Abstract

Aligned Ni nanowire (NW) arrays were investigated for terahertz (THz) wave modulation. By adjusting the NW density and order of the NW arrays, the resonant frequency and intensity of the THz waves can be effectively tuned. The tuning range of the resonant frequency is about 0.29 THz, and a transmittance of less than 40% in the frequency region from 0.5 to 2 THz is achieved by changing the NW density. Although the order of the NW arrays has no influence on the resonant frequency, the transmittance can be tuned about 21%. The ability to tune the intensity and resonant frequency effectively and the ease of fabrication of the Ni-NW arrays make them the potential candidates for THz tunable filters, intensity modulators, and spatial light modulators.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High extinction ratio terahertz broadband polarizer based on the aligned Ni nanowire arrays

Wenfeng Xiang, Xiaowei Huang, Dong Li, Qingli Zhou, Haizhong Guo, and Junjian Li
Opt. Lett. 45(7) 1978-1981 (2020)

Terahertz transmission control using polarization-independent metamaterials

Sang-Hun Lee, Dong-Kyu Lee, Chulki Kim, Young Min Jhon, Joo-Hiuk Son, and Minah Seo
Opt. Express 25(10) 11436-11443 (2017)

Broadband extraordinary terahertz transmission through super-aligned carbon nanotubes film

Yue Wang, Xiaoguang Zhao, Guangwu Duan, and Xin Zhang
Opt. Express 24(14) 15730-15741 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. H. Seigel, “THz Technology in Biology and Medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2448 (2004).
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
  3. C. Yu, S. Fan, Y. Sun, and E. Pickwell-Macpherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2(1), 33–45 (2012).
    [PubMed]
  4. H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
  5. W. M. Zhu, A. Q. Liu, T. Bourouina, D. P. Tsai, J. H. Teng, X. H. Zhang, G. Q. Lo, D. L. Kwong, and N. I. Zheludev, “Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy,” Nat. Commun. 3(4), 1274 (2012).
    [PubMed]
  6. D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid Crystal Tunable Metamaterial Absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
    [PubMed]
  7. W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable Magnetic Metamaterials Using Micromachining Processes,” Adv. Mater. 23(15), 1792–1796 (2011).
    [PubMed]
  8. Y. S. Lin, Y. Qian, F. Ma, Z. Liu, P. Kropelnicki, and C. Lee, “Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators,” Appl. Phys. Lett. 102(11), 111908 (2013).
  9. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
    [PubMed]
  10. P. Pitchappa, C. P. Ho, Y. Qian, L. Dhakar, N. Singh, and C. Lee, “Microelectromechanically tunable multiband metamaterial with preserved isotropy,” Sci. Rep. 5, 11678 (2015).
    [PubMed]
  11. Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-Near-Zero Strong Coupling in Metamaterial-Semiconductor Hybrid Structures,” Nano Lett. 13(11), 5391–5396 (2013).
    [PubMed]
  12. P. Pitchappa, C. P. Ho, L. Cong, R. Singh, N. Singh, and C. Lee, “Reconfigurable Digital Metamaterial for Dynamic Switching of Terahertz Anisotropy,” Adv. Opt. Mater. 4(3), 391 (2016).
  13. S. H. Lee, D. K. Lee, C. Kim, Y. M. Jhon, J. H. Son, and M. Seo, “Terahertz transmission control using polarization-independent metamaterials,” Opt. Express 25(10), 11436–11443 (2017).
    [PubMed]
  14. Q. H. Song, W. M. Zhu, P. C. Wu, W. Zhang, Q. Y. S. Wu, J. H. Teng, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle,” APL Mater. 5(6), 066103 (2017).
  15. X. Shi, L. Ge, X. Wen, D. Han, and Y. Yang, “Broadband light absorption in graphene ribbons by canceling strong coupling at subwavelength scale,” Opt. Express 24(23), 26357–26362 (2016).
    [PubMed]
  16. L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
    [PubMed]
  17. C. Wang, X. Han, P. Xu, J. Wang, Y. Du, X. Wang, W. Qin, and T. Zhao, “Controlled synthesis of hierarchical nickel and morphology-dependent electromagnetic properties,” J. Phys. Chem. C 114, 3196–3203 (2010).
  18. R. Tena-zaera, J. Elias, and C. Lévy-Clément, “ZnO nanowire arrays: Optical scattering and sensitization to solar light,” Appl. Phys. Lett. 93(23), 233119 (2008).
  19. W. Zhou, K. Zheng, L. He, R. Wang, L. Guo, C. Chen, X. Han, and Z. Zhang, “Ni/Ni3C Core-Shell Nanochains and Its Magnetic Properties: One-Step Synthesis at Low Temperature,” Nano Lett. 8(4), 1147–1152 (2008).
    [PubMed]
  20. T. Zou, H. Li, N. Zhao, and C. Shi, “Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes filled with Ni nanowire,” J. Alloys Compd. 496(1–2), L22–L24 (2010).
  21. L. He, Z. M. Liao, H. C. Wu, X. X. Tian, D. S. Xu, G. L. W. Cross, G. S. Duesberg, I. V. Shvets, and D. P. Yu, “Memory and threshold resistance switching in Ni/NiO core-shell nanowires,” Nano Lett. 11(11), 4601–4606 (2011).
    [PubMed]
  22. W. Xiang, J. Zhang, Y. Liu, M. Hu, K. Zhao, H. Guo, and K. Jin, “Facile controlled synthesis and magnetic properties of high-aspect-ratio nickel nanowires prepared by the dropping method,” J. Alloys Compd. 693, 257–263 (2017).
  23. C. M. Hangarter, Y. Rheem, B. Yoo, E. Yang, and N. V. Myung, “Hierarchical magnetic assembly of nanowires,” Nanotechnology 18(20), 205305 (2007).
  24. W. Xiang, X. Wang, Y. Liu, J. Zhang, and K. Zhao, “Density detection of aligned nanowire arrays using terahertz time-domain spectroscopy,” Nanoscale Res. Lett. 11(1), 337 (2016).
    [PubMed]
  25. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
    [PubMed]

2017 (4)

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
[PubMed]

S. H. Lee, D. K. Lee, C. Kim, Y. M. Jhon, J. H. Son, and M. Seo, “Terahertz transmission control using polarization-independent metamaterials,” Opt. Express 25(10), 11436–11443 (2017).
[PubMed]

Q. H. Song, W. M. Zhu, P. C. Wu, W. Zhang, Q. Y. S. Wu, J. H. Teng, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle,” APL Mater. 5(6), 066103 (2017).

W. Xiang, J. Zhang, Y. Liu, M. Hu, K. Zhao, H. Guo, and K. Jin, “Facile controlled synthesis and magnetic properties of high-aspect-ratio nickel nanowires prepared by the dropping method,” J. Alloys Compd. 693, 257–263 (2017).

2016 (3)

W. Xiang, X. Wang, Y. Liu, J. Zhang, and K. Zhao, “Density detection of aligned nanowire arrays using terahertz time-domain spectroscopy,” Nanoscale Res. Lett. 11(1), 337 (2016).
[PubMed]

X. Shi, L. Ge, X. Wen, D. Han, and Y. Yang, “Broadband light absorption in graphene ribbons by canceling strong coupling at subwavelength scale,” Opt. Express 24(23), 26357–26362 (2016).
[PubMed]

P. Pitchappa, C. P. Ho, L. Cong, R. Singh, N. Singh, and C. Lee, “Reconfigurable Digital Metamaterial for Dynamic Switching of Terahertz Anisotropy,” Adv. Opt. Mater. 4(3), 391 (2016).

2015 (1)

P. Pitchappa, C. P. Ho, Y. Qian, L. Dhakar, N. Singh, and C. Lee, “Microelectromechanically tunable multiband metamaterial with preserved isotropy,” Sci. Rep. 5, 11678 (2015).
[PubMed]

2013 (3)

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-Near-Zero Strong Coupling in Metamaterial-Semiconductor Hybrid Structures,” Nano Lett. 13(11), 5391–5396 (2013).
[PubMed]

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid Crystal Tunable Metamaterial Absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[PubMed]

Y. S. Lin, Y. Qian, F. Ma, Z. Liu, P. Kropelnicki, and C. Lee, “Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators,” Appl. Phys. Lett. 102(11), 111908 (2013).

2012 (3)

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[PubMed]

C. Yu, S. Fan, Y. Sun, and E. Pickwell-Macpherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2(1), 33–45 (2012).
[PubMed]

W. M. Zhu, A. Q. Liu, T. Bourouina, D. P. Tsai, J. H. Teng, X. H. Zhang, G. Q. Lo, D. L. Kwong, and N. I. Zheludev, “Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy,” Nat. Commun. 3(4), 1274 (2012).
[PubMed]

2011 (2)

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable Magnetic Metamaterials Using Micromachining Processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[PubMed]

L. He, Z. M. Liao, H. C. Wu, X. X. Tian, D. S. Xu, G. L. W. Cross, G. S. Duesberg, I. V. Shvets, and D. P. Yu, “Memory and threshold resistance switching in Ni/NiO core-shell nanowires,” Nano Lett. 11(11), 4601–4606 (2011).
[PubMed]

2010 (2)

T. Zou, H. Li, N. Zhao, and C. Shi, “Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes filled with Ni nanowire,” J. Alloys Compd. 496(1–2), L22–L24 (2010).

C. Wang, X. Han, P. Xu, J. Wang, Y. Du, X. Wang, W. Qin, and T. Zhao, “Controlled synthesis of hierarchical nickel and morphology-dependent electromagnetic properties,” J. Phys. Chem. C 114, 3196–3203 (2010).

2009 (1)

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).

2008 (2)

R. Tena-zaera, J. Elias, and C. Lévy-Clément, “ZnO nanowire arrays: Optical scattering and sensitization to solar light,” Appl. Phys. Lett. 93(23), 233119 (2008).

W. Zhou, K. Zheng, L. He, R. Wang, L. Guo, C. Chen, X. Han, and Z. Zhang, “Ni/Ni3C Core-Shell Nanochains and Its Magnetic Properties: One-Step Synthesis at Low Temperature,” Nano Lett. 8(4), 1147–1152 (2008).
[PubMed]

2007 (2)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).

C. M. Hangarter, Y. Rheem, B. Yoo, E. Yang, and N. V. Myung, “Hierarchical magnetic assembly of nanowires,” Nanotechnology 18(20), 205305 (2007).

2004 (2)

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[PubMed]

P. H. Seigel, “THz Technology in Biology and Medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2448 (2004).

Averitt, R. D.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[PubMed]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).

Azad, A. K.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).

Basov, D. N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[PubMed]

Bourouina, T.

Q. H. Song, W. M. Zhu, P. C. Wu, W. Zhang, Q. Y. S. Wu, J. H. Teng, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle,” APL Mater. 5(6), 066103 (2017).

W. M. Zhu, A. Q. Liu, T. Bourouina, D. P. Tsai, J. H. Teng, X. H. Zhang, G. Q. Lo, D. L. Kwong, and N. I. Zheludev, “Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy,” Nat. Commun. 3(4), 1274 (2012).
[PubMed]

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable Magnetic Metamaterials Using Micromachining Processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[PubMed]

Brener, I.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-Near-Zero Strong Coupling in Metamaterial-Semiconductor Hybrid Structures,” Nano Lett. 13(11), 5391–5396 (2013).
[PubMed]

Cai, G.

Chen, C.

W. Zhou, K. Zheng, L. He, R. Wang, L. Guo, C. Chen, X. Han, and Z. Zhang, “Ni/Ni3C Core-Shell Nanochains and Its Magnetic Properties: One-Step Synthesis at Low Temperature,” Nano Lett. 8(4), 1147–1152 (2008).
[PubMed]

Chen, H. T.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).

Chen, W. C.

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid Crystal Tunable Metamaterial Absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[PubMed]

Chen, Y.

Chong, P. H. J.

Q. H. Song, W. M. Zhu, P. C. Wu, W. Zhang, Q. Y. S. Wu, J. H. Teng, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle,” APL Mater. 5(6), 066103 (2017).

Cich, M. J.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).

Cong, L.

P. Pitchappa, C. P. Ho, L. Cong, R. Singh, N. Singh, and C. Lee, “Reconfigurable Digital Metamaterial for Dynamic Switching of Terahertz Anisotropy,” Adv. Opt. Mater. 4(3), 391 (2016).

Cross, G. L. W.

L. He, Z. M. Liao, H. C. Wu, X. X. Tian, D. S. Xu, G. L. W. Cross, G. S. Duesberg, I. V. Shvets, and D. P. Yu, “Memory and threshold resistance switching in Ni/NiO core-shell nanowires,” Nano Lett. 11(11), 4601–4606 (2011).
[PubMed]

Dhakar, L.

P. Pitchappa, C. P. Ho, Y. Qian, L. Dhakar, N. Singh, and C. Lee, “Microelectromechanically tunable multiband metamaterial with preserved isotropy,” Sci. Rep. 5, 11678 (2015).
[PubMed]

Du, Y.

C. Wang, X. Han, P. Xu, J. Wang, Y. Du, X. Wang, W. Qin, and T. Zhao, “Controlled synthesis of hierarchical nickel and morphology-dependent electromagnetic properties,” J. Phys. Chem. C 114, 3196–3203 (2010).

Duesberg, G. S.

L. He, Z. M. Liao, H. C. Wu, X. X. Tian, D. S. Xu, G. L. W. Cross, G. S. Duesberg, I. V. Shvets, and D. P. Yu, “Memory and threshold resistance switching in Ni/NiO core-shell nanowires,” Nano Lett. 11(11), 4601–4606 (2011).
[PubMed]

Elias, J.

R. Tena-zaera, J. Elias, and C. Lévy-Clément, “ZnO nanowire arrays: Optical scattering and sensitization to solar light,” Appl. Phys. Lett. 93(23), 233119 (2008).

Fan, K.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[PubMed]

Fan, S.

C. Yu, S. Fan, Y. Sun, and E. Pickwell-Macpherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2(1), 33–45 (2012).
[PubMed]

Fang, N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[PubMed]

Ge, L.

Greffet, J.-J.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-Near-Zero Strong Coupling in Metamaterial-Semiconductor Hybrid Structures,” Nano Lett. 13(11), 5391–5396 (2013).
[PubMed]

Guo, H.

W. Xiang, J. Zhang, Y. Liu, M. Hu, K. Zhao, H. Guo, and K. Jin, “Facile controlled synthesis and magnetic properties of high-aspect-ratio nickel nanowires prepared by the dropping method,” J. Alloys Compd. 693, 257–263 (2017).

Guo, H. C.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable Magnetic Metamaterials Using Micromachining Processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[PubMed]

Guo, L.

W. Zhou, K. Zheng, L. He, R. Wang, L. Guo, C. Chen, X. Han, and Z. Zhang, “Ni/Ni3C Core-Shell Nanochains and Its Magnetic Properties: One-Step Synthesis at Low Temperature,” Nano Lett. 8(4), 1147–1152 (2008).
[PubMed]

Han, D.

Han, X.

C. Wang, X. Han, P. Xu, J. Wang, Y. Du, X. Wang, W. Qin, and T. Zhao, “Controlled synthesis of hierarchical nickel and morphology-dependent electromagnetic properties,” J. Phys. Chem. C 114, 3196–3203 (2010).

W. Zhou, K. Zheng, L. He, R. Wang, L. Guo, C. Chen, X. Han, and Z. Zhang, “Ni/Ni3C Core-Shell Nanochains and Its Magnetic Properties: One-Step Synthesis at Low Temperature,” Nano Lett. 8(4), 1147–1152 (2008).
[PubMed]

Hangarter, C. M.

C. M. Hangarter, Y. Rheem, B. Yoo, E. Yang, and N. V. Myung, “Hierarchical magnetic assembly of nanowires,” Nanotechnology 18(20), 205305 (2007).

He, L.

L. He, Z. M. Liao, H. C. Wu, X. X. Tian, D. S. Xu, G. L. W. Cross, G. S. Duesberg, I. V. Shvets, and D. P. Yu, “Memory and threshold resistance switching in Ni/NiO core-shell nanowires,” Nano Lett. 11(11), 4601–4606 (2011).
[PubMed]

W. Zhou, K. Zheng, L. He, R. Wang, L. Guo, C. Chen, X. Han, and Z. Zhang, “Ni/Ni3C Core-Shell Nanochains and Its Magnetic Properties: One-Step Synthesis at Low Temperature,” Nano Lett. 8(4), 1147–1152 (2008).
[PubMed]

Ho, C. P.

P. Pitchappa, C. P. Ho, L. Cong, R. Singh, N. Singh, and C. Lee, “Reconfigurable Digital Metamaterial for Dynamic Switching of Terahertz Anisotropy,” Adv. Opt. Mater. 4(3), 391 (2016).

P. Pitchappa, C. P. Ho, Y. Qian, L. Dhakar, N. Singh, and C. Lee, “Microelectromechanically tunable multiband metamaterial with preserved isotropy,” Sci. Rep. 5, 11678 (2015).
[PubMed]

Hu, M.

W. Xiang, J. Zhang, Y. Liu, M. Hu, K. Zhao, H. Guo, and K. Jin, “Facile controlled synthesis and magnetic properties of high-aspect-ratio nickel nanowires prepared by the dropping method,” J. Alloys Compd. 693, 257–263 (2017).

Hwang, H. Y.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[PubMed]

Jhon, Y. M.

Jin, K.

W. Xiang, J. Zhang, Y. Liu, M. Hu, K. Zhao, H. Guo, and K. Jin, “Facile controlled synthesis and magnetic properties of high-aspect-ratio nickel nanowires prepared by the dropping method,” J. Alloys Compd. 693, 257–263 (2017).

Jun, Y. C.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-Near-Zero Strong Coupling in Metamaterial-Semiconductor Hybrid Structures,” Nano Lett. 13(11), 5391–5396 (2013).
[PubMed]

Keiser, G. R.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[PubMed]

Kim, C.

Kittiwatanakul, S.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[PubMed]

Kropelnicki, P.

Y. S. Lin, Y. Qian, F. Ma, Z. Liu, P. Kropelnicki, and C. Lee, “Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators,” Appl. Phys. Lett. 102(11), 111908 (2013).

Kwong, D. L.

W. M. Zhu, A. Q. Liu, T. Bourouina, D. P. Tsai, J. H. Teng, X. H. Zhang, G. Q. Lo, D. L. Kwong, and N. I. Zheludev, “Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy,” Nat. Commun. 3(4), 1274 (2012).
[PubMed]

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable Magnetic Metamaterials Using Micromachining Processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[PubMed]

Lee, C.

P. Pitchappa, C. P. Ho, L. Cong, R. Singh, N. Singh, and C. Lee, “Reconfigurable Digital Metamaterial for Dynamic Switching of Terahertz Anisotropy,” Adv. Opt. Mater. 4(3), 391 (2016).

P. Pitchappa, C. P. Ho, Y. Qian, L. Dhakar, N. Singh, and C. Lee, “Microelectromechanically tunable multiband metamaterial with preserved isotropy,” Sci. Rep. 5, 11678 (2015).
[PubMed]

Y. S. Lin, Y. Qian, F. Ma, Z. Liu, P. Kropelnicki, and C. Lee, “Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators,” Appl. Phys. Lett. 102(11), 111908 (2013).

Lee, D. K.

Lee, S. H.

Leprince-Wang, Y.

Q. H. Song, W. M. Zhu, P. C. Wu, W. Zhang, Q. Y. S. Wu, J. H. Teng, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle,” APL Mater. 5(6), 066103 (2017).

Lévy-Clément, C.

R. Tena-zaera, J. Elias, and C. Lévy-Clément, “ZnO nanowire arrays: Optical scattering and sensitization to solar light,” Appl. Phys. Lett. 93(23), 233119 (2008).

Li, H.

T. Zou, H. Li, N. Zhao, and C. Shi, “Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes filled with Ni nanowire,” J. Alloys Compd. 496(1–2), L22–L24 (2010).

Liang, Q. X.

Q. H. Song, W. M. Zhu, P. C. Wu, W. Zhang, Q. Y. S. Wu, J. H. Teng, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle,” APL Mater. 5(6), 066103 (2017).

Liao, Z. M.

L. He, Z. M. Liao, H. C. Wu, X. X. Tian, D. S. Xu, G. L. W. Cross, G. S. Duesberg, I. V. Shvets, and D. P. Yu, “Memory and threshold resistance switching in Ni/NiO core-shell nanowires,” Nano Lett. 11(11), 4601–4606 (2011).
[PubMed]

Lin, Y. S.

Y. S. Lin, Y. Qian, F. Ma, Z. Liu, P. Kropelnicki, and C. Lee, “Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators,” Appl. Phys. Lett. 102(11), 111908 (2013).

Liu, A. Q.

Q. H. Song, W. M. Zhu, P. C. Wu, W. Zhang, Q. Y. S. Wu, J. H. Teng, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle,” APL Mater. 5(6), 066103 (2017).

W. M. Zhu, A. Q. Liu, T. Bourouina, D. P. Tsai, J. H. Teng, X. H. Zhang, G. Q. Lo, D. L. Kwong, and N. I. Zheludev, “Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy,” Nat. Commun. 3(4), 1274 (2012).
[PubMed]

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable Magnetic Metamaterials Using Micromachining Processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[PubMed]

Liu, M.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[PubMed]

Liu, N.

Liu, Q. H.

Liu, Y.

W. Xiang, J. Zhang, Y. Liu, M. Hu, K. Zhao, H. Guo, and K. Jin, “Facile controlled synthesis and magnetic properties of high-aspect-ratio nickel nanowires prepared by the dropping method,” J. Alloys Compd. 693, 257–263 (2017).

W. Xiang, X. Wang, Y. Liu, J. Zhang, and K. Zhao, “Density detection of aligned nanowire arrays using terahertz time-domain spectroscopy,” Nanoscale Res. Lett. 11(1), 337 (2016).
[PubMed]

Liu, Z.

Y. S. Lin, Y. Qian, F. Ma, Z. Liu, P. Kropelnicki, and C. Lee, “Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators,” Appl. Phys. Lett. 102(11), 111908 (2013).

Lo, G. Q.

W. M. Zhu, A. Q. Liu, T. Bourouina, D. P. Tsai, J. H. Teng, X. H. Zhang, G. Q. Lo, D. L. Kwong, and N. I. Zheludev, “Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy,” Nat. Commun. 3(4), 1274 (2012).
[PubMed]

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable Magnetic Metamaterials Using Micromachining Processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[PubMed]

Lu, J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[PubMed]

Ma, F.

Y. S. Lin, Y. Qian, F. Ma, Z. Liu, P. Kropelnicki, and C. Lee, “Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators,” Appl. Phys. Lett. 102(11), 111908 (2013).

Marquier, F.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-Near-Zero Strong Coupling in Metamaterial-Semiconductor Hybrid Structures,” Nano Lett. 13(11), 5391–5396 (2013).
[PubMed]

Mei, T.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable Magnetic Metamaterials Using Micromachining Processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[PubMed]

Myung, N. V.

C. M. Hangarter, Y. Rheem, B. Yoo, E. Yang, and N. V. Myung, “Hierarchical magnetic assembly of nanowires,” Nanotechnology 18(20), 205305 (2007).

Nelson, K. A.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[PubMed]

Omenetto, F. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[PubMed]

Padilla, W. J.

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid Crystal Tunable Metamaterial Absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[PubMed]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[PubMed]

Pendry, J. B.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[PubMed]

Pickwell-Macpherson, E.

C. Yu, S. Fan, Y. Sun, and E. Pickwell-Macpherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2(1), 33–45 (2012).
[PubMed]

Pitchappa, P.

P. Pitchappa, C. P. Ho, L. Cong, R. Singh, N. Singh, and C. Lee, “Reconfigurable Digital Metamaterial for Dynamic Switching of Terahertz Anisotropy,” Adv. Opt. Mater. 4(3), 391 (2016).

P. Pitchappa, C. P. Ho, Y. Qian, L. Dhakar, N. Singh, and C. Lee, “Microelectromechanically tunable multiband metamaterial with preserved isotropy,” Sci. Rep. 5, 11678 (2015).
[PubMed]

Qian, Y.

P. Pitchappa, C. P. Ho, Y. Qian, L. Dhakar, N. Singh, and C. Lee, “Microelectromechanically tunable multiband metamaterial with preserved isotropy,” Sci. Rep. 5, 11678 (2015).
[PubMed]

Y. S. Lin, Y. Qian, F. Ma, Z. Liu, P. Kropelnicki, and C. Lee, “Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators,” Appl. Phys. Lett. 102(11), 111908 (2013).

Qin, W.

C. Wang, X. Han, P. Xu, J. Wang, Y. Du, X. Wang, W. Qin, and T. Zhao, “Controlled synthesis of hierarchical nickel and morphology-dependent electromagnetic properties,” J. Phys. Chem. C 114, 3196–3203 (2010).

Reno, J.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-Near-Zero Strong Coupling in Metamaterial-Semiconductor Hybrid Structures,” Nano Lett. 13(11), 5391–5396 (2013).
[PubMed]

Rheem, Y.

C. M. Hangarter, Y. Rheem, B. Yoo, E. Yang, and N. V. Myung, “Hierarchical magnetic assembly of nanowires,” Nanotechnology 18(20), 205305 (2007).

Ribaudo, T.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-Near-Zero Strong Coupling in Metamaterial-Semiconductor Hybrid Structures,” Nano Lett. 13(11), 5391–5396 (2013).
[PubMed]

Seigel, P. H.

P. H. Seigel, “THz Technology in Biology and Medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2448 (2004).

Seo, M.

Shaner, E.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-Near-Zero Strong Coupling in Metamaterial-Semiconductor Hybrid Structures,” Nano Lett. 13(11), 5391–5396 (2013).
[PubMed]

Shen, Z. X.

Q. H. Song, W. M. Zhu, P. C. Wu, W. Zhang, Q. Y. S. Wu, J. H. Teng, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle,” APL Mater. 5(6), 066103 (2017).

Shi, C.

T. Zou, H. Li, N. Zhao, and C. Shi, “Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes filled with Ni nanowire,” J. Alloys Compd. 496(1–2), L22–L24 (2010).

Shi, X.

Shrekenhamer, D.

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid Crystal Tunable Metamaterial Absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[PubMed]

Shvets, I. V.

L. He, Z. M. Liao, H. C. Wu, X. X. Tian, D. S. Xu, G. L. W. Cross, G. S. Duesberg, I. V. Shvets, and D. P. Yu, “Memory and threshold resistance switching in Ni/NiO core-shell nanowires,” Nano Lett. 11(11), 4601–4606 (2011).
[PubMed]

Sinclair, M.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-Near-Zero Strong Coupling in Metamaterial-Semiconductor Hybrid Structures,” Nano Lett. 13(11), 5391–5396 (2013).
[PubMed]

Singh, N.

P. Pitchappa, C. P. Ho, L. Cong, R. Singh, N. Singh, and C. Lee, “Reconfigurable Digital Metamaterial for Dynamic Switching of Terahertz Anisotropy,” Adv. Opt. Mater. 4(3), 391 (2016).

P. Pitchappa, C. P. Ho, Y. Qian, L. Dhakar, N. Singh, and C. Lee, “Microelectromechanically tunable multiband metamaterial with preserved isotropy,” Sci. Rep. 5, 11678 (2015).
[PubMed]

Singh, R.

P. Pitchappa, C. P. Ho, L. Cong, R. Singh, N. Singh, and C. Lee, “Reconfigurable Digital Metamaterial for Dynamic Switching of Terahertz Anisotropy,” Adv. Opt. Mater. 4(3), 391 (2016).

Smith, D. R.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[PubMed]

Son, J. H.

Song, Q. H.

Q. H. Song, W. M. Zhu, P. C. Wu, W. Zhang, Q. Y. S. Wu, J. H. Teng, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle,” APL Mater. 5(6), 066103 (2017).

Song, Z.

Sternbach, A. J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[PubMed]

Strikwerda, A. C.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[PubMed]

Sun, Y.

C. Yu, S. Fan, Y. Sun, and E. Pickwell-Macpherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2(1), 33–45 (2012).
[PubMed]

Tanoto, H.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable Magnetic Metamaterials Using Micromachining Processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[PubMed]

Tao, H.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[PubMed]

Taylor, A. J.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).

Tena-zaera, R.

R. Tena-zaera, J. Elias, and C. Lévy-Clément, “ZnO nanowire arrays: Optical scattering and sensitization to solar light,” Appl. Phys. Lett. 93(23), 233119 (2008).

Teng, J. H.

Q. H. Song, W. M. Zhu, P. C. Wu, W. Zhang, Q. Y. S. Wu, J. H. Teng, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle,” APL Mater. 5(6), 066103 (2017).

W. M. Zhu, A. Q. Liu, T. Bourouina, D. P. Tsai, J. H. Teng, X. H. Zhang, G. Q. Lo, D. L. Kwong, and N. I. Zheludev, “Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy,” Nat. Commun. 3(4), 1274 (2012).
[PubMed]

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable Magnetic Metamaterials Using Micromachining Processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[PubMed]

Tian, X. X.

L. He, Z. M. Liao, H. C. Wu, X. X. Tian, D. S. Xu, G. L. W. Cross, G. S. Duesberg, I. V. Shvets, and D. P. Yu, “Memory and threshold resistance switching in Ni/NiO core-shell nanowires,” Nano Lett. 11(11), 4601–4606 (2011).
[PubMed]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).

Tsai, D. P.

Q. H. Song, W. M. Zhu, P. C. Wu, W. Zhang, Q. Y. S. Wu, J. H. Teng, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle,” APL Mater. 5(6), 066103 (2017).

W. M. Zhu, A. Q. Liu, T. Bourouina, D. P. Tsai, J. H. Teng, X. H. Zhang, G. Q. Lo, D. L. Kwong, and N. I. Zheludev, “Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy,” Nat. Commun. 3(4), 1274 (2012).
[PubMed]

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable Magnetic Metamaterials Using Micromachining Processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[PubMed]

Vassant, S.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-Near-Zero Strong Coupling in Metamaterial-Semiconductor Hybrid Structures,” Nano Lett. 13(11), 5391–5396 (2013).
[PubMed]

Vier, D. C.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[PubMed]

Wang, C.

C. Wang, X. Han, P. Xu, J. Wang, Y. Du, X. Wang, W. Qin, and T. Zhao, “Controlled synthesis of hierarchical nickel and morphology-dependent electromagnetic properties,” J. Phys. Chem. C 114, 3196–3203 (2010).

Wang, J.

C. Wang, X. Han, P. Xu, J. Wang, Y. Du, X. Wang, W. Qin, and T. Zhao, “Controlled synthesis of hierarchical nickel and morphology-dependent electromagnetic properties,” J. Phys. Chem. C 114, 3196–3203 (2010).

Wang, R.

W. Zhou, K. Zheng, L. He, R. Wang, L. Guo, C. Chen, X. Han, and Z. Zhang, “Ni/Ni3C Core-Shell Nanochains and Its Magnetic Properties: One-Step Synthesis at Low Temperature,” Nano Lett. 8(4), 1147–1152 (2008).
[PubMed]

Wang, X.

W. Xiang, X. Wang, Y. Liu, J. Zhang, and K. Zhao, “Density detection of aligned nanowire arrays using terahertz time-domain spectroscopy,” Nanoscale Res. Lett. 11(1), 337 (2016).
[PubMed]

C. Wang, X. Han, P. Xu, J. Wang, Y. Du, X. Wang, W. Qin, and T. Zhao, “Controlled synthesis of hierarchical nickel and morphology-dependent electromagnetic properties,” J. Phys. Chem. C 114, 3196–3203 (2010).

Wen, X.

West, K. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[PubMed]

Wolf, S. A.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[PubMed]

Wu, H. C.

L. He, Z. M. Liao, H. C. Wu, X. X. Tian, D. S. Xu, G. L. W. Cross, G. S. Duesberg, I. V. Shvets, and D. P. Yu, “Memory and threshold resistance switching in Ni/NiO core-shell nanowires,” Nano Lett. 11(11), 4601–4606 (2011).
[PubMed]

Wu, P. C.

Q. H. Song, W. M. Zhu, P. C. Wu, W. Zhang, Q. Y. S. Wu, J. H. Teng, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle,” APL Mater. 5(6), 066103 (2017).

Wu, Q. Y. S.

Q. H. Song, W. M. Zhu, P. C. Wu, W. Zhang, Q. Y. S. Wu, J. H. Teng, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle,” APL Mater. 5(6), 066103 (2017).

Xiang, W.

W. Xiang, J. Zhang, Y. Liu, M. Hu, K. Zhao, H. Guo, and K. Jin, “Facile controlled synthesis and magnetic properties of high-aspect-ratio nickel nanowires prepared by the dropping method,” J. Alloys Compd. 693, 257–263 (2017).

W. Xiang, X. Wang, Y. Liu, J. Zhang, and K. Zhao, “Density detection of aligned nanowire arrays using terahertz time-domain spectroscopy,” Nanoscale Res. Lett. 11(1), 337 (2016).
[PubMed]

Xu, D. S.

L. He, Z. M. Liao, H. C. Wu, X. X. Tian, D. S. Xu, G. L. W. Cross, G. S. Duesberg, I. V. Shvets, and D. P. Yu, “Memory and threshold resistance switching in Ni/NiO core-shell nanowires,” Nano Lett. 11(11), 4601–4606 (2011).
[PubMed]

Xu, P.

C. Wang, X. Han, P. Xu, J. Wang, Y. Du, X. Wang, W. Qin, and T. Zhao, “Controlled synthesis of hierarchical nickel and morphology-dependent electromagnetic properties,” J. Phys. Chem. C 114, 3196–3203 (2010).

Yang, E.

C. M. Hangarter, Y. Rheem, B. Yoo, E. Yang, and N. V. Myung, “Hierarchical magnetic assembly of nanowires,” Nanotechnology 18(20), 205305 (2007).

Yang, Y.

Yang, Z. C.

Q. H. Song, W. M. Zhu, P. C. Wu, W. Zhang, Q. Y. S. Wu, J. H. Teng, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle,” APL Mater. 5(6), 066103 (2017).

Ye, L.

Yen, T. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[PubMed]

Yoo, B.

C. M. Hangarter, Y. Rheem, B. Yoo, E. Yang, and N. V. Myung, “Hierarchical magnetic assembly of nanowires,” Nanotechnology 18(20), 205305 (2007).

Yu, C.

C. Yu, S. Fan, Y. Sun, and E. Pickwell-Macpherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2(1), 33–45 (2012).
[PubMed]

Yu, D. P.

L. He, Z. M. Liao, H. C. Wu, X. X. Tian, D. S. Xu, G. L. W. Cross, G. S. Duesberg, I. V. Shvets, and D. P. Yu, “Memory and threshold resistance switching in Ni/NiO core-shell nanowires,” Nano Lett. 11(11), 4601–4606 (2011).
[PubMed]

Zhang, J.

W. Xiang, J. Zhang, Y. Liu, M. Hu, K. Zhao, H. Guo, and K. Jin, “Facile controlled synthesis and magnetic properties of high-aspect-ratio nickel nanowires prepared by the dropping method,” J. Alloys Compd. 693, 257–263 (2017).

W. Xiang, X. Wang, Y. Liu, J. Zhang, and K. Zhao, “Density detection of aligned nanowire arrays using terahertz time-domain spectroscopy,” Nanoscale Res. Lett. 11(1), 337 (2016).
[PubMed]

Zhang, W.

Q. H. Song, W. M. Zhu, P. C. Wu, W. Zhang, Q. Y. S. Wu, J. H. Teng, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle,” APL Mater. 5(6), 066103 (2017).

Zhang, X.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[PubMed]

Zhang, X. H.

W. M. Zhu, A. Q. Liu, T. Bourouina, D. P. Tsai, J. H. Teng, X. H. Zhang, G. Q. Lo, D. L. Kwong, and N. I. Zheludev, “Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy,” Nat. Commun. 3(4), 1274 (2012).
[PubMed]

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable Magnetic Metamaterials Using Micromachining Processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[PubMed]

Zhang, X. M.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable Magnetic Metamaterials Using Micromachining Processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[PubMed]

Zhang, Z.

W. Zhou, K. Zheng, L. He, R. Wang, L. Guo, C. Chen, X. Han, and Z. Zhang, “Ni/Ni3C Core-Shell Nanochains and Its Magnetic Properties: One-Step Synthesis at Low Temperature,” Nano Lett. 8(4), 1147–1152 (2008).
[PubMed]

Zhao, K.

W. Xiang, J. Zhang, Y. Liu, M. Hu, K. Zhao, H. Guo, and K. Jin, “Facile controlled synthesis and magnetic properties of high-aspect-ratio nickel nanowires prepared by the dropping method,” J. Alloys Compd. 693, 257–263 (2017).

W. Xiang, X. Wang, Y. Liu, J. Zhang, and K. Zhao, “Density detection of aligned nanowire arrays using terahertz time-domain spectroscopy,” Nanoscale Res. Lett. 11(1), 337 (2016).
[PubMed]

Zhao, N.

T. Zou, H. Li, N. Zhao, and C. Shi, “Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes filled with Ni nanowire,” J. Alloys Compd. 496(1–2), L22–L24 (2010).

Zhao, T.

C. Wang, X. Han, P. Xu, J. Wang, Y. Du, X. Wang, W. Qin, and T. Zhao, “Controlled synthesis of hierarchical nickel and morphology-dependent electromagnetic properties,” J. Phys. Chem. C 114, 3196–3203 (2010).

Zheludev, N. I.

W. M. Zhu, A. Q. Liu, T. Bourouina, D. P. Tsai, J. H. Teng, X. H. Zhang, G. Q. Lo, D. L. Kwong, and N. I. Zheludev, “Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy,” Nat. Commun. 3(4), 1274 (2012).
[PubMed]

Zheng, K.

W. Zhou, K. Zheng, L. He, R. Wang, L. Guo, C. Chen, X. Han, and Z. Zhang, “Ni/Ni3C Core-Shell Nanochains and Its Magnetic Properties: One-Step Synthesis at Low Temperature,” Nano Lett. 8(4), 1147–1152 (2008).
[PubMed]

Zhou, W.

W. Zhou, K. Zheng, L. He, R. Wang, L. Guo, C. Chen, X. Han, and Z. Zhang, “Ni/Ni3C Core-Shell Nanochains and Its Magnetic Properties: One-Step Synthesis at Low Temperature,” Nano Lett. 8(4), 1147–1152 (2008).
[PubMed]

Zhu, J.

Zhu, W. M.

Q. H. Song, W. M. Zhu, P. C. Wu, W. Zhang, Q. Y. S. Wu, J. H. Teng, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle,” APL Mater. 5(6), 066103 (2017).

W. M. Zhu, A. Q. Liu, T. Bourouina, D. P. Tsai, J. H. Teng, X. H. Zhang, G. Q. Lo, D. L. Kwong, and N. I. Zheludev, “Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy,” Nat. Commun. 3(4), 1274 (2012).
[PubMed]

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable Magnetic Metamaterials Using Micromachining Processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[PubMed]

Zou, T.

T. Zou, H. Li, N. Zhao, and C. Shi, “Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes filled with Ni nanowire,” J. Alloys Compd. 496(1–2), L22–L24 (2010).

Adv. Mater. (1)

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable Magnetic Metamaterials Using Micromachining Processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[PubMed]

Adv. Opt. Mater. (1)

P. Pitchappa, C. P. Ho, L. Cong, R. Singh, N. Singh, and C. Lee, “Reconfigurable Digital Metamaterial for Dynamic Switching of Terahertz Anisotropy,” Adv. Opt. Mater. 4(3), 391 (2016).

APL Mater. (1)

Q. H. Song, W. M. Zhu, P. C. Wu, W. Zhang, Q. Y. S. Wu, J. H. Teng, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle,” APL Mater. 5(6), 066103 (2017).

Appl. Phys. Lett. (2)

R. Tena-zaera, J. Elias, and C. Lévy-Clément, “ZnO nanowire arrays: Optical scattering and sensitization to solar light,” Appl. Phys. Lett. 93(23), 233119 (2008).

Y. S. Lin, Y. Qian, F. Ma, Z. Liu, P. Kropelnicki, and C. Lee, “Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators,” Appl. Phys. Lett. 102(11), 111908 (2013).

IEEE Trans. Microw. Theory Tech. (1)

P. H. Seigel, “THz Technology in Biology and Medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2448 (2004).

J. Alloys Compd. (2)

T. Zou, H. Li, N. Zhao, and C. Shi, “Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes filled with Ni nanowire,” J. Alloys Compd. 496(1–2), L22–L24 (2010).

W. Xiang, J. Zhang, Y. Liu, M. Hu, K. Zhao, H. Guo, and K. Jin, “Facile controlled synthesis and magnetic properties of high-aspect-ratio nickel nanowires prepared by the dropping method,” J. Alloys Compd. 693, 257–263 (2017).

J. Phys. Chem. C (1)

C. Wang, X. Han, P. Xu, J. Wang, Y. Du, X. Wang, W. Qin, and T. Zhao, “Controlled synthesis of hierarchical nickel and morphology-dependent electromagnetic properties,” J. Phys. Chem. C 114, 3196–3203 (2010).

Nano Lett. (3)

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-Near-Zero Strong Coupling in Metamaterial-Semiconductor Hybrid Structures,” Nano Lett. 13(11), 5391–5396 (2013).
[PubMed]

L. He, Z. M. Liao, H. C. Wu, X. X. Tian, D. S. Xu, G. L. W. Cross, G. S. Duesberg, I. V. Shvets, and D. P. Yu, “Memory and threshold resistance switching in Ni/NiO core-shell nanowires,” Nano Lett. 11(11), 4601–4606 (2011).
[PubMed]

W. Zhou, K. Zheng, L. He, R. Wang, L. Guo, C. Chen, X. Han, and Z. Zhang, “Ni/Ni3C Core-Shell Nanochains and Its Magnetic Properties: One-Step Synthesis at Low Temperature,” Nano Lett. 8(4), 1147–1152 (2008).
[PubMed]

Nanoscale Res. Lett. (1)

W. Xiang, X. Wang, Y. Liu, J. Zhang, and K. Zhao, “Density detection of aligned nanowire arrays using terahertz time-domain spectroscopy,” Nanoscale Res. Lett. 11(1), 337 (2016).
[PubMed]

Nanotechnology (1)

C. M. Hangarter, Y. Rheem, B. Yoo, E. Yang, and N. V. Myung, “Hierarchical magnetic assembly of nanowires,” Nanotechnology 18(20), 205305 (2007).

Nat. Commun. (1)

W. M. Zhu, A. Q. Liu, T. Bourouina, D. P. Tsai, J. H. Teng, X. H. Zhang, G. Q. Lo, D. L. Kwong, and N. I. Zheludev, “Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy,” Nat. Commun. 3(4), 1274 (2012).
[PubMed]

Nat. Photonics (2)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).

Nature (1)

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[PubMed]

Opt. Express (3)

Phys. Rev. Lett. (1)

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid Crystal Tunable Metamaterial Absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[PubMed]

Quant. Imaging Med. Surg. (1)

C. Yu, S. Fan, Y. Sun, and E. Pickwell-Macpherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2(1), 33–45 (2012).
[PubMed]

Sci. Rep. (1)

P. Pitchappa, C. P. Ho, Y. Qian, L. Dhakar, N. Singh, and C. Lee, “Microelectromechanically tunable multiband metamaterial with preserved isotropy,” Sci. Rep. 5, 11678 (2015).
[PubMed]

Science (1)

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 SEM images of the BA junctions with the junction angles of (a) 30° and (b) 90°.
Fig. 2
Fig. 2 THz-TDS of the BA junctions with different junction angles.
Fig. 3
Fig. 3 Changes in the optical thicknesses (a) for the SA structures and (b) the BA junctions.
Fig. 4
Fig. 4 the FTS (a) and changes in the normalized transmittance (b) of the SA junctions, (c) the frequency transmission spectra of the BA junctions.

Metrics