Abstract

We present a simple and effective method for suppressing thermally induced wavelength drift in a widely tunable digital supermode distributed Bragg reflector (DS-DBR) laser monolithically integrated with a semiconductor optical amplifier (SOA). For fast thermal compensation, pre-compensatory currents are injected into the gain medium section of the DS-DBR laser and the SOA. This method can be easily applied to existing commercial tunable lasers, since it is implemented without any modification to manufacturing process. Experimental results exhibit that wavelength stability is noticeably improved to ± 0.01 nm. We also experimentally demonstrate a fast channel-to-channel switching in a wavelength-routed optical switching system employing a 90 × 90 arrayed waveguide grating router (AWGR). The measured switching time is less than 0.81 µs.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Carrier-induced fast wavelength switching in tunable V-cavity laser with quantum well intermixed tuning section

Xin Zhang, Jian-Jun He, Neng Liu, and Jan J. Dubowski
Opt. Express 23(20) 26336-26341 (2015)

High-speed directly modulated widely tunable two-section InGaAlAs DBR lasers

Daibing Zhou, Song Liang, Lingjuan Zhao, Hongliang Zhu, and Wei Wang
Opt. Express 25(3) 2341-2346 (2017)

Precision and fast wavelength tuning of a dynamically phase-locked widely-tunable laser

Kenji Numata, Jeffrey R. Chen, and Stewart T. Wu
Opt. Express 20(13) 14234-14243 (2012)

References

  • View by:
  • |
  • |
  • |

  1. C. Kachris, K. Kanonakis, and I. Tomkos, “Optical interconnection networks in data centers: recent trends and future challenges,” IEEE Commun. Mag. 41(9), 39–45 (2013).
  2. K. Ueda, Y. Mori, H. Hasegawa, and K. Sato, “Novel intra- and inter-datacenter converged network exploiting space- and wavelength-dimensional switches,” in Proceedings of Optical Fiber Communication Conference (OFC) (2017), paper M3K.2.
  3. M. Ding, A. Wonfor, Q. Cheng, R. V. Penty, and I. H. White, “Emulation of a 16×16 optical switch using cascaded 4×4 dilated hybrid MZI-SOA optical switches,” in Proceedings of Optical Fiber Communication Conference (OFC) (2017), paper M3K.5.
  4. Y. Yin, R. Proietti, X. Ye, C. J. Nitta, V. Akella, and S. J. B. Yoo, “LIONS: An AWGR-based low-latency optical switch for high-performance computing and data centers,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600409 (2013).
  5. X. Ye, P. Mejia, Y. Yin, R. Proietti, S. J. B. Yoo, and V. Akella, “DOS—A scalable optical switch for datacenters,” in Proceedings of the 6th ACM/IEEE Symp. Archit. Netw. Commun. Syst. (ANCS) (2010), 1–12.
  6. K. Sato, H. Hasegawa, T. Niwa, and T. Watanabe, “A large-scale wavelength routing optical switch for data center networks,” IEEE Commun. Mag. 51(9), 46–52 (2013).
  7. K. Ueda, Y. Mori, H. Hasegawa, K. Sato, and T. Watanabe, “Large-scale optical switch prototypes utilizing cyclic arrayed-waveguide gratings for datacenters,” J. Lightwave Technol. 34(2), 608–617 (2016).
  8. P. Grani, G. Liu, R. Proietti, and S. J. B. Yoo, “Bit-parallel all-to-all and flexible AWGR-based optical interconnects,” in Proceedings of Optical Fiber Communication Conference (OFC) (2017), paper M3K.4.
  9. J. E. Simsarian, A. Bhardwaj, J. Gripp, K. Sherman, Y. Su, C. Webb, L. Zhang, and M. Zirngibl, “Fast switching characteristics of a widely tunable laser transmitter,” IEEE Photonics Technol. Lett. 15(8), 1038–1040 (2003).
  10. N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of thermal wavelength drift in super-structure grating distributed Bragg reflector (SSG-DBR) laser with thermal drift compensator,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1164–1169 (2007).
  11. B. Puttnam, M. Dueser, B. Thomsen, and P. Bayvel, “Burst mode operation of a DS-DBR widely tunable laser for wavelength agile system applications,” in Proceedings of Optical Fiber Communication Conference (OFC) (2006), paper OWI86.
  12. N. Nunoya, H. Ishii, Y. Kawaguchi, R. Iga, T. Sato, N. Fujiwara, and H. Oohashi, “Tunable distributed amplification (TDA-) DFB laser with asymmetric structure,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1502–1512 (2011).
  13. Y. Ueno, K. Mochizuki, K. Hasegawa, and M. Nogami, “Fast wavelength switching with DFB lasers utilizing thermal compensation,” in Proceedings of Opto-Electronics and Communications Conference (OECC) (2015), paper JWeC.13.
  14. A. J. Ward, V. Hill, R. Cush, S. C. Heck, P. Firth, Y. Honzawa, and Y. Uchida, “Monolithic integration of AlInGaAs DS-DBR tunable laser and AlInGaAs MZ modulator with small footprint, low power dissipation and long-haul 10Gb/s performance,” in Proceedings of 39th European Conference and Exhibition on Optical Communication (ECOC) (2013), pp. 1–3.
  15. L. Ponnampalam, N. D. Whitbread, R. Barlow, G. Busico, A. J. Ward, J. P. Duck, and D. J. Robbins, “Dynamically controlled channel-to-channel switching in a full-band DS-DBR laser,” IEEE J. Quantum Electron. 42(3), 223–230 (2006).
  16. A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
  17. M. Ito and T. Kimura, “Carrier density dependence of refractive index in AlGaAs semi-conductor lasers,” Quantum Electron. Lett. 16(9), 910–911 (1980).
  18. L. Ponnampalam, C. Renaud, M. Fice, R. Cush, R. Turner, P. Firth, M. Wale, and A. Seeds, “High temperature operation of athermal widely tuneable laser with simplified wavelength control for WDM-PON systems,” Opt. Express 22(20), 24405–24410 (2014).
    [PubMed]
  19. X. Wu, D. Liu, H. Lin, and X. Liu, “Suppression of burst-mode operation induced laser wavelength drift for upstream transmission in TWDM-PON by using an integrated heater for thermal control,” in Proceedings of Optical Fiber Communication Conference (OFC) (2017), paper Tu3G.1.
  20. X. Han, J. Gao, H. Wang, and Y. Yu, “Thermal analysis of an SOA integrated in SG-DBR laser module,” Opt. Quantum Electron. 48(2), 1–8 (2016).
  21. OIF-ITLA-MSA-01, 3, “Optical Internetworking Forum (2015),” http://www.oiforum.com/
  22. A. Naughton, C. Antony, P. Ossieur, S. Porto, G. Talli, and P. D. Townsend, “Optimisation of SOA-REAMs for hybrid DWDM-TDMA PON applications,” Opt. Express 19(26), B722–B727 (2011).
    [PubMed]
  23. M. L. M. Sarrion and M. M. Sanchez, “Preparation and characterization of thermistors with negative temperature coefficient, NixMn3–xO4 (1≥x≥0.56), from formate precursors,” J. Mater. Chem. 3(3), 273–277 (1993).

2016 (2)

K. Ueda, Y. Mori, H. Hasegawa, K. Sato, and T. Watanabe, “Large-scale optical switch prototypes utilizing cyclic arrayed-waveguide gratings for datacenters,” J. Lightwave Technol. 34(2), 608–617 (2016).

X. Han, J. Gao, H. Wang, and Y. Yu, “Thermal analysis of an SOA integrated in SG-DBR laser module,” Opt. Quantum Electron. 48(2), 1–8 (2016).

2014 (1)

2013 (3)

C. Kachris, K. Kanonakis, and I. Tomkos, “Optical interconnection networks in data centers: recent trends and future challenges,” IEEE Commun. Mag. 41(9), 39–45 (2013).

Y. Yin, R. Proietti, X. Ye, C. J. Nitta, V. Akella, and S. J. B. Yoo, “LIONS: An AWGR-based low-latency optical switch for high-performance computing and data centers,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600409 (2013).

K. Sato, H. Hasegawa, T. Niwa, and T. Watanabe, “A large-scale wavelength routing optical switch for data center networks,” IEEE Commun. Mag. 51(9), 46–52 (2013).

2011 (2)

N. Nunoya, H. Ishii, Y. Kawaguchi, R. Iga, T. Sato, N. Fujiwara, and H. Oohashi, “Tunable distributed amplification (TDA-) DFB laser with asymmetric structure,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1502–1512 (2011).

A. Naughton, C. Antony, P. Ossieur, S. Porto, G. Talli, and P. D. Townsend, “Optimisation of SOA-REAMs for hybrid DWDM-TDMA PON applications,” Opt. Express 19(26), B722–B727 (2011).
[PubMed]

2007 (1)

N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of thermal wavelength drift in super-structure grating distributed Bragg reflector (SSG-DBR) laser with thermal drift compensator,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1164–1169 (2007).

2006 (1)

L. Ponnampalam, N. D. Whitbread, R. Barlow, G. Busico, A. J. Ward, J. P. Duck, and D. J. Robbins, “Dynamically controlled channel-to-channel switching in a full-band DS-DBR laser,” IEEE J. Quantum Electron. 42(3), 223–230 (2006).

2005 (1)

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).

2003 (1)

J. E. Simsarian, A. Bhardwaj, J. Gripp, K. Sherman, Y. Su, C. Webb, L. Zhang, and M. Zirngibl, “Fast switching characteristics of a widely tunable laser transmitter,” IEEE Photonics Technol. Lett. 15(8), 1038–1040 (2003).

1993 (1)

M. L. M. Sarrion and M. M. Sanchez, “Preparation and characterization of thermistors with negative temperature coefficient, NixMn3–xO4 (1≥x≥0.56), from formate precursors,” J. Mater. Chem. 3(3), 273–277 (1993).

1980 (1)

M. Ito and T. Kimura, “Carrier density dependence of refractive index in AlGaAs semi-conductor lasers,” Quantum Electron. Lett. 16(9), 910–911 (1980).

Akella, V.

Y. Yin, R. Proietti, X. Ye, C. J. Nitta, V. Akella, and S. J. B. Yoo, “LIONS: An AWGR-based low-latency optical switch for high-performance computing and data centers,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600409 (2013).

X. Ye, P. Mejia, Y. Yin, R. Proietti, S. J. B. Yoo, and V. Akella, “DOS—A scalable optical switch for datacenters,” in Proceedings of the 6th ACM/IEEE Symp. Archit. Netw. Commun. Syst. (ANCS) (2010), 1–12.

Antony, C.

Barlow, R.

L. Ponnampalam, N. D. Whitbread, R. Barlow, G. Busico, A. J. Ward, J. P. Duck, and D. J. Robbins, “Dynamically controlled channel-to-channel switching in a full-band DS-DBR laser,” IEEE J. Quantum Electron. 42(3), 223–230 (2006).

Barton, E.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).

Bhardwaj, A.

J. E. Simsarian, A. Bhardwaj, J. Gripp, K. Sherman, Y. Su, C. Webb, L. Zhang, and M. Zirngibl, “Fast switching characteristics of a widely tunable laser transmitter,” IEEE Photonics Technol. Lett. 15(8), 1038–1040 (2003).

Busico, G.

L. Ponnampalam, N. D. Whitbread, R. Barlow, G. Busico, A. J. Ward, J. P. Duck, and D. J. Robbins, “Dynamically controlled channel-to-channel switching in a full-band DS-DBR laser,” IEEE J. Quantum Electron. 42(3), 223–230 (2006).

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).

Carter, A. C.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).

Cush, R.

L. Ponnampalam, C. Renaud, M. Fice, R. Cush, R. Turner, P. Firth, M. Wale, and A. Seeds, “High temperature operation of athermal widely tuneable laser with simplified wavelength control for WDM-PON systems,” Opt. Express 22(20), 24405–24410 (2014).
[PubMed]

A. J. Ward, V. Hill, R. Cush, S. C. Heck, P. Firth, Y. Honzawa, and Y. Uchida, “Monolithic integration of AlInGaAs DS-DBR tunable laser and AlInGaAs MZ modulator with small footprint, low power dissipation and long-haul 10Gb/s performance,” in Proceedings of 39th European Conference and Exhibition on Optical Communication (ECOC) (2013), pp. 1–3.

Duck, J. P.

L. Ponnampalam, N. D. Whitbread, R. Barlow, G. Busico, A. J. Ward, J. P. Duck, and D. J. Robbins, “Dynamically controlled channel-to-channel switching in a full-band DS-DBR laser,” IEEE J. Quantum Electron. 42(3), 223–230 (2006).

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).

Fice, M.

Firth, P.

L. Ponnampalam, C. Renaud, M. Fice, R. Cush, R. Turner, P. Firth, M. Wale, and A. Seeds, “High temperature operation of athermal widely tuneable laser with simplified wavelength control for WDM-PON systems,” Opt. Express 22(20), 24405–24410 (2014).
[PubMed]

A. J. Ward, V. Hill, R. Cush, S. C. Heck, P. Firth, Y. Honzawa, and Y. Uchida, “Monolithic integration of AlInGaAs DS-DBR tunable laser and AlInGaAs MZ modulator with small footprint, low power dissipation and long-haul 10Gb/s performance,” in Proceedings of 39th European Conference and Exhibition on Optical Communication (ECOC) (2013), pp. 1–3.

Fujiwara, N.

N. Nunoya, H. Ishii, Y. Kawaguchi, R. Iga, T. Sato, N. Fujiwara, and H. Oohashi, “Tunable distributed amplification (TDA-) DFB laser with asymmetric structure,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1502–1512 (2011).

N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of thermal wavelength drift in super-structure grating distributed Bragg reflector (SSG-DBR) laser with thermal drift compensator,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1164–1169 (2007).

Gao, J.

X. Han, J. Gao, H. Wang, and Y. Yu, “Thermal analysis of an SOA integrated in SG-DBR laser module,” Opt. Quantum Electron. 48(2), 1–8 (2016).

Gripp, J.

J. E. Simsarian, A. Bhardwaj, J. Gripp, K. Sherman, Y. Su, C. Webb, L. Zhang, and M. Zirngibl, “Fast switching characteristics of a widely tunable laser transmitter,” IEEE Photonics Technol. Lett. 15(8), 1038–1040 (2003).

Han, X.

X. Han, J. Gao, H. Wang, and Y. Yu, “Thermal analysis of an SOA integrated in SG-DBR laser module,” Opt. Quantum Electron. 48(2), 1–8 (2016).

Hasegawa, H.

K. Ueda, Y. Mori, H. Hasegawa, K. Sato, and T. Watanabe, “Large-scale optical switch prototypes utilizing cyclic arrayed-waveguide gratings for datacenters,” J. Lightwave Technol. 34(2), 608–617 (2016).

K. Sato, H. Hasegawa, T. Niwa, and T. Watanabe, “A large-scale wavelength routing optical switch for data center networks,” IEEE Commun. Mag. 51(9), 46–52 (2013).

Heck, S. C.

A. J. Ward, V. Hill, R. Cush, S. C. Heck, P. Firth, Y. Honzawa, and Y. Uchida, “Monolithic integration of AlInGaAs DS-DBR tunable laser and AlInGaAs MZ modulator with small footprint, low power dissipation and long-haul 10Gb/s performance,” in Proceedings of 39th European Conference and Exhibition on Optical Communication (ECOC) (2013), pp. 1–3.

Hill, V.

A. J. Ward, V. Hill, R. Cush, S. C. Heck, P. Firth, Y. Honzawa, and Y. Uchida, “Monolithic integration of AlInGaAs DS-DBR tunable laser and AlInGaAs MZ modulator with small footprint, low power dissipation and long-haul 10Gb/s performance,” in Proceedings of 39th European Conference and Exhibition on Optical Communication (ECOC) (2013), pp. 1–3.

Honzawa, Y.

A. J. Ward, V. Hill, R. Cush, S. C. Heck, P. Firth, Y. Honzawa, and Y. Uchida, “Monolithic integration of AlInGaAs DS-DBR tunable laser and AlInGaAs MZ modulator with small footprint, low power dissipation and long-haul 10Gb/s performance,” in Proceedings of 39th European Conference and Exhibition on Optical Communication (ECOC) (2013), pp. 1–3.

Iga, R.

N. Nunoya, H. Ishii, Y. Kawaguchi, R. Iga, T. Sato, N. Fujiwara, and H. Oohashi, “Tunable distributed amplification (TDA-) DFB laser with asymmetric structure,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1502–1512 (2011).

Ishii, H.

N. Nunoya, H. Ishii, Y. Kawaguchi, R. Iga, T. Sato, N. Fujiwara, and H. Oohashi, “Tunable distributed amplification (TDA-) DFB laser with asymmetric structure,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1502–1512 (2011).

N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of thermal wavelength drift in super-structure grating distributed Bragg reflector (SSG-DBR) laser with thermal drift compensator,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1164–1169 (2007).

Ito, M.

M. Ito and T. Kimura, “Carrier density dependence of refractive index in AlGaAs semi-conductor lasers,” Quantum Electron. Lett. 16(9), 910–911 (1980).

Kachris, C.

C. Kachris, K. Kanonakis, and I. Tomkos, “Optical interconnection networks in data centers: recent trends and future challenges,” IEEE Commun. Mag. 41(9), 39–45 (2013).

Kanonakis, K.

C. Kachris, K. Kanonakis, and I. Tomkos, “Optical interconnection networks in data centers: recent trends and future challenges,” IEEE Commun. Mag. 41(9), 39–45 (2013).

Kawaguchi, Y.

N. Nunoya, H. Ishii, Y. Kawaguchi, R. Iga, T. Sato, N. Fujiwara, and H. Oohashi, “Tunable distributed amplification (TDA-) DFB laser with asymmetric structure,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1502–1512 (2011).

N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of thermal wavelength drift in super-structure grating distributed Bragg reflector (SSG-DBR) laser with thermal drift compensator,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1164–1169 (2007).

Kimura, T.

M. Ito and T. Kimura, “Carrier density dependence of refractive index in AlGaAs semi-conductor lasers,” Quantum Electron. Lett. 16(9), 910–911 (1980).

Kondo, Y.

N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of thermal wavelength drift in super-structure grating distributed Bragg reflector (SSG-DBR) laser with thermal drift compensator,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1164–1169 (2007).

Mejia, P.

X. Ye, P. Mejia, Y. Yin, R. Proietti, S. J. B. Yoo, and V. Akella, “DOS—A scalable optical switch for datacenters,” in Proceedings of the 6th ACM/IEEE Symp. Archit. Netw. Commun. Syst. (ANCS) (2010), 1–12.

Mori, Y.

Naughton, A.

Nitta, C. J.

Y. Yin, R. Proietti, X. Ye, C. J. Nitta, V. Akella, and S. J. B. Yoo, “LIONS: An AWGR-based low-latency optical switch for high-performance computing and data centers,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600409 (2013).

Niwa, T.

K. Sato, H. Hasegawa, T. Niwa, and T. Watanabe, “A large-scale wavelength routing optical switch for data center networks,” IEEE Commun. Mag. 51(9), 46–52 (2013).

Nunoya, N.

N. Nunoya, H. Ishii, Y. Kawaguchi, R. Iga, T. Sato, N. Fujiwara, and H. Oohashi, “Tunable distributed amplification (TDA-) DFB laser with asymmetric structure,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1502–1512 (2011).

Okamoto, H.

N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of thermal wavelength drift in super-structure grating distributed Bragg reflector (SSG-DBR) laser with thermal drift compensator,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1164–1169 (2007).

Oohashi, H.

N. Nunoya, H. Ishii, Y. Kawaguchi, R. Iga, T. Sato, N. Fujiwara, and H. Oohashi, “Tunable distributed amplification (TDA-) DFB laser with asymmetric structure,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1502–1512 (2011).

N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of thermal wavelength drift in super-structure grating distributed Bragg reflector (SSG-DBR) laser with thermal drift compensator,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1164–1169 (2007).

Ossieur, P.

Ponnampalam, L.

L. Ponnampalam, C. Renaud, M. Fice, R. Cush, R. Turner, P. Firth, M. Wale, and A. Seeds, “High temperature operation of athermal widely tuneable laser with simplified wavelength control for WDM-PON systems,” Opt. Express 22(20), 24405–24410 (2014).
[PubMed]

L. Ponnampalam, N. D. Whitbread, R. Barlow, G. Busico, A. J. Ward, J. P. Duck, and D. J. Robbins, “Dynamically controlled channel-to-channel switching in a full-band DS-DBR laser,” IEEE J. Quantum Electron. 42(3), 223–230 (2006).

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).

Porto, S.

Proietti, R.

Y. Yin, R. Proietti, X. Ye, C. J. Nitta, V. Akella, and S. J. B. Yoo, “LIONS: An AWGR-based low-latency optical switch for high-performance computing and data centers,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600409 (2013).

X. Ye, P. Mejia, Y. Yin, R. Proietti, S. J. B. Yoo, and V. Akella, “DOS—A scalable optical switch for datacenters,” in Proceedings of the 6th ACM/IEEE Symp. Archit. Netw. Commun. Syst. (ANCS) (2010), 1–12.

Reid, D. C. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).

Renaud, C.

Robbins, D. J.

L. Ponnampalam, N. D. Whitbread, R. Barlow, G. Busico, A. J. Ward, J. P. Duck, and D. J. Robbins, “Dynamically controlled channel-to-channel switching in a full-band DS-DBR laser,” IEEE J. Quantum Electron. 42(3), 223–230 (2006).

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).

Sanchez, M. M.

M. L. M. Sarrion and M. M. Sanchez, “Preparation and characterization of thermistors with negative temperature coefficient, NixMn3–xO4 (1≥x≥0.56), from formate precursors,” J. Mater. Chem. 3(3), 273–277 (1993).

Sarrion, M. L. M.

M. L. M. Sarrion and M. M. Sanchez, “Preparation and characterization of thermistors with negative temperature coefficient, NixMn3–xO4 (1≥x≥0.56), from formate precursors,” J. Mater. Chem. 3(3), 273–277 (1993).

Sato, K.

K. Ueda, Y. Mori, H. Hasegawa, K. Sato, and T. Watanabe, “Large-scale optical switch prototypes utilizing cyclic arrayed-waveguide gratings for datacenters,” J. Lightwave Technol. 34(2), 608–617 (2016).

K. Sato, H. Hasegawa, T. Niwa, and T. Watanabe, “A large-scale wavelength routing optical switch for data center networks,” IEEE Commun. Mag. 51(9), 46–52 (2013).

Sato, T.

N. Nunoya, H. Ishii, Y. Kawaguchi, R. Iga, T. Sato, N. Fujiwara, and H. Oohashi, “Tunable distributed amplification (TDA-) DFB laser with asymmetric structure,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1502–1512 (2011).

Seeds, A.

Sherman, K.

J. E. Simsarian, A. Bhardwaj, J. Gripp, K. Sherman, Y. Su, C. Webb, L. Zhang, and M. Zirngibl, “Fast switching characteristics of a widely tunable laser transmitter,” IEEE Photonics Technol. Lett. 15(8), 1038–1040 (2003).

Simsarian, J. E.

J. E. Simsarian, A. Bhardwaj, J. Gripp, K. Sherman, Y. Su, C. Webb, L. Zhang, and M. Zirngibl, “Fast switching characteristics of a widely tunable laser transmitter,” IEEE Photonics Technol. Lett. 15(8), 1038–1040 (2003).

Su, Y.

J. E. Simsarian, A. Bhardwaj, J. Gripp, K. Sherman, Y. Su, C. Webb, L. Zhang, and M. Zirngibl, “Fast switching characteristics of a widely tunable laser transmitter,” IEEE Photonics Technol. Lett. 15(8), 1038–1040 (2003).

Talli, G.

Tomkos, I.

C. Kachris, K. Kanonakis, and I. Tomkos, “Optical interconnection networks in data centers: recent trends and future challenges,” IEEE Commun. Mag. 41(9), 39–45 (2013).

Townsend, P. D.

Turner, R.

Uchida, Y.

A. J. Ward, V. Hill, R. Cush, S. C. Heck, P. Firth, Y. Honzawa, and Y. Uchida, “Monolithic integration of AlInGaAs DS-DBR tunable laser and AlInGaAs MZ modulator with small footprint, low power dissipation and long-haul 10Gb/s performance,” in Proceedings of 39th European Conference and Exhibition on Optical Communication (ECOC) (2013), pp. 1–3.

Ueda, K.

Wale, M.

Wale, M. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).

Wang, H.

X. Han, J. Gao, H. Wang, and Y. Yu, “Thermal analysis of an SOA integrated in SG-DBR laser module,” Opt. Quantum Electron. 48(2), 1–8 (2016).

Ward, A. J.

L. Ponnampalam, N. D. Whitbread, R. Barlow, G. Busico, A. J. Ward, J. P. Duck, and D. J. Robbins, “Dynamically controlled channel-to-channel switching in a full-band DS-DBR laser,” IEEE J. Quantum Electron. 42(3), 223–230 (2006).

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).

A. J. Ward, V. Hill, R. Cush, S. C. Heck, P. Firth, Y. Honzawa, and Y. Uchida, “Monolithic integration of AlInGaAs DS-DBR tunable laser and AlInGaAs MZ modulator with small footprint, low power dissipation and long-haul 10Gb/s performance,” in Proceedings of 39th European Conference and Exhibition on Optical Communication (ECOC) (2013), pp. 1–3.

Watanabe, T.

K. Ueda, Y. Mori, H. Hasegawa, K. Sato, and T. Watanabe, “Large-scale optical switch prototypes utilizing cyclic arrayed-waveguide gratings for datacenters,” J. Lightwave Technol. 34(2), 608–617 (2016).

K. Sato, H. Hasegawa, T. Niwa, and T. Watanabe, “A large-scale wavelength routing optical switch for data center networks,” IEEE Commun. Mag. 51(9), 46–52 (2013).

Webb, C.

J. E. Simsarian, A. Bhardwaj, J. Gripp, K. Sherman, Y. Su, C. Webb, L. Zhang, and M. Zirngibl, “Fast switching characteristics of a widely tunable laser transmitter,” IEEE Photonics Technol. Lett. 15(8), 1038–1040 (2003).

Whitbread, N. D.

L. Ponnampalam, N. D. Whitbread, R. Barlow, G. Busico, A. J. Ward, J. P. Duck, and D. J. Robbins, “Dynamically controlled channel-to-channel switching in a full-band DS-DBR laser,” IEEE J. Quantum Electron. 42(3), 223–230 (2006).

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).

Williams, P. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).

Ye, X.

Y. Yin, R. Proietti, X. Ye, C. J. Nitta, V. Akella, and S. J. B. Yoo, “LIONS: An AWGR-based low-latency optical switch for high-performance computing and data centers,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600409 (2013).

X. Ye, P. Mejia, Y. Yin, R. Proietti, S. J. B. Yoo, and V. Akella, “DOS—A scalable optical switch for datacenters,” in Proceedings of the 6th ACM/IEEE Symp. Archit. Netw. Commun. Syst. (ANCS) (2010), 1–12.

Yin, Y.

Y. Yin, R. Proietti, X. Ye, C. J. Nitta, V. Akella, and S. J. B. Yoo, “LIONS: An AWGR-based low-latency optical switch for high-performance computing and data centers,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600409 (2013).

X. Ye, P. Mejia, Y. Yin, R. Proietti, S. J. B. Yoo, and V. Akella, “DOS—A scalable optical switch for datacenters,” in Proceedings of the 6th ACM/IEEE Symp. Archit. Netw. Commun. Syst. (ANCS) (2010), 1–12.

Yoo, S. J. B.

Y. Yin, R. Proietti, X. Ye, C. J. Nitta, V. Akella, and S. J. B. Yoo, “LIONS: An AWGR-based low-latency optical switch for high-performance computing and data centers,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600409 (2013).

X. Ye, P. Mejia, Y. Yin, R. Proietti, S. J. B. Yoo, and V. Akella, “DOS—A scalable optical switch for datacenters,” in Proceedings of the 6th ACM/IEEE Symp. Archit. Netw. Commun. Syst. (ANCS) (2010), 1–12.

Yu, Y.

X. Han, J. Gao, H. Wang, and Y. Yu, “Thermal analysis of an SOA integrated in SG-DBR laser module,” Opt. Quantum Electron. 48(2), 1–8 (2016).

Zhang, L.

J. E. Simsarian, A. Bhardwaj, J. Gripp, K. Sherman, Y. Su, C. Webb, L. Zhang, and M. Zirngibl, “Fast switching characteristics of a widely tunable laser transmitter,” IEEE Photonics Technol. Lett. 15(8), 1038–1040 (2003).

Zirngibl, M.

J. E. Simsarian, A. Bhardwaj, J. Gripp, K. Sherman, Y. Su, C. Webb, L. Zhang, and M. Zirngibl, “Fast switching characteristics of a widely tunable laser transmitter,” IEEE Photonics Technol. Lett. 15(8), 1038–1040 (2003).

IEEE Commun. Mag. (2)

C. Kachris, K. Kanonakis, and I. Tomkos, “Optical interconnection networks in data centers: recent trends and future challenges,” IEEE Commun. Mag. 41(9), 39–45 (2013).

K. Sato, H. Hasegawa, T. Niwa, and T. Watanabe, “A large-scale wavelength routing optical switch for data center networks,” IEEE Commun. Mag. 51(9), 46–52 (2013).

IEEE J. Quantum Electron. (1)

L. Ponnampalam, N. D. Whitbread, R. Barlow, G. Busico, A. J. Ward, J. P. Duck, and D. J. Robbins, “Dynamically controlled channel-to-channel switching in a full-band DS-DBR laser,” IEEE J. Quantum Electron. 42(3), 223–230 (2006).

IEEE J. Sel. Top. Quantum Electron. (4)

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).

N. Nunoya, H. Ishii, Y. Kawaguchi, R. Iga, T. Sato, N. Fujiwara, and H. Oohashi, “Tunable distributed amplification (TDA-) DFB laser with asymmetric structure,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1502–1512 (2011).

N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of thermal wavelength drift in super-structure grating distributed Bragg reflector (SSG-DBR) laser with thermal drift compensator,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1164–1169 (2007).

Y. Yin, R. Proietti, X. Ye, C. J. Nitta, V. Akella, and S. J. B. Yoo, “LIONS: An AWGR-based low-latency optical switch for high-performance computing and data centers,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600409 (2013).

IEEE Photonics Technol. Lett. (1)

J. E. Simsarian, A. Bhardwaj, J. Gripp, K. Sherman, Y. Su, C. Webb, L. Zhang, and M. Zirngibl, “Fast switching characteristics of a widely tunable laser transmitter,” IEEE Photonics Technol. Lett. 15(8), 1038–1040 (2003).

J. Lightwave Technol. (1)

J. Mater. Chem. (1)

M. L. M. Sarrion and M. M. Sanchez, “Preparation and characterization of thermistors with negative temperature coefficient, NixMn3–xO4 (1≥x≥0.56), from formate precursors,” J. Mater. Chem. 3(3), 273–277 (1993).

Opt. Express (2)

Opt. Quantum Electron. (1)

X. Han, J. Gao, H. Wang, and Y. Yu, “Thermal analysis of an SOA integrated in SG-DBR laser module,” Opt. Quantum Electron. 48(2), 1–8 (2016).

Quantum Electron. Lett. (1)

M. Ito and T. Kimura, “Carrier density dependence of refractive index in AlGaAs semi-conductor lasers,” Quantum Electron. Lett. 16(9), 910–911 (1980).

Other (9)

Y. Ueno, K. Mochizuki, K. Hasegawa, and M. Nogami, “Fast wavelength switching with DFB lasers utilizing thermal compensation,” in Proceedings of Opto-Electronics and Communications Conference (OECC) (2015), paper JWeC.13.

A. J. Ward, V. Hill, R. Cush, S. C. Heck, P. Firth, Y. Honzawa, and Y. Uchida, “Monolithic integration of AlInGaAs DS-DBR tunable laser and AlInGaAs MZ modulator with small footprint, low power dissipation and long-haul 10Gb/s performance,” in Proceedings of 39th European Conference and Exhibition on Optical Communication (ECOC) (2013), pp. 1–3.

P. Grani, G. Liu, R. Proietti, and S. J. B. Yoo, “Bit-parallel all-to-all and flexible AWGR-based optical interconnects,” in Proceedings of Optical Fiber Communication Conference (OFC) (2017), paper M3K.4.

B. Puttnam, M. Dueser, B. Thomsen, and P. Bayvel, “Burst mode operation of a DS-DBR widely tunable laser for wavelength agile system applications,” in Proceedings of Optical Fiber Communication Conference (OFC) (2006), paper OWI86.

OIF-ITLA-MSA-01, 3, “Optical Internetworking Forum (2015),” http://www.oiforum.com/

X. Wu, D. Liu, H. Lin, and X. Liu, “Suppression of burst-mode operation induced laser wavelength drift for upstream transmission in TWDM-PON by using an integrated heater for thermal control,” in Proceedings of Optical Fiber Communication Conference (OFC) (2017), paper Tu3G.1.

X. Ye, P. Mejia, Y. Yin, R. Proietti, S. J. B. Yoo, and V. Akella, “DOS—A scalable optical switch for datacenters,” in Proceedings of the 6th ACM/IEEE Symp. Archit. Netw. Commun. Syst. (ANCS) (2010), 1–12.

K. Ueda, Y. Mori, H. Hasegawa, and K. Sato, “Novel intra- and inter-datacenter converged network exploiting space- and wavelength-dimensional switches,” in Proceedings of Optical Fiber Communication Conference (OFC) (2017), paper M3K.2.

M. Ding, A. Wonfor, Q. Cheng, R. V. Penty, and I. H. White, “Emulation of a 16×16 optical switch using cascaded 4×4 dilated hybrid MZI-SOA optical switches,” in Proceedings of Optical Fiber Communication Conference (OFC) (2017), paper M3K.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 A schematic diagram of a tunable TOSA (orange-colored box) and an electronic circuit board.
Fig. 2
Fig. 2 Measured optical spectra (solid lines) and side-mode suppression ratio (open square) with the largest and smallest channel number in each sub-band (a), a schematic explaining thermal wavelength drift (b), and conceptual drive currents for suppressing the thermal wavelength drift (c).
Fig. 3
Fig. 3 Experimental setup used to measure dynamic wavelength deviations (a) and normalized optical spectra of the 50-GHz spaced AWGR and tunable TOSA (b).
Fig. 4
Fig. 4 Calculated wavelengths from measured output voltages at the PD according to the laser gain section current and the SOA current of the start channel. The red-dotted line represents the target wavelength of 1555.832 nm.
Fig. 5
Fig. 5 Measured output power of the tunable TOSA as a function of the laser gain current and SOA current.
Fig. 6
Fig. 6 The drive currents of the laser gain section, the SOA, and the RG section for thermal drift compensation (a), measured optical output power of tunable TOSA w/o and w/ injecting the compensatory currents (b), a demonstration of channel-to-channel switching as a function of time (c), and channel-to-channel switching time from channel #90 to each channel (d).
Fig. 7
Fig. 7 Measured drive voltage of the FG, phase, and RG sections vs. time (a) and 50% rising time of the RG drive signal vs. the target value of the RG current (b).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

1 T = 1 β ln R R 0 + 1 T 0

Metrics