Abstract

As a high-precision angular sensor, the fiber optic gyroscope (FOG) usually shows high sensitivity to disturbances of the environmental temperature. The thermal performance of the FOG will be directly affected by the selection of adhesive for adhesion inside the fiber coil, however, the current research on this is very rare. This paper is focusing the question above; firstly, the influence mechanism of temperature and stress on the non-reciprocity phase difference of the fiber coil is analyzed, and a model of fiber coil thermal-induced drift error is built. Secondly, the fiber coil three-dimensional simulation model including fiber core, coating layer, adhesive and various materials is built, and the accuracy of the model is verified by simulation and experiment. In the end, the influence of six thermal physical property parameters of adhesive material on the thermal performance of the FOG is analyzed quantitatively and the degree of influence from high to low is Young’s modulus, Poisson’s ratio, specific heat capacity, density and thermal conductivity. Results show that when choosing the adhesive, decreasing the thermal expansion coefficient, improving the young’s modulus, reducing the poisson’s ratio, reducing the heat capacity, reducing the density and increasing the thermal conductivity within a certain scope will be conducive to inhibit thermal-induced error of the FOG. And further prove that, the thermal stress distribution inside the fiber coil has more influence on the thermal performance of the FOG than the temperature field distribution. These findings are very helpful to chose and produce adhesive of fiber coil and improve the thermal performance of FOG.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of sensing coil polarization properties’ effect on performance of fiber optical gyroscope

Xiaobin Xu, Xiong Pan, and Jingming Song
Appl. Opt. 51(5) 621-625 (2012)

Enhanced environmental performance of fiber optic gyroscope by an adhesive potting technology

Jun Chen, Nengwen Ding, Zhifeng Li, and Wei Wang
Appl. Opt. 54(26) 7828-7834 (2015)

A novel method for determining and improving the quality of a quadrupolar fiber gyro coil under temperature variations

Zhihong Li, Zhuo Meng, Tiegen Liu, and X. Steve Yao
Opt. Express 21(2) 2521-2530 (2013)

References

  • View by:
  • |
  • |
  • |

  1. H. C. Lefèvre, “The fiber-optic gyroscope, a century after Sagnac’s experiment: The ultimate rotation-sensing technology?” Comptes Rendus Physique 15(10), 851–858 (2014).
    [Crossref]
  2. G. A. Pavlath, “Fiber optic gyros from research to production,” Proc. SPIE 9852, 985205(2016).
    [Crossref]
  3. G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyroscope development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
    [Crossref]
  4. E. V. Dranitsyna, D. A. Egorov, A. A. Untilov, G. B. Deineka, I. A. Sharkov, and I. G. Deineka, “Reducing the effect of temperature variations on FOG output signal,” Gyroscopy Navigation 4(2), 92–98 (2013).
    [Crossref]
  5. Y. L. Wang, L. Y. Ren, J. T. Xu, J. Liang, M. H Kang, K. L. Ren, and N. B. Shi, “The compensation of y waveguide temperature drifts in fog with the thermal resistor,” Adv. Mater. Res. 924, 336–342 (2014).
    [Crossref]
  6. F. Mohr, “Thermooptically induced bias drift in fiber optical Sagnac interferometers,” J. Lightwave Technol. 14(1), 27–41 (1996).
    [Crossref]
  7. C. Zhang, S. Du, J. Jin, and Z. Zhang, “Thermal analysis of the effects of thermally induced nonreciprocity in fiber optic gyroscope sensing coils,” Optik 122(1), 20–23 (2011).
    [Crossref]
  8. M. Sardinha, J. Rivera, A. Kaliszek, and S. Kopacz, “Octupole winding pattern for a fiber optic coil,” EP2075535 (2009).
  9. J. L. Page, D. R. Bina, and D. Milliman, “Optical fiber coil and method of winding,” US 5841932 A. (1999).
  10. X. Li, W. Ling, K. He, Z. Xu, and S. Du, “A thermal performance analysis and comparison of fiber coils with the d-cyl winding and qad winding methods,” Sensors 16(6), 900 (2016).
    [Crossref]
  11. D. M. Shupe, “Thermally induced nonreciprocity in the fiber-optic interferometer,” Appl. Opt. 19(5), 654–655 (1980).
    [Crossref] [PubMed]
  12. Z. Gao, “Fiber optic gyroscope vibration error due to fiber tail length asymmetry based on elastic-optic effect,” Opt. Eng. 51(12), 4403 (2012).
  13. J. Emerson, S. Hodgkin, P. Bunclark, M. Irwin, and J. Lewis, “Thermal strain analysis of optic fiber sensors,” Sensors 13(2), 1846 (2013).
    [Crossref]
  14. K. Brugger, “Effect of thermal stress on refractive index in clad fibers,” Appl. Opt. 10(2), 437–438 (1971).
    [Crossref] [PubMed]
  15. Z. Gao, Y. Zhang, and W. Gao, “Theoretical model and experimental verification of thermal strain distribution in quadrupolar fibre coil,” Electron. Lett. 50(19), 1382–1384 (2014).
    [Crossref]
  16. W. Ling, X. Li, Z. Xu, Z. Zhang, and Y. Wei, “Thermal effects of fiber sensing coils in different winding pattern considering both thermal gradient and thermal stress,” Opt. Commun. 356, 290–295 (2015).
    [Crossref]
  17. Z. Zhang, F. Yu, and Q. Sun, “Thermal-induced rate error of a fiber-optic gyroscope considering various defined factors,” Opt. Eng. 56(9), 1 (2017).
    [Crossref]
  18. H. C. Lefèvre, The Fiber-Optic Gyroscope (Artech House, 2014).
  19. Y. A. Cengel and M. A. Boles, Thermodynamics: An Engineering Approach (McGraw-Hill, 2016).

2017 (1)

Z. Zhang, F. Yu, and Q. Sun, “Thermal-induced rate error of a fiber-optic gyroscope considering various defined factors,” Opt. Eng. 56(9), 1 (2017).
[Crossref]

2016 (3)

G. A. Pavlath, “Fiber optic gyros from research to production,” Proc. SPIE 9852, 985205(2016).
[Crossref]

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyroscope development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

X. Li, W. Ling, K. He, Z. Xu, and S. Du, “A thermal performance analysis and comparison of fiber coils with the d-cyl winding and qad winding methods,” Sensors 16(6), 900 (2016).
[Crossref]

2015 (1)

W. Ling, X. Li, Z. Xu, Z. Zhang, and Y. Wei, “Thermal effects of fiber sensing coils in different winding pattern considering both thermal gradient and thermal stress,” Opt. Commun. 356, 290–295 (2015).
[Crossref]

2014 (3)

Z. Gao, Y. Zhang, and W. Gao, “Theoretical model and experimental verification of thermal strain distribution in quadrupolar fibre coil,” Electron. Lett. 50(19), 1382–1384 (2014).
[Crossref]

H. C. Lefèvre, “The fiber-optic gyroscope, a century after Sagnac’s experiment: The ultimate rotation-sensing technology?” Comptes Rendus Physique 15(10), 851–858 (2014).
[Crossref]

Y. L. Wang, L. Y. Ren, J. T. Xu, J. Liang, M. H Kang, K. L. Ren, and N. B. Shi, “The compensation of y waveguide temperature drifts in fog with the thermal resistor,” Adv. Mater. Res. 924, 336–342 (2014).
[Crossref]

2013 (2)

E. V. Dranitsyna, D. A. Egorov, A. A. Untilov, G. B. Deineka, I. A. Sharkov, and I. G. Deineka, “Reducing the effect of temperature variations on FOG output signal,” Gyroscopy Navigation 4(2), 92–98 (2013).
[Crossref]

J. Emerson, S. Hodgkin, P. Bunclark, M. Irwin, and J. Lewis, “Thermal strain analysis of optic fiber sensors,” Sensors 13(2), 1846 (2013).
[Crossref]

2012 (1)

Z. Gao, “Fiber optic gyroscope vibration error due to fiber tail length asymmetry based on elastic-optic effect,” Opt. Eng. 51(12), 4403 (2012).

2011 (1)

C. Zhang, S. Du, J. Jin, and Z. Zhang, “Thermal analysis of the effects of thermally induced nonreciprocity in fiber optic gyroscope sensing coils,” Optik 122(1), 20–23 (2011).
[Crossref]

1996 (1)

F. Mohr, “Thermooptically induced bias drift in fiber optical Sagnac interferometers,” J. Lightwave Technol. 14(1), 27–41 (1996).
[Crossref]

1980 (1)

1971 (1)

Arrizon, A.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyroscope development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Bina, D. R.

J. L. Page, D. R. Bina, and D. Milliman, “Optical fiber coil and method of winding,” US 5841932 A. (1999).

Boles, M. A.

Y. A. Cengel and M. A. Boles, Thermodynamics: An Engineering Approach (McGraw-Hill, 2016).

Brugger, K.

Bunclark, P.

J. Emerson, S. Hodgkin, P. Bunclark, M. Irwin, and J. Lewis, “Thermal strain analysis of optic fiber sensors,” Sensors 13(2), 1846 (2013).
[Crossref]

Cengel, Y. A.

Y. A. Cengel and M. A. Boles, Thermodynamics: An Engineering Approach (McGraw-Hill, 2016).

Deineka, G. B.

E. V. Dranitsyna, D. A. Egorov, A. A. Untilov, G. B. Deineka, I. A. Sharkov, and I. G. Deineka, “Reducing the effect of temperature variations on FOG output signal,” Gyroscopy Navigation 4(2), 92–98 (2013).
[Crossref]

Deineka, I. G.

E. V. Dranitsyna, D. A. Egorov, A. A. Untilov, G. B. Deineka, I. A. Sharkov, and I. G. Deineka, “Reducing the effect of temperature variations on FOG output signal,” Gyroscopy Navigation 4(2), 92–98 (2013).
[Crossref]

Dranitsyna, E. V.

E. V. Dranitsyna, D. A. Egorov, A. A. Untilov, G. B. Deineka, I. A. Sharkov, and I. G. Deineka, “Reducing the effect of temperature variations on FOG output signal,” Gyroscopy Navigation 4(2), 92–98 (2013).
[Crossref]

Du, S.

X. Li, W. Ling, K. He, Z. Xu, and S. Du, “A thermal performance analysis and comparison of fiber coils with the d-cyl winding and qad winding methods,” Sensors 16(6), 900 (2016).
[Crossref]

C. Zhang, S. Du, J. Jin, and Z. Zhang, “Thermal analysis of the effects of thermally induced nonreciprocity in fiber optic gyroscope sensing coils,” Optik 122(1), 20–23 (2011).
[Crossref]

Egorov, D. A.

E. V. Dranitsyna, D. A. Egorov, A. A. Untilov, G. B. Deineka, I. A. Sharkov, and I. G. Deineka, “Reducing the effect of temperature variations on FOG output signal,” Gyroscopy Navigation 4(2), 92–98 (2013).
[Crossref]

Emerson, J.

J. Emerson, S. Hodgkin, P. Bunclark, M. Irwin, and J. Lewis, “Thermal strain analysis of optic fiber sensors,” Sensors 13(2), 1846 (2013).
[Crossref]

Gao, W.

Z. Gao, Y. Zhang, and W. Gao, “Theoretical model and experimental verification of thermal strain distribution in quadrupolar fibre coil,” Electron. Lett. 50(19), 1382–1384 (2014).
[Crossref]

Gao, Z.

Z. Gao, Y. Zhang, and W. Gao, “Theoretical model and experimental verification of thermal strain distribution in quadrupolar fibre coil,” Electron. Lett. 50(19), 1382–1384 (2014).
[Crossref]

Z. Gao, “Fiber optic gyroscope vibration error due to fiber tail length asymmetry based on elastic-optic effect,” Opt. Eng. 51(12), 4403 (2012).

He, K.

X. Li, W. Ling, K. He, Z. Xu, and S. Du, “A thermal performance analysis and comparison of fiber coils with the d-cyl winding and qad winding methods,” Sensors 16(6), 900 (2016).
[Crossref]

Ho, W.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyroscope development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Hodgkin, S.

J. Emerson, S. Hodgkin, P. Bunclark, M. Irwin, and J. Lewis, “Thermal strain analysis of optic fiber sensors,” Sensors 13(2), 1846 (2013).
[Crossref]

Irwin, M.

J. Emerson, S. Hodgkin, P. Bunclark, M. Irwin, and J. Lewis, “Thermal strain analysis of optic fiber sensors,” Sensors 13(2), 1846 (2013).
[Crossref]

Jin, J.

C. Zhang, S. Du, J. Jin, and Z. Zhang, “Thermal analysis of the effects of thermally induced nonreciprocity in fiber optic gyroscope sensing coils,” Optik 122(1), 20–23 (2011).
[Crossref]

Kaliszek, A.

M. Sardinha, J. Rivera, A. Kaliszek, and S. Kopacz, “Octupole winding pattern for a fiber optic coil,” EP2075535 (2009).

Kang, M. H

Y. L. Wang, L. Y. Ren, J. T. Xu, J. Liang, M. H Kang, K. L. Ren, and N. B. Shi, “The compensation of y waveguide temperature drifts in fog with the thermal resistor,” Adv. Mater. Res. 924, 336–342 (2014).
[Crossref]

Kopacz, S.

M. Sardinha, J. Rivera, A. Kaliszek, and S. Kopacz, “Octupole winding pattern for a fiber optic coil,” EP2075535 (2009).

Lefèvre, H. C.

H. C. Lefèvre, “The fiber-optic gyroscope, a century after Sagnac’s experiment: The ultimate rotation-sensing technology?” Comptes Rendus Physique 15(10), 851–858 (2014).
[Crossref]

H. C. Lefèvre, The Fiber-Optic Gyroscope (Artech House, 2014).

Lewis, J.

J. Emerson, S. Hodgkin, P. Bunclark, M. Irwin, and J. Lewis, “Thermal strain analysis of optic fiber sensors,” Sensors 13(2), 1846 (2013).
[Crossref]

Li, X.

X. Li, W. Ling, K. He, Z. Xu, and S. Du, “A thermal performance analysis and comparison of fiber coils with the d-cyl winding and qad winding methods,” Sensors 16(6), 900 (2016).
[Crossref]

W. Ling, X. Li, Z. Xu, Z. Zhang, and Y. Wei, “Thermal effects of fiber sensing coils in different winding pattern considering both thermal gradient and thermal stress,” Opt. Commun. 356, 290–295 (2015).
[Crossref]

Liang, J.

Y. L. Wang, L. Y. Ren, J. T. Xu, J. Liang, M. H Kang, K. L. Ren, and N. B. Shi, “The compensation of y waveguide temperature drifts in fog with the thermal resistor,” Adv. Mater. Res. 924, 336–342 (2014).
[Crossref]

Ling, W.

X. Li, W. Ling, K. He, Z. Xu, and S. Du, “A thermal performance analysis and comparison of fiber coils with the d-cyl winding and qad winding methods,” Sensors 16(6), 900 (2016).
[Crossref]

W. Ling, X. Li, Z. Xu, Z. Zhang, and Y. Wei, “Thermal effects of fiber sensing coils in different winding pattern considering both thermal gradient and thermal stress,” Opt. Commun. 356, 290–295 (2015).
[Crossref]

Mead, D.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyroscope development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Milliman, D.

J. L. Page, D. R. Bina, and D. Milliman, “Optical fiber coil and method of winding,” US 5841932 A. (1999).

Mohr, F.

F. Mohr, “Thermooptically induced bias drift in fiber optical Sagnac interferometers,” J. Lightwave Technol. 14(1), 27–41 (1996).
[Crossref]

Page, J. L.

J. L. Page, D. R. Bina, and D. Milliman, “Optical fiber coil and method of winding,” US 5841932 A. (1999).

Pavlath, G. A.

G. A. Pavlath, “Fiber optic gyros from research to production,” Proc. SPIE 9852, 985205(2016).
[Crossref]

Qiu, T.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyroscope development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Ren, K. L.

Y. L. Wang, L. Y. Ren, J. T. Xu, J. Liang, M. H Kang, K. L. Ren, and N. B. Shi, “The compensation of y waveguide temperature drifts in fog with the thermal resistor,” Adv. Mater. Res. 924, 336–342 (2014).
[Crossref]

Ren, L. Y.

Y. L. Wang, L. Y. Ren, J. T. Xu, J. Liang, M. H Kang, K. L. Ren, and N. B. Shi, “The compensation of y waveguide temperature drifts in fog with the thermal resistor,” Adv. Mater. Res. 924, 336–342 (2014).
[Crossref]

Rivera, J.

M. Sardinha, J. Rivera, A. Kaliszek, and S. Kopacz, “Octupole winding pattern for a fiber optic coil,” EP2075535 (2009).

Salit, M.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyroscope development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Sanders, G. A.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyroscope development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Sanders, S. J.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyroscope development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Sardinha, M.

M. Sardinha, J. Rivera, A. Kaliszek, and S. Kopacz, “Octupole winding pattern for a fiber optic coil,” EP2075535 (2009).

Sharkov, I. A.

E. V. Dranitsyna, D. A. Egorov, A. A. Untilov, G. B. Deineka, I. A. Sharkov, and I. G. Deineka, “Reducing the effect of temperature variations on FOG output signal,” Gyroscopy Navigation 4(2), 92–98 (2013).
[Crossref]

Shi, N. B.

Y. L. Wang, L. Y. Ren, J. T. Xu, J. Liang, M. H Kang, K. L. Ren, and N. B. Shi, “The compensation of y waveguide temperature drifts in fog with the thermal resistor,” Adv. Mater. Res. 924, 336–342 (2014).
[Crossref]

Shupe, D. M.

Smiciklas, M.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyroscope development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Strandjord, L. K.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyroscope development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Sun, Q.

Z. Zhang, F. Yu, and Q. Sun, “Thermal-induced rate error of a fiber-optic gyroscope considering various defined factors,” Opt. Eng. 56(9), 1 (2017).
[Crossref]

Untilov, A. A.

E. V. Dranitsyna, D. A. Egorov, A. A. Untilov, G. B. Deineka, I. A. Sharkov, and I. G. Deineka, “Reducing the effect of temperature variations on FOG output signal,” Gyroscopy Navigation 4(2), 92–98 (2013).
[Crossref]

Wang, Y. L.

Y. L. Wang, L. Y. Ren, J. T. Xu, J. Liang, M. H Kang, K. L. Ren, and N. B. Shi, “The compensation of y waveguide temperature drifts in fog with the thermal resistor,” Adv. Mater. Res. 924, 336–342 (2014).
[Crossref]

Wei, Y.

W. Ling, X. Li, Z. Xu, Z. Zhang, and Y. Wei, “Thermal effects of fiber sensing coils in different winding pattern considering both thermal gradient and thermal stress,” Opt. Commun. 356, 290–295 (2015).
[Crossref]

Wu, J.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyroscope development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Xu, J. T.

Y. L. Wang, L. Y. Ren, J. T. Xu, J. Liang, M. H Kang, K. L. Ren, and N. B. Shi, “The compensation of y waveguide temperature drifts in fog with the thermal resistor,” Adv. Mater. Res. 924, 336–342 (2014).
[Crossref]

Xu, Z.

X. Li, W. Ling, K. He, Z. Xu, and S. Du, “A thermal performance analysis and comparison of fiber coils with the d-cyl winding and qad winding methods,” Sensors 16(6), 900 (2016).
[Crossref]

W. Ling, X. Li, Z. Xu, Z. Zhang, and Y. Wei, “Thermal effects of fiber sensing coils in different winding pattern considering both thermal gradient and thermal stress,” Opt. Commun. 356, 290–295 (2015).
[Crossref]

Yu, F.

Z. Zhang, F. Yu, and Q. Sun, “Thermal-induced rate error of a fiber-optic gyroscope considering various defined factors,” Opt. Eng. 56(9), 1 (2017).
[Crossref]

Zhang, C.

C. Zhang, S. Du, J. Jin, and Z. Zhang, “Thermal analysis of the effects of thermally induced nonreciprocity in fiber optic gyroscope sensing coils,” Optik 122(1), 20–23 (2011).
[Crossref]

Zhang, Y.

Z. Gao, Y. Zhang, and W. Gao, “Theoretical model and experimental verification of thermal strain distribution in quadrupolar fibre coil,” Electron. Lett. 50(19), 1382–1384 (2014).
[Crossref]

Zhang, Z.

Z. Zhang, F. Yu, and Q. Sun, “Thermal-induced rate error of a fiber-optic gyroscope considering various defined factors,” Opt. Eng. 56(9), 1 (2017).
[Crossref]

W. Ling, X. Li, Z. Xu, Z. Zhang, and Y. Wei, “Thermal effects of fiber sensing coils in different winding pattern considering both thermal gradient and thermal stress,” Opt. Commun. 356, 290–295 (2015).
[Crossref]

C. Zhang, S. Du, J. Jin, and Z. Zhang, “Thermal analysis of the effects of thermally induced nonreciprocity in fiber optic gyroscope sensing coils,” Optik 122(1), 20–23 (2011).
[Crossref]

Adv. Mater. Res. (1)

Y. L. Wang, L. Y. Ren, J. T. Xu, J. Liang, M. H Kang, K. L. Ren, and N. B. Shi, “The compensation of y waveguide temperature drifts in fog with the thermal resistor,” Adv. Mater. Res. 924, 336–342 (2014).
[Crossref]

Appl. Opt. (2)

Comptes Rendus Physique (1)

H. C. Lefèvre, “The fiber-optic gyroscope, a century after Sagnac’s experiment: The ultimate rotation-sensing technology?” Comptes Rendus Physique 15(10), 851–858 (2014).
[Crossref]

Electron. Lett. (1)

Z. Gao, Y. Zhang, and W. Gao, “Theoretical model and experimental verification of thermal strain distribution in quadrupolar fibre coil,” Electron. Lett. 50(19), 1382–1384 (2014).
[Crossref]

Gyroscopy Navigation (1)

E. V. Dranitsyna, D. A. Egorov, A. A. Untilov, G. B. Deineka, I. A. Sharkov, and I. G. Deineka, “Reducing the effect of temperature variations on FOG output signal,” Gyroscopy Navigation 4(2), 92–98 (2013).
[Crossref]

J. Lightwave Technol. (1)

F. Mohr, “Thermooptically induced bias drift in fiber optical Sagnac interferometers,” J. Lightwave Technol. 14(1), 27–41 (1996).
[Crossref]

Opt. Commun. (1)

W. Ling, X. Li, Z. Xu, Z. Zhang, and Y. Wei, “Thermal effects of fiber sensing coils in different winding pattern considering both thermal gradient and thermal stress,” Opt. Commun. 356, 290–295 (2015).
[Crossref]

Opt. Eng. (2)

Z. Zhang, F. Yu, and Q. Sun, “Thermal-induced rate error of a fiber-optic gyroscope considering various defined factors,” Opt. Eng. 56(9), 1 (2017).
[Crossref]

Z. Gao, “Fiber optic gyroscope vibration error due to fiber tail length asymmetry based on elastic-optic effect,” Opt. Eng. 51(12), 4403 (2012).

Optik (1)

C. Zhang, S. Du, J. Jin, and Z. Zhang, “Thermal analysis of the effects of thermally induced nonreciprocity in fiber optic gyroscope sensing coils,” Optik 122(1), 20–23 (2011).
[Crossref]

Proc. SPIE (2)

G. A. Pavlath, “Fiber optic gyros from research to production,” Proc. SPIE 9852, 985205(2016).
[Crossref]

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyroscope development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Sensors (2)

X. Li, W. Ling, K. He, Z. Xu, and S. Du, “A thermal performance analysis and comparison of fiber coils with the d-cyl winding and qad winding methods,” Sensors 16(6), 900 (2016).
[Crossref]

J. Emerson, S. Hodgkin, P. Bunclark, M. Irwin, and J. Lewis, “Thermal strain analysis of optic fiber sensors,” Sensors 13(2), 1846 (2013).
[Crossref]

Other (4)

H. C. Lefèvre, The Fiber-Optic Gyroscope (Artech House, 2014).

Y. A. Cengel and M. A. Boles, Thermodynamics: An Engineering Approach (McGraw-Hill, 2016).

M. Sardinha, J. Rivera, A. Kaliszek, and S. Kopacz, “Octupole winding pattern for a fiber optic coil,” EP2075535 (2009).

J. L. Page, D. R. Bina, and D. Milliman, “Optical fiber coil and method of winding,” US 5841932 A. (1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Fiber coil structure diagram. (a) Relevant dimensions of fiber coil. (b) Schematic diagram of the quadrupolar fiber coil cross section, where the adhesive is filled inside the whole fiber coil.
Fig. 2
Fig. 2 Finite element simulation model of fiber coil.
Fig. 3
Fig. 3 Simulation and experimental stress distribution results.
Fig. 4
Fig. 4 Temperature setting and measurement curve.
Fig. 5
Fig. 5 Simulation curves(dotted line) and experimental curves(solid line) of thermal-induced drift error.
Fig. 6
Fig. 6 Simulation temperature process(solid line) and temperature gradient(dotted line).
Fig. 7
Fig. 7 Influence of specific heat capacity on thermal-induced drift error.
Fig. 8
Fig. 8 Influence of density on thermal-induced drift error.
Fig. 9
Fig. 9 Influence of thermal conductivity on thermal-induced drift error.
Fig. 10
Fig. 10 The influence of thermal expansion coefficient on thermal drift error.
Fig. 11
Fig. 11 The influence of Young’s modulus on thermal drift error.
Fig. 12
Fig. 12 The influence of Poisson’s ratio on thermal drift error.

Tables (5)

Tables Icon

Table 1 Relevant parameter of fiber coil

Tables Icon

Table 2 Material parameter of fiber coil

Tables Icon

Table 3 The value of the thermal physical property parameters of the adhesive

Tables Icon

Table 4 The thermal-induced error of the FOG with different parameter magnitude in 1–3min (°/h)

Tables Icon

Table 5 The thermal-induced error of the FOG with different parameter magnitude in the whole temperature process(°/h)

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δ L T = α L Δ T
Δ n T = n 0 T Δ T
Δ L P = 2 μ E L Δ P
Δ n P = n 0 3 2 E ( p 11 μ p 11 + p 12 3 μ p 12 ) Δ P
Ω E = n 0 L D { ( n 0 T + n 0 α ) 0 L ( L 2 s ) T ˙ ( s , t ) d s + ( n 0 3 2 E ( p 11 μ p 11 + p 12 3 μ p 12 ) + 2 μ n 0 E ) 0 L ( L 2 s ) P ˙ ( s , t ) d s }
Ω E = A T i = 1 m * n [ L i 1 L i ( L 2 s ) T ˙ ( s , t ) d s ] + A P i = 1 m * n [ L i 1 L i ( L 2 s ) P ˙ ( s , t ) d s ] = A T i = 1 m * n N ( i ) T ˙ ( i ) + A P i = 1 m * n N ( i ) P ˙ ( i ) = A T i = 1 m j = 1 n ( N i j T ˙ i j ) + A P i = 1 m j = 1 n ( N i j P ˙ i j ) = A T N , T + A P N , P N = ( N 11 N 1 n N m 1 N m n ) T = ( T ˙ 11 T ˙ 1 n T ˙ m 1 T ˙ m n ) P = ( P ˙ 11 P ˙ 1 n P ˙ m 1 P ˙ m n )
C W { v = ( i 1 ) / n + 1 ( i = 1 m × n / 2 ) m i = m + 1 2 v + ( ( 1 ) v 1 ) / 2 n i = ( 1 ) v + 1 ( mod ( i 1 , n ) + 1 ) + ( n + 1 ) ( ( 1 ) v + 1 ) / 2 R i = R I n + ( m i 0.5 ) d L e n g h t i = 2 π R i L i = L i 1 + L e n g h t i ( L 0 = 0 ) N m i , n i = ( L × L i L i   2 ) ( L × L i 1 L i 1   2 )
C C W { v = ( i 1 ) / n + 1 m / 2 ( i = m × n / 2 + 1 m × n ) m i = 2 v + ( ( 1 ) v + 1 1 ) / 2 n i = ( 1 ) v + 1 ( mod ( i 1 , n ) + 1 ) + ( n + 1 ) ( ( 1 ) v + 1 + 1 ) / 2 R i = R I n + ( m i 0.5 ) d L e n g h t i = 2 π R i L i = L i 1 + L e n g h t i N m i , n i = ( L × L i L i   2 ) ( L × L i 1 L i 1   2 )
p = ( Ω max Ω min ) / Ω min

Metrics