–834 (2014).
[Crossref]

Fan, S.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett. 108(8), 083902 (2012).
[Crossref] [PubMed]

L. Verslegers, Z. Yu, P. B. Catrysse, Z. Ruan, and S. Fan, “Temporal coupled-mode theory for resonant apertures,” J. Opt. Soc. Am. B 27(10), 1947 (2010).
[Crossref]

Fang, X.

M. L. Tseng, X. Fang, V. Savinov, P. C. Wu, J. Y. Ou, N. I. Zheludev, and D. P. Tsai, “Coherent selection of invisible high-order electromagnetic excitations,” Sci. Rep. 7, 44488 (2017).
[Crossref] [PubMed]

X. Fang, M. L. Tseng, D. P. Tsai, and N. I. Zheludev, “Coherent excitation-selective spectroscopy of multipole resonances,” Phys. Rev. Appl. 5(1), 014010 (2016).
[Crossref]

X. Fang, K. F. MacDonald, and N. I. Zheludev, “Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light Sci. Appl. 4, e292 (2015).
[Crossref]

Gan, C. H.

S. B. Raghunathan, H. F. Schouten, W. Ubachs, B. E. Kim, C. H. Gan, and T. D. Visser, “Dynamic beam steering from a subwavelength slit by selective excitation of guided modes,” Phys. Rev. Lett. 111(15), 153901 (2013).
[Crossref] [PubMed]

Ge, L.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-Reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Giessen, H.

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

Guhr, T.

S. Åberg, T. Guhr, M. Miski-Oglu, and A. Richter, “Superscars in billiards: a model for doorway states in quantum spectra,” Phys. Rev. Lett. 100(20), 204101 (2008).
[Crossref] [PubMed]

Gunther, U.

S. Klaiman, U. Gunther, and N. Moiseyev, “Visualization of branch points in PT-symmetric waveguides,” Phys. Rev. Lett. 101(8), 080402 (2008).
[Crossref] [PubMed]

Hentschel, M.

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

Kästel, J.

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

Kim, B. E.

S. B. Raghunathan, H. F. Schouten, W. Ubachs, B. E. Kim, C. H. Gan, and T. D. Visser, “Dynamic beam steering from a subwavelength slit by selective excitation of guided modes,” Phys. Rev. Lett. 111(15), 153901 (2013).
[Crossref] [PubMed]

Kim, D. S.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[Crossref] [PubMed]

Kim, J.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[Crossref] [PubMed]

Klaiman, S.

S. Klaiman, U. Gunther, and N. Moiseyev, “Visualization of branch points in PT-symmetric waveguides,” Phys. Rev. Lett. 101(8), 080402 (2008).
[Crossref] [PubMed]

Koh, G. M.

J. W. Yoon, G. M. Koh, S. H. Song, and R. Magnusson, “Measurement and modeling of a complete optical absorption and scattering by coherent Surface Plasmon-Polariton excitation using a silver thin-film grating,” Phys. Rev. Lett. 109(25), 257402 (2012).
[Crossref] [PubMed]

Lienau, C.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[Crossref] [PubMed]

Lo, H. Y.

MacDonald, K. F.

X. Fang, K. F. MacDonald, and N. I. Zheludev, “Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light Sci. Appl. 4, e292 (2015).
[Crossref]

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1(7), e18 (2012).
[Crossref]

Magnusson, R.

J. W. Yoon, G. M. Koh, S. H. Song, and R. Magnusson, “Measurement and modeling of a complete optical absorption and scattering by coherent Surface Plasmon-Polariton excitation using a silver thin-film grating,” Phys. Rev. Lett. 109(25), 257402 (2012).
[Crossref] [PubMed]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninovb, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Mezzapesa, F. P.

S. Zanotto, F. P. Mezzapesa, F. Bianco, G. Biasiol, L. Baldacci, M. Vitiello, L. Sorba, R. Colombelli, and A. Tredicucci, “Perfect energy-feeding into strongly coupled systems and interferometric control of polariton absorption,” Nat. Phys. 10(11), 830–834 (2014).
[Crossref]

Miski-Oglu, M.

S. Åberg, T. Guhr, M. Miski-Oglu, and A. Richter, “Superscars in billiards: a model for doorway states in quantum spectra,” Phys. Rev. Lett. 100(20), 204101 (2008).
[Crossref] [PubMed]

Moiseyev, N.

S. Klaiman, U. Gunther, and N. Moiseyev, “Visualization of branch points in PT-symmetric waveguides,” Phys. Rev. Lett. 101(8), 080402 (2008).
[Crossref] [PubMed]

Mousavi, S. A.

S. A. Mousavi, E. Plum, J. Shi, and N. I. Zheludev, “Coherent control of optical polarization effects in metamaterials,” Sci. Rep. 5(1), 8977 (2015).
[Crossref] [PubMed]

S. A. Mousavi, E. Plum, J. Shi, and N. I. Zheludev, “Coherent control of birefringence and optical activity,” Appl. Phys. Lett. 105(1), 011906 (2014).
[Crossref]

Mrejen, M.

S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, and X. Zhang, “Anti-Hermitian Plasmon coupling of an array of gold thin-film antennas for controlling light at the nanoscale,” Phys. Rev. Lett. 109(19), 193902 (2012).
[Crossref] [PubMed]

Noh, H.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-Reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Ong, H. C.

Ou, J. Y.

M. L. Tseng, X. Fang, V. Savinov, P. C. Wu, J. Y. Ou, N. I. Zheludev, and D. P. Tsai, “Coherent selection of invisible high-order electromagnetic excitations,” Sci. Rep. 7, 44488 (2017).
[Crossref] [PubMed]

Park, D. J.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[Crossref] [PubMed]

Park, Y.

S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, and X. Zhang, “Anti-Hermitian Plasmon coupling of an array of gold thin-film antennas for controlling light at the nanoscale,” Phys. Rev. Lett. 109(19), 193902 (2012).
[Crossref] [PubMed]

Plum, E.

S. A. Mousavi, E. Plum, J. Shi, and N. I. Zheludev, “Coherent control of optical polarization effects in metamaterials,” Sci. Rep. 5(1), 8977 (2015).
[Crossref] [PubMed]

S. A. Mousavi, E. Plum, J. Shi, and N. I. Zheludev, “Coherent control of birefringence and optical activity,” Appl. Phys. Lett. 105(1), 011906 (2014).
[Crossref]

Raghunathan, S. B.

S. B. Raghunathan, H. F. Schouten, W. Ubachs, B. E. Kim, C. H. Gan, and T. D. Visser, “Dynamic beam steering from a subwavelength slit by selective excitation of guided modes,” Phys. Rev. Lett. 111(15), 153901 (2013).
[Crossref] [PubMed]

Richter, A.

S. Åberg, T. Guhr, M. Miski-Oglu, and A. Richter, “Superscars in billiards: a model for doorway states in quantum spectra,” Phys. Rev. Lett. 100(20), 204101 (2008).
[Crossref] [PubMed]

Ropers, C.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[Crossref] [PubMed]

Ruan, Z.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett. 108(8), 083902 (2012).
[Crossref] [PubMed]

L. Verslegers, Z. Yu, P. B. Catrysse, Z. Ruan, and S. Fan, “Temporal coupled-mode theory for resonant apertures,” J. Opt. Soc. Am. B 27(10), 1947 (2010).
[Crossref]

Savinov, V.

M. L. Tseng, X. Fang, V. Savinov, P. C. Wu, J. Y. Ou, N. I. Zheludev, and D. P. Tsai, “Coherent selection of invisible high-order electromagnetic excitations,” Sci. Rep. 7, 44488 (2017).
[Crossref] [PubMed]

Schouten, H. F.

S. B. Raghunathan, H. F. Schouten, W. Ubachs, B. E. Kim, C. H. Gan, and T. D. Visser, “Dynamic beam steering from a subwavelength slit by selective excitation of guided modes,” Phys. Rev. Lett. 111(15), 153901 (2013).
[Crossref] [PubMed]

Shi, J.

S. A. Mousavi, E. Plum, J. Shi, and N. I. Zheludev, “Coherent control of optical polarization effects in metamaterials,” Sci. Rep. 5(1), 8977 (2015).
[Crossref] [PubMed]

S. A. Mousavi, E. Plum, J. Shi, and N. I. Zheludev, “Coherent control of birefringence and optical activity,” Appl. Phys. Lett. 105(1), 011906 (2014).
[Crossref]

Smolyaninovb, I. I.

A. V. Zayats, I. I. Smolyaninovb, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Song, Q. H.

Q. H. Song and H. Cao, “Improving optical confinement in nanostructures via external mode coupling,” Phys. Rev. Lett. 105(5), 053902 (2010).
[Crossref] [PubMed]

Song, S. H.

J. W. Yoon, G. M. Koh, S. H. Song, and R. Magnusson, “Measurement and modeling of a complete optical absorption and scattering by coherent Surface Plasmon-Polariton excitation using a silver thin-film grating,” Phys. Rev. Lett. 109(25), 257402 (2012).
[Crossref] [PubMed]

Sorba, L.

S. Zanotto, F. P. Mezzapesa, F. Bianco, G. Biasiol, L. Baldacci, M. Vitiello, L. Sorba, R. Colombelli, and A. Tredicucci, “Perfect energy-feeding into strongly coupled systems and interferometric control of polariton absorption,” Nat. Phys. 10(11), 830–834 (2014).
[Crossref]

Steinmeyer, G.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[Crossref] [PubMed]

Stibenz, G.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[Crossref] [PubMed]

Stone, A. D.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-Reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Taubert, R.

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

Tredicucci, A.

S. Zanotto, F. P. Mezzapesa, F. Bianco, G. Biasiol, L. Baldacci, M. Vitiello, L. Sorba, R. Colombelli, and A. Tredicucci, “Perfect energy-feeding into strongly coupled systems and interferometric control of polariton absorption,” Nat. Phys. 10(11), 830–834 (2014).
[Crossref]

Tsai, D. P.

M. L. Tseng, X. Fang, V. Savinov, P. C. Wu, J. Y. Ou, N. I. Zheludev, and D. P. Tsai, “Coherent selection of invisible high-order electromagnetic excitations,” Sci. Rep. 7, 44488 (2017).
[Crossref] [PubMed]

X. Fang, M. L. Tseng, D. P. Tsai, and N. I. Zheludev, “Coherent excitation-selective spectroscopy of multipole resonances,” Phys. Rev. Appl. 5(1), 014010 (2016).
[Crossref]

Tseng, M. L.

M. L. Tseng, X. Fang, V. Savinov, P. C. Wu, J. Y. Ou, N. I. Zheludev, and D. P. Tsai, “Coherent selection of invisible high-order electromagnetic excitations,” Sci. Rep. 7, 44488 (2017).
[Crossref] [PubMed]

X. Fang, M. L. Tseng, D. P. Tsai, and N. I. Zheludev, “Coherent excitation-selective spectroscopy of multipole resonances,” Phys. Rev. Appl. 5(1), 014010 (2016).
[Crossref]

Ubachs, W.

S. B. Raghunathan, H. F. Schouten, W. Ubachs, B. E. Kim, C. H. Gan, and T. D. Visser, “Dynamic beam steering from a subwavelength slit by selective excitation of guided modes,” Phys. Rev. Lett. 111(15), 153901 (2013).
[Crossref] [PubMed]

Verslegers, L.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett. 108(8), 083902 (2012).
[Crossref] [PubMed]

L. Verslegers, Z. Yu, P. B. Catrysse, Z. Ruan, and S. Fan, “Temporal coupled-mode theory for resonant apertures,” J. Opt. Soc. Am. B 27(10), 1947 (2010).
[Crossref]

Visser, T. D.

S. B. Raghunathan, H. F. Schouten, W. Ubachs, B. E. Kim, C. H. Gan, and T. D. Visser, “Dynamic beam steering from a subwavelength slit by selective excitation of guided modes,” Phys. Rev. Lett. 111(15), 153901 (2013).
[Crossref] [PubMed]

Vitiello, M.

S. Zanotto, F. P. Mezzapesa, F. Bianco, G. Biasiol, L. Baldacci, M. Vitiello, L. Sorba, R. Colombelli, and A. Tredicucci, “Perfect energy-feeding into strongly coupled systems and interferometric control of polariton absorption,” Nat. Phys. 10(11), 830–834 (2014).
[Crossref]

Wan, W.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-Reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Wang, Y.

S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, and X. Zhang, “Anti-Hermitian Plasmon coupling of an array of gold thin-film antennas for controlling light at the nanoscale,” Phys. Rev. Lett. 109(19), 193902 (2012).
[Crossref] [PubMed]

Wiersig, J.

H. Cao and J. Wiersig, “Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics,” Rev. Mod. Phys. 87(1), 61–111 (2015).
[Crossref]

Wu, P. C.

M. L. Tseng, X. Fang, V. Savinov, P. C. Wu, J. Y. Ou, N. I. Zheludev, and D. P. Tsai, “Coherent selection of invisible high-order electromagnetic excitations,” Sci. Rep. 7, 44488 (2017).
[Crossref] [PubMed]

Ye, Z.

S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, and X. Zhang, “Anti-Hermitian Plasmon coupling of an array of gold thin-film antennas for controlling light at the nanoscale,” Phys. Rev. Lett. 109(19), 193902 (2012).
[Crossref] [PubMed]

Yin, X.

S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, and X. Zhang, “Anti-Hermitian Plasmon coupling of an array of gold thin-film antennas for controlling light at the nanoscale,” Phys. Rev. Lett. 109(19), 193902 (2012).
[Crossref] [PubMed]

Yoon, J. W.

J. W. Yoon, G. M. Koh, S. H. Song, and R. Magnusson, “Measurement and modeling of a complete optical absorption and scattering by coherent Surface Plasmon-Polariton excitation using a silver thin-film grating,” Phys. Rev. Lett. 109(25), 257402 (2012).
[Crossref] [PubMed]

Yu, Z.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett. 108(8), 083902 (2012).
[Crossref] [PubMed]

L. Verslegers, Z. Yu, P. B. Catrysse, Z. Ruan, and S. Fan, “Temporal coupled-mode theory for resonant apertures,” J. Opt. Soc. Am. B 27(10), 1947 (2010).
[Crossref]

Zanotto, S.

S. Zanotto, F. P. Mezzapesa, F. Bianco, G. Biasiol, L. Baldacci, M. Vitiello, L. Sorba, R. Colombelli, and A. Tredicucci, “Perfect energy-feeding into strongly coupled systems and interferometric control of polariton absorption,” Nat. Phys. 10(11), 830–834 (2014).
[Crossref]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninovb, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Zhang, J.

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1(7), e18 (2012).
[Crossref]

Zhang, S.

S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, and X. Zhang, “Anti-Hermitian Plasmon coupling of an array of gold thin-film antennas for controlling light at the nanoscale,” Phys. Rev. Lett. 109(19), 193902 (2012).
[Crossref] [PubMed]

Zhang, X.

S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, and X. Zhang, “Anti-Hermitian Plasmon coupling of an array of gold thin-film antennas for controlling light at the nanoscale,” Phys. Rev. Lett. 109(19), 193902 (2012).
[Crossref] [PubMed]

Zheludev, N. I.

M. L. Tseng, X. Fang, V. Savinov, P. C. Wu, J. Y. Ou, N. I. Zheludev, and D. P. Tsai, “Coherent selection of invisible high-order electromagnetic excitations,” Sci. Rep. 7, 44488 (2017).
[Crossref] [PubMed]

X. Fang, M. L. Tseng, D. P. Tsai, and N. I. Zheludev, “Coherent excitation-selective spectroscopy of multipole resonances,” Phys. Rev. Appl. 5(1), 014010 (2016).
[Crossref]

X. Fang, K. F. MacDonald, and N. I. Zheludev, “Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light Sci. Appl. 4, e292 (2015).
[Crossref]

S. A. Mousavi, E. Plum, J. Shi, and N. I. Zheludev, “Coherent control of optical polarization effects in metamaterials,” Sci. Rep. 5(1), 8977 (2015).
[Crossref] [PubMed]

S. A. Mousavi, E. Plum, J. Shi, and N. I. Zheludev, “Coherent control of birefringence and optical activity,” Appl. Phys. Lett. 105(1), 011906 (2014).
[Crossref]

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1(7), e18 (2012).
[Crossref]

Appl. Phys. Lett. (1)

S. A. Mousavi, E. Plum, J. Shi, and N. I. Zheludev, “Coherent control of birefringence and optical activity,” Appl. Phys. Lett. 105(1), 011906 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

Light Sci. Appl. (2)

X. Fang, K. F. MacDonald, and N. I. Zheludev, “Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light Sci. Appl. 4, e292 (2015).
[Crossref]

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1(7), e18 (2012).
[Crossref]

Nano Lett. (1)

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

Nat. Phys. (1)

S. Zanotto, F. P. Mezzapesa, F. Bianco, G. Biasiol, L. Baldacci, M. Vitiello, L. Sorba, R. Colombelli, and A. Tredicucci, “Perfect energy-feeding into strongly coupled systems and interferometric control of polariton absorption,” Nat. Phys. 10(11), 830–834 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninovb, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Phys. Rev. Appl. (1)

X. Fang, M. L. Tseng, D. P. Tsai, and N. I. Zheludev, “Coherent excitation-selective spectroscopy of multipole resonances,” Phys. Rev. Appl. 5(1), 014010 (2016).
[Crossref]

Phys. Rev. Lett. (8)

J. W. Yoon, G. M. Koh, S. H. Song, and R. Magnusson, “Measurement and modeling of a complete optical absorption and scattering by coherent Surface Plasmon-Polariton excitation using a silver thin-film grating,” Phys. Rev. Lett. 109(25), 257402 (2012).
[Crossref] [PubMed]

Q. H. Song and H. Cao, “Improving optical confinement in nanostructures via external mode coupling,” Phys. Rev. Lett. 105(5), 053902 (2010).
[Crossref] [PubMed]

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[Crossref] [PubMed]

S. B. Raghunathan, H. F. Schouten, W. Ubachs, B. E. Kim, C. H. Gan, and T. D. Visser, “Dynamic beam steering from a subwavelength slit by selective excitation of guided modes,” Phys. Rev. Lett. 111(15), 153901 (2013).
[Crossref] [PubMed]

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett. 108(8), 083902 (2012).
[Crossref] [PubMed]

S. Klaiman, U. Gunther, and N. Moiseyev, “Visualization of branch points in PT-symmetric waveguides,” Phys. Rev. Lett. 101(8), 080402 (2008).
[Crossref] [PubMed]

S. Åberg, T. Guhr, M. Miski-Oglu, and A. Richter, “Superscars in billiards: a model for doorway states in quantum spectra,” Phys. Rev. Lett. 100(20), 204101 (2008).
[Crossref] [PubMed]

S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, and X. Zhang, “Anti-Hermitian Plasmon coupling of an array of gold thin-film antennas for controlling light at the nanoscale,” Phys. Rev. Lett. 109(19), 193902 (2012).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

H. Cao and J. Wiersig, “Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics,” Rev. Mod. Phys. 87(1), 61–111 (2015).
[Crossref]

Sci. Rep. (2)

S. A. Mousavi, E. Plum, J. Shi, and N. I. Zheludev, “Coherent control of optical polarization effects in metamaterials,” Sci. Rep. 5(1), 8977 (2015).
[Crossref] [PubMed]

M. L. Tseng, X. Fang, V. Savinov, P. C. Wu, J. Y. Ou, N. I. Zheludev, and D. P. Tsai, “Coherent selection of invisible high-order electromagnetic excitations,” Sci. Rep. 7, 44488 (2017).
[Crossref] [PubMed]

Science (1)

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-Reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Other (2)

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

Handbook of Optical constants of Solid, E.D. Palik, ed. (Academic Press, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) The simulation cell for FDTD calculation of a perfect metal slab. (b) The normalized scattering spectra simulated from d = 40 nm under coherent control. Distinct spectral profiles are observed. (c) The polar plots of d = 40 nm system at λ = 670 nm under coherent control. Beam steering is seen at | s 2+ |/ | s 1+ | and φ = 1.02 and 2.98 rad as well as 0.92 and 3.04 rad. The selective excitation of the (d) dark a + and (e) bright a modes for different d. Lorentzian-like profiles are expected. (f) The plots of H and A as a function of d. The plots of H' and A' without the use of K T are also shown for comparison.
Fig. 2
Fig. 2 (a) The simulated scattering cross section of two individually slits. (b) & (c) The angle dependent transmission magnitude (black solid) and phase (red solid) of the ε = 40 and ε = 40 + 0.3i slits. The slits are not isotropic radiator.
Fig. 3
Fig. 3 (a) The simulation cell for FDTD calculation of a perfect metal slab. Insets: the simulated spectra of individually slits and their magnitude, phase and best fits of the transmittance in momentum space. The normalized field patterns (|E|2) of two slits, showing the first and third order modes. (b) The normalized scattering spectra simulated from d = 40nm under coherent control and distinct spectra are observed. (c) The polar plots of d = 40 nm system at λ = 680 nm under coherent control and strong angular control is seen at | s 2+ |/ | s 1+ | and φ = 0.97 and 3.03 rad as well as 0.91 and 3.11 rad. The selective excitation of the (d) dark a + and (e) bright a modes for different d. The plots of complex (f) H and (g) A as a function of d.
Fig. 4
Fig. 4 (a) The simulated scattering cross section of individually slits. (b) & (c) The angle dependent transmission magnitude (black solid) and phase (red solid) of the ε = 8.94 and ε = 84.18+0.3i slits. The slits are not isotropic radiator. (d) & (e) The normalized field patterns (|E|2) of two slits, showing the first and third order modes.
Fig. 5
Fig. 5 (a) The simulation cell for FDTD calculation of an Au slab. (b) The normalized scattering spectra simulated from d = 80 nm under coherent control. Distinct spectral profiles are observed at different combinations of | s 2+ |/ | s 1+ | and φ. (c) The polar plots of d = 80 nm system at λ = 900 nm under coherent control and strong beam steering is seen at | s 2+ |/ | s 1+ | and φ = 1 and 3.14 rad as well as 2 and 1.06 rad. (d) The spatial near-field intensity recorded at 15 nm above the metal surface for λ = 900 nm showing the unidirectional excitation of SPPs at | s 2+ |/ | s 1+ | and φ = 1 and 3.14 rad as well as 2 and 2.13 rad. The selective excitation of the (e) dark a + and (f) bright a modes for different d. The plots of complex (g) H and (h) A as a function of d.
Fig. 6
Fig. 6 (a) The simulated scattering cross section of individually slits. (b) & (c) The angle dependent transmission magnitude (black solid) and phase (red solid) of the w = 20nm and w = 30nm slits.

Tables (3)

Tables Icon

Table 1 The excitation conditions for selectively exciting dark a + and bright a modes for different d in a t = 100 nm perfect metal slab.

Tables Icon

Table 2 The excitation conditions for selectively exciting dark a + and bright a modes for different d in a t = 100 nm perfect metal slab.

Tables Icon

Table 3 The excitation conditions for selectively exciting dark a + and bright a modes for different d in a t = 200 nm real metal slab.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

d dt ( a 1 a 2 )=i( ( ω 1 H H * ω 2 )+i( Γ 1 abs 0 0 Γ 2 abs )+i( Γ 1 rad A A * Γ 2 rad ) )( a 1 a 2 )+ K T | s +
K T = 1 Nπ ( Γ 1 rad cos θ N e i ϕ θ N ,1 Γ 1 rad Γ 1 rad Γ 1 rad cos θ N e i ϕ θ N ,1 Γ 2 rad cos θ N e i ϕ θ N ,2 Γ 2 rad Γ 2 rad Γ 2 rad cos θ N e i ϕ θ N ,2 ),
| s =K( a 1 a 2 ),
H eff = H QQ + H QP (E H PP ) 1 H PQ ,
H eff = H QQ +P.V. dE α α + E E i 2 α α + ,
i( ω 0 0 ω )( a 1 a 2 )=i( ω ˜ 1 V W ω ˜ 2 )( a 1 a 2 )+ K T | s +
i( ω 0 0 ω )( X L ( a 1 a 2 ) )=i( ω ˜ + 0 0 ω ˜ )( X L ( a 1 a 2 ) )+ X L K T | s + ,
( a + a )= X L ( a 1 a 2 )=( v + K T | s + i( ω ω ˜ + ) v K T | s + i( ω ω ˜ ) )
( W ω ˜ ω ˜ 1 ) T K T | s + =0
( ω ˜ + ω ˜ 2 V ) T K T | s + =0

Metrics