Abstract

We study the mode conversion and resonant absorption phenomena occurring in a slab of a stratified anisotropic medium, optical axes of which are tilted with respect to the direction of inhomogeneity, using the invariant imbedding theory of wave propagation. When the tilt angle is zero, mode conversion occurs if the longitudinal component of the permittivity tensor, which is the one in the direction of inhomogeneity in the non-tilted case, varies from positive to negative values within the medium, while the transverse component plays no role. When the tilt angle is nonzero, the wave transmission and absorption show an asymmetry under the sign change of the incident angle in a range of the tilt angle, while the reflection is always symmetric. We calculate the reflectance, the transmittance and the absorptance for several configurations of the permittivity tensor and find that resonant absorption is greatly enhanced when the medium from the incident surface to the resonance region is hyperbolic than when it is elliptic. For certain configurations, the transmittance and absorptance curves display sharp peaks at some incident angles determined by the tilt angle.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Resonant absorption and amplification of circularly-polarized waves in inhomogeneous chiral media

Seulong Kim and Kihong Kim
Opt. Express 24(2) 1794-1803 (2016)

Resonant absorption and mode conversion in a transition layer between positive-index and negative-index media

Kihong Kim, D.-H. Lee, and H. Lim
Opt. Express 16(22) 18505-18513 (2008)

Propagation of electromagnetic waves in stratified media with nonlinearity in both dielectric and magnetic responses

Kihong Kim, D. K. Phung, F. Rotermund, and H. Lim
Opt. Express 16(2) 1150-1164 (2008)

References

  • View by:
  • |
  • |
  • |

  1. K. Kim, D.-H. Lee, and H. Lim, “Resonant absorption and mode conversion in a transition layer between positive-index and negative-index media,” Opt. Express 16(22), 18505–18513 (2008).
    [Crossref] [PubMed]
  2. I. Mozjerin, E. A. Gibson, E. P. Furlani, I. R. Gabitov, and N. M. Litchinitser, “Electromagnetic enhancement in lossy optical transition metamaterials,” Opt. Lett. 35(19), 3240–3242 (2010).
    [Crossref] [PubMed]
  3. E. A. Gibson, M. Pennybacker, A. I. Maimistov, I. R. Gabitov, and N. M. Litchinitser, “Resonant absorption in transition metamaterials: parametric study,” J. Opt. 13(2), 024013 (2011).
    [Crossref]
  4. J. Sun, X. Liu, J. Zhou, Z. Kudyshev, and N. M. Litchinitser, “Experimental demonstration of anomalous field enhancement in all-dielectric transition magnetic metamaterials,” Sci. Rep. 5, 16154 (2015).
    [Crossref] [PubMed]
  5. S. Kim and K. Kim, “Resonant absorption and amplification of circularly-polarized waves in inhomogeneous chiral media,” Opt. Express 24(2), 1794–1803 (2016).
    [Crossref] [PubMed]
  6. Y. Jin, S. Xiao, N. A. Mortensen, and S. He, “Arbitrarily thin metamaterial structure for perfect absorption and giant magnification,” Opt. Express 19(12), 11114–11119 (2011).
    [Crossref] [PubMed]
  7. J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
    [Crossref] [PubMed]
  8. M. Lobet, B. Majerus, L. Henrard, and P. Lambin, “Perfect electromagnetic absorption using graphene and epsilon-near-zero metamaterials,” Phys. Rev. B 93(23), 235424 (2016).
    [Crossref]
  9. S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B 86(16), 165103 (2012).
    [Crossref]
  10. I. S. Nefedov, C. A. Valagiannopoulos, S. M. Hashemi, and E. I. Nefedov, “Total absorption in asymmetric hyperbolic media,” Sci. Rep. 3, 2662 (2013).
    [Crossref] [PubMed]
  11. S. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic -near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
    [Crossref]
  12. K. Halterman and J. M. Elson, “Near-perfect absorption in epsilon-near-zero structures with hyperbolic dispersion,” Opt. Express 22(6), 7337–7348 (2014).
    [Crossref] [PubMed]
  13. J. Linder and K. Halterman, “Graphene-based extremely wideangle tunable metamaterial absorber,” Sci. Rep. 6, 31225 (2016).
    [Crossref]
  14. K. V. Sreekanth, M. ElKabbash, Y. Alapan, A. R. Rashed, U. A. Gurkan, and G. Strangi, “A multiband perfect absorber based on hyperbolic metamaterials,” Sci. Rep. 6, 26272 (2016).
    [Crossref] [PubMed]
  15. D. G. Swanson, Theory of Mode Conversion and Tunneling in Inhomogeneous Plasmas (Wiley, 1998).
  16. D. E. Hinkel-Lipsker, B. D. Fried, and G. J. Morales, “Analytic expressions for mode conversion in a plasma with a linear density profile,” Phys. Fluids B 4(3), 559–575 (1992).
    [Crossref]
  17. E. Mjølhus, “On linear conversion in a magnetized plasma,” Radio Sci. 25(6), 1321–1339 (1990).
    [Crossref]
  18. K. Kim and D.-H. Lee, “Invariant imbedding theory of mode conversion in inhomogeneous plasmas. I. Exact calculation of the mode conversion coefficient in cold, unmagnetized plasmas,” Phys. Plasmas 12(6), 062101 (2005).
    [Crossref]
  19. K. Kim and D.-H. Lee, “Invariant imbedding theory of mode conversion in inhomogeneous plasmas. II. Mode conversion in cold, magnetized plasmas with perpendicular inhomogeneity,” Phys. Plasmas 13(4), 042103 (2006).
    [Crossref]
  20. D. J. Yu, K. Kim, and D.-H. Lee, “Resonant enhancement of mode conversion in unmagnetized plasmas due to a periodic density modulation superimposed on a linear electron density profile,” Phys. Plasmas 17(10), 102110 (2010).
    [Crossref]
  21. D. J. Yu, K. Kim, and D.-H. Lee, “Temperature dependence of mode conversion in warm, unmagnetized plasmas with a linear density profile,” Phys. Plasmas 20(6), 062109 (2013).
    [Crossref]
  22. D. J. Yu and K. Kim, “Effects of a random spatial variation of the plasma density on the mode conversion in cold, unmagnetized, and stratified plasmas,” Phys. Plasmas 20(12), 122104 (2013).
    [Crossref]
  23. D. J. Yu and K. Kim, “Broadband wide-angle absorption enhancement due to mode conversion in cold unmagnetized plasmas with periodic density variations,” Phys. Plasmas 23(3), 032112 (2016).
    [Crossref]
  24. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
    [Crossref]
  25. L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
    [Crossref]
  26. G. Pawlik, K. Tarnowski, W. Walasik, A. C. Mitus, and I. C. Khoo, “Liquid crystal hyperbolic metamaterial for wide-angle negative-positive refraction and reflection,” Opt. Lett. 39(7), 1744–1747 (2014).
    [Crossref] [PubMed]
  27. V. I. Klyatskin, “The imbedding method in statistical boundary-value wave problems,” Prog. Opt. 33, 1–127 (1994).
    [Crossref]
  28. K. Kim, H. Lim, and D.-H. Lee, “Invariant imbedding equations for electromagnetic waves in stratified magnetic media: Applications to one-dimensional photonic crystals,” J. Korean Phys. Soc. 39(6), L956–L960 (2001).
  29. K. Kim, D.-H. Lee, and H. Lim, “Theory of the propagation of coupled waves in arbitrarily inhomogeneous stratified media,” Europhys. Lett. 69(2), 207–213 (2005).
    [Crossref]
  30. K. Kim, D. K. Phung, F. Rotermund, and H. Lim, “Propagation of electromagnetic waves in stratified media with nonlinearity in both dielectric and magnetic responses,” Opt. Express 16(2), 1150–1164 (2008).
    [Crossref] [PubMed]
  31. S. Kim and K. Kim, “Invariant imbedding theory of wave propagation in arbitrarily inhomogeneous stratified bi-isotropic media,” J. Opt. 18(6), 065605 (2016).
    [Crossref]
  32. R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys. 67(5), 717–754 (2004).
    [Crossref]

2016 (6)

S. Kim and K. Kim, “Resonant absorption and amplification of circularly-polarized waves in inhomogeneous chiral media,” Opt. Express 24(2), 1794–1803 (2016).
[Crossref] [PubMed]

M. Lobet, B. Majerus, L. Henrard, and P. Lambin, “Perfect electromagnetic absorption using graphene and epsilon-near-zero metamaterials,” Phys. Rev. B 93(23), 235424 (2016).
[Crossref]

J. Linder and K. Halterman, “Graphene-based extremely wideangle tunable metamaterial absorber,” Sci. Rep. 6, 31225 (2016).
[Crossref]

K. V. Sreekanth, M. ElKabbash, Y. Alapan, A. R. Rashed, U. A. Gurkan, and G. Strangi, “A multiband perfect absorber based on hyperbolic metamaterials,” Sci. Rep. 6, 26272 (2016).
[Crossref] [PubMed]

D. J. Yu and K. Kim, “Broadband wide-angle absorption enhancement due to mode conversion in cold unmagnetized plasmas with periodic density variations,” Phys. Plasmas 23(3), 032112 (2016).
[Crossref]

S. Kim and K. Kim, “Invariant imbedding theory of wave propagation in arbitrarily inhomogeneous stratified bi-isotropic media,” J. Opt. 18(6), 065605 (2016).
[Crossref]

2015 (3)

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref] [PubMed]

J. Sun, X. Liu, J. Zhou, Z. Kudyshev, and N. M. Litchinitser, “Experimental demonstration of anomalous field enhancement in all-dielectric transition magnetic metamaterials,” Sci. Rep. 5, 16154 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (4)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

D. J. Yu, K. Kim, and D.-H. Lee, “Temperature dependence of mode conversion in warm, unmagnetized plasmas with a linear density profile,” Phys. Plasmas 20(6), 062109 (2013).
[Crossref]

D. J. Yu and K. Kim, “Effects of a random spatial variation of the plasma density on the mode conversion in cold, unmagnetized, and stratified plasmas,” Phys. Plasmas 20(12), 122104 (2013).
[Crossref]

I. S. Nefedov, C. A. Valagiannopoulos, S. M. Hashemi, and E. I. Nefedov, “Total absorption in asymmetric hyperbolic media,” Sci. Rep. 3, 2662 (2013).
[Crossref] [PubMed]

2012 (1)

S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B 86(16), 165103 (2012).
[Crossref]

2011 (2)

Y. Jin, S. Xiao, N. A. Mortensen, and S. He, “Arbitrarily thin metamaterial structure for perfect absorption and giant magnification,” Opt. Express 19(12), 11114–11119 (2011).
[Crossref] [PubMed]

E. A. Gibson, M. Pennybacker, A. I. Maimistov, I. R. Gabitov, and N. M. Litchinitser, “Resonant absorption in transition metamaterials: parametric study,” J. Opt. 13(2), 024013 (2011).
[Crossref]

2010 (2)

I. Mozjerin, E. A. Gibson, E. P. Furlani, I. R. Gabitov, and N. M. Litchinitser, “Electromagnetic enhancement in lossy optical transition metamaterials,” Opt. Lett. 35(19), 3240–3242 (2010).
[Crossref] [PubMed]

D. J. Yu, K. Kim, and D.-H. Lee, “Resonant enhancement of mode conversion in unmagnetized plasmas due to a periodic density modulation superimposed on a linear electron density profile,” Phys. Plasmas 17(10), 102110 (2010).
[Crossref]

2008 (2)

2006 (1)

K. Kim and D.-H. Lee, “Invariant imbedding theory of mode conversion in inhomogeneous plasmas. II. Mode conversion in cold, magnetized plasmas with perpendicular inhomogeneity,” Phys. Plasmas 13(4), 042103 (2006).
[Crossref]

2005 (2)

K. Kim and D.-H. Lee, “Invariant imbedding theory of mode conversion in inhomogeneous plasmas. I. Exact calculation of the mode conversion coefficient in cold, unmagnetized plasmas,” Phys. Plasmas 12(6), 062101 (2005).
[Crossref]

K. Kim, D.-H. Lee, and H. Lim, “Theory of the propagation of coupled waves in arbitrarily inhomogeneous stratified media,” Europhys. Lett. 69(2), 207–213 (2005).
[Crossref]

2004 (1)

R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys. 67(5), 717–754 (2004).
[Crossref]

2001 (1)

K. Kim, H. Lim, and D.-H. Lee, “Invariant imbedding equations for electromagnetic waves in stratified magnetic media: Applications to one-dimensional photonic crystals,” J. Korean Phys. Soc. 39(6), L956–L960 (2001).

1994 (1)

V. I. Klyatskin, “The imbedding method in statistical boundary-value wave problems,” Prog. Opt. 33, 1–127 (1994).
[Crossref]

1992 (1)

D. E. Hinkel-Lipsker, B. D. Fried, and G. J. Morales, “Analytic expressions for mode conversion in a plasma with a linear density profile,” Phys. Fluids B 4(3), 559–575 (1992).
[Crossref]

1990 (1)

E. Mjølhus, “On linear conversion in a magnetized plasma,” Radio Sci. 25(6), 1321–1339 (1990).
[Crossref]

Alapan, Y.

K. V. Sreekanth, M. ElKabbash, Y. Alapan, A. R. Rashed, U. A. Gurkan, and G. Strangi, “A multiband perfect absorber based on hyperbolic metamaterials,” Sci. Rep. 6, 26272 (2016).
[Crossref] [PubMed]

Badsha, M. A.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref] [PubMed]

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

ElKabbash, M.

K. V. Sreekanth, M. ElKabbash, Y. Alapan, A. R. Rashed, U. A. Gurkan, and G. Strangi, “A multiband perfect absorber based on hyperbolic metamaterials,” Sci. Rep. 6, 26272 (2016).
[Crossref] [PubMed]

Elson, J. M.

Feng, S.

S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B 86(16), 165103 (2012).
[Crossref]

Ferrari, L.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Fried, B. D.

D. E. Hinkel-Lipsker, B. D. Fried, and G. J. Morales, “Analytic expressions for mode conversion in a plasma with a linear density profile,” Phys. Fluids B 4(3), 559–575 (1992).
[Crossref]

Furlani, E. P.

Gabitov, I. R.

E. A. Gibson, M. Pennybacker, A. I. Maimistov, I. R. Gabitov, and N. M. Litchinitser, “Resonant absorption in transition metamaterials: parametric study,” J. Opt. 13(2), 024013 (2011).
[Crossref]

I. Mozjerin, E. A. Gibson, E. P. Furlani, I. R. Gabitov, and N. M. Litchinitser, “Electromagnetic enhancement in lossy optical transition metamaterials,” Opt. Lett. 35(19), 3240–3242 (2010).
[Crossref] [PubMed]

Gibson, E. A.

E. A. Gibson, M. Pennybacker, A. I. Maimistov, I. R. Gabitov, and N. M. Litchinitser, “Resonant absorption in transition metamaterials: parametric study,” J. Opt. 13(2), 024013 (2011).
[Crossref]

I. Mozjerin, E. A. Gibson, E. P. Furlani, I. R. Gabitov, and N. M. Litchinitser, “Electromagnetic enhancement in lossy optical transition metamaterials,” Opt. Lett. 35(19), 3240–3242 (2010).
[Crossref] [PubMed]

Gurkan, U. A.

K. V. Sreekanth, M. ElKabbash, Y. Alapan, A. R. Rashed, U. A. Gurkan, and G. Strangi, “A multiband perfect absorber based on hyperbolic metamaterials,” Sci. Rep. 6, 26272 (2016).
[Crossref] [PubMed]

Halterman, K.

J. Linder and K. Halterman, “Graphene-based extremely wideangle tunable metamaterial absorber,” Sci. Rep. 6, 31225 (2016).
[Crossref]

K. Halterman and J. M. Elson, “Near-perfect absorption in epsilon-near-zero structures with hyperbolic dispersion,” Opt. Express 22(6), 7337–7348 (2014).
[Crossref] [PubMed]

S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B 86(16), 165103 (2012).
[Crossref]

Hashemi, S. M.

I. S. Nefedov, C. A. Valagiannopoulos, S. M. Hashemi, and E. I. Nefedov, “Total absorption in asymmetric hyperbolic media,” Sci. Rep. 3, 2662 (2013).
[Crossref] [PubMed]

He, S.

S. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic -near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
[Crossref]

Y. Jin, S. Xiao, N. A. Mortensen, and S. He, “Arbitrarily thin metamaterial structure for perfect absorption and giant magnification,” Opt. Express 19(12), 11114–11119 (2011).
[Crossref] [PubMed]

Henrard, L.

M. Lobet, B. Majerus, L. Henrard, and P. Lambin, “Perfect electromagnetic absorption using graphene and epsilon-near-zero metamaterials,” Phys. Rev. B 93(23), 235424 (2016).
[Crossref]

Hinkel-Lipsker, D. E.

D. E. Hinkel-Lipsker, B. D. Fried, and G. J. Morales, “Analytic expressions for mode conversion in a plasma with a linear density profile,” Phys. Fluids B 4(3), 559–575 (1992).
[Crossref]

Hwangbo, C. K.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref] [PubMed]

Iorsh, I.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Jin, Y.

Jun, Y. C.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref] [PubMed]

Khoo, I. C.

Kim, K.

S. Kim and K. Kim, “Invariant imbedding theory of wave propagation in arbitrarily inhomogeneous stratified bi-isotropic media,” J. Opt. 18(6), 065605 (2016).
[Crossref]

S. Kim and K. Kim, “Resonant absorption and amplification of circularly-polarized waves in inhomogeneous chiral media,” Opt. Express 24(2), 1794–1803 (2016).
[Crossref] [PubMed]

D. J. Yu and K. Kim, “Broadband wide-angle absorption enhancement due to mode conversion in cold unmagnetized plasmas with periodic density variations,” Phys. Plasmas 23(3), 032112 (2016).
[Crossref]

D. J. Yu and K. Kim, “Effects of a random spatial variation of the plasma density on the mode conversion in cold, unmagnetized, and stratified plasmas,” Phys. Plasmas 20(12), 122104 (2013).
[Crossref]

D. J. Yu, K. Kim, and D.-H. Lee, “Temperature dependence of mode conversion in warm, unmagnetized plasmas with a linear density profile,” Phys. Plasmas 20(6), 062109 (2013).
[Crossref]

D. J. Yu, K. Kim, and D.-H. Lee, “Resonant enhancement of mode conversion in unmagnetized plasmas due to a periodic density modulation superimposed on a linear electron density profile,” Phys. Plasmas 17(10), 102110 (2010).
[Crossref]

K. Kim, D.-H. Lee, and H. Lim, “Resonant absorption and mode conversion in a transition layer between positive-index and negative-index media,” Opt. Express 16(22), 18505–18513 (2008).
[Crossref] [PubMed]

K. Kim, D. K. Phung, F. Rotermund, and H. Lim, “Propagation of electromagnetic waves in stratified media with nonlinearity in both dielectric and magnetic responses,” Opt. Express 16(2), 1150–1164 (2008).
[Crossref] [PubMed]

K. Kim and D.-H. Lee, “Invariant imbedding theory of mode conversion in inhomogeneous plasmas. II. Mode conversion in cold, magnetized plasmas with perpendicular inhomogeneity,” Phys. Plasmas 13(4), 042103 (2006).
[Crossref]

K. Kim and D.-H. Lee, “Invariant imbedding theory of mode conversion in inhomogeneous plasmas. I. Exact calculation of the mode conversion coefficient in cold, unmagnetized plasmas,” Phys. Plasmas 12(6), 062101 (2005).
[Crossref]

K. Kim, D.-H. Lee, and H. Lim, “Theory of the propagation of coupled waves in arbitrarily inhomogeneous stratified media,” Europhys. Lett. 69(2), 207–213 (2005).
[Crossref]

K. Kim, H. Lim, and D.-H. Lee, “Invariant imbedding equations for electromagnetic waves in stratified magnetic media: Applications to one-dimensional photonic crystals,” J. Korean Phys. Soc. 39(6), L956–L960 (2001).

Kim, S.

S. Kim and K. Kim, “Invariant imbedding theory of wave propagation in arbitrarily inhomogeneous stratified bi-isotropic media,” J. Opt. 18(6), 065605 (2016).
[Crossref]

S. Kim and K. Kim, “Resonant absorption and amplification of circularly-polarized waves in inhomogeneous chiral media,” Opt. Express 24(2), 1794–1803 (2016).
[Crossref] [PubMed]

Kim, T. Y.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref] [PubMed]

Kivshar, Y.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Klyatskin, V. I.

V. I. Klyatskin, “The imbedding method in statistical boundary-value wave problems,” Prog. Opt. 33, 1–127 (1994).
[Crossref]

Kudyshev, Z.

J. Sun, X. Liu, J. Zhou, Z. Kudyshev, and N. M. Litchinitser, “Experimental demonstration of anomalous field enhancement in all-dielectric transition magnetic metamaterials,” Sci. Rep. 5, 16154 (2015).
[Crossref] [PubMed]

Lambin, P.

M. Lobet, B. Majerus, L. Henrard, and P. Lambin, “Perfect electromagnetic absorption using graphene and epsilon-near-zero metamaterials,” Phys. Rev. B 93(23), 235424 (2016).
[Crossref]

Lee, D.-H.

D. J. Yu, K. Kim, and D.-H. Lee, “Temperature dependence of mode conversion in warm, unmagnetized plasmas with a linear density profile,” Phys. Plasmas 20(6), 062109 (2013).
[Crossref]

D. J. Yu, K. Kim, and D.-H. Lee, “Resonant enhancement of mode conversion in unmagnetized plasmas due to a periodic density modulation superimposed on a linear electron density profile,” Phys. Plasmas 17(10), 102110 (2010).
[Crossref]

K. Kim, D.-H. Lee, and H. Lim, “Resonant absorption and mode conversion in a transition layer between positive-index and negative-index media,” Opt. Express 16(22), 18505–18513 (2008).
[Crossref] [PubMed]

K. Kim and D.-H. Lee, “Invariant imbedding theory of mode conversion in inhomogeneous plasmas. II. Mode conversion in cold, magnetized plasmas with perpendicular inhomogeneity,” Phys. Plasmas 13(4), 042103 (2006).
[Crossref]

K. Kim and D.-H. Lee, “Invariant imbedding theory of mode conversion in inhomogeneous plasmas. I. Exact calculation of the mode conversion coefficient in cold, unmagnetized plasmas,” Phys. Plasmas 12(6), 062101 (2005).
[Crossref]

K. Kim, D.-H. Lee, and H. Lim, “Theory of the propagation of coupled waves in arbitrarily inhomogeneous stratified media,” Europhys. Lett. 69(2), 207–213 (2005).
[Crossref]

K. Kim, H. Lim, and D.-H. Lee, “Invariant imbedding equations for electromagnetic waves in stratified magnetic media: Applications to one-dimensional photonic crystals,” J. Korean Phys. Soc. 39(6), L956–L960 (2001).

Lepage, D.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Lim, H.

K. Kim, D. K. Phung, F. Rotermund, and H. Lim, “Propagation of electromagnetic waves in stratified media with nonlinearity in both dielectric and magnetic responses,” Opt. Express 16(2), 1150–1164 (2008).
[Crossref] [PubMed]

K. Kim, D.-H. Lee, and H. Lim, “Resonant absorption and mode conversion in a transition layer between positive-index and negative-index media,” Opt. Express 16(22), 18505–18513 (2008).
[Crossref] [PubMed]

K. Kim, D.-H. Lee, and H. Lim, “Theory of the propagation of coupled waves in arbitrarily inhomogeneous stratified media,” Europhys. Lett. 69(2), 207–213 (2005).
[Crossref]

K. Kim, H. Lim, and D.-H. Lee, “Invariant imbedding equations for electromagnetic waves in stratified magnetic media: Applications to one-dimensional photonic crystals,” J. Korean Phys. Soc. 39(6), L956–L960 (2001).

Linder, J.

J. Linder and K. Halterman, “Graphene-based extremely wideangle tunable metamaterial absorber,” Sci. Rep. 6, 31225 (2016).
[Crossref]

Litchinitser, N. M.

J. Sun, X. Liu, J. Zhou, Z. Kudyshev, and N. M. Litchinitser, “Experimental demonstration of anomalous field enhancement in all-dielectric transition magnetic metamaterials,” Sci. Rep. 5, 16154 (2015).
[Crossref] [PubMed]

E. A. Gibson, M. Pennybacker, A. I. Maimistov, I. R. Gabitov, and N. M. Litchinitser, “Resonant absorption in transition metamaterials: parametric study,” J. Opt. 13(2), 024013 (2011).
[Crossref]

I. Mozjerin, E. A. Gibson, E. P. Furlani, I. R. Gabitov, and N. M. Litchinitser, “Electromagnetic enhancement in lossy optical transition metamaterials,” Opt. Lett. 35(19), 3240–3242 (2010).
[Crossref] [PubMed]

Liu, X.

J. Sun, X. Liu, J. Zhou, Z. Kudyshev, and N. M. Litchinitser, “Experimental demonstration of anomalous field enhancement in all-dielectric transition magnetic metamaterials,” Sci. Rep. 5, 16154 (2015).
[Crossref] [PubMed]

Liu, Z.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Lobet, M.

M. Lobet, B. Majerus, L. Henrard, and P. Lambin, “Perfect electromagnetic absorption using graphene and epsilon-near-zero metamaterials,” Phys. Rev. B 93(23), 235424 (2016).
[Crossref]

Ma, Y.

S. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic -near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
[Crossref]

Maimistov, A. I.

E. A. Gibson, M. Pennybacker, A. I. Maimistov, I. R. Gabitov, and N. M. Litchinitser, “Resonant absorption in transition metamaterials: parametric study,” J. Opt. 13(2), 024013 (2011).
[Crossref]

Majerus, B.

M. Lobet, B. Majerus, L. Henrard, and P. Lambin, “Perfect electromagnetic absorption using graphene and epsilon-near-zero metamaterials,” Phys. Rev. B 93(23), 235424 (2016).
[Crossref]

Mitus, A. C.

Mjølhus, E.

E. Mjølhus, “On linear conversion in a magnetized plasma,” Radio Sci. 25(6), 1321–1339 (1990).
[Crossref]

Morales, G. J.

D. E. Hinkel-Lipsker, B. D. Fried, and G. J. Morales, “Analytic expressions for mode conversion in a plasma with a linear density profile,” Phys. Fluids B 4(3), 559–575 (1992).
[Crossref]

Mortensen, N. A.

Mozjerin, I.

Nefedov, E. I.

I. S. Nefedov, C. A. Valagiannopoulos, S. M. Hashemi, and E. I. Nefedov, “Total absorption in asymmetric hyperbolic media,” Sci. Rep. 3, 2662 (2013).
[Crossref] [PubMed]

Nefedov, I. S.

I. S. Nefedov, C. A. Valagiannopoulos, S. M. Hashemi, and E. I. Nefedov, “Total absorption in asymmetric hyperbolic media,” Sci. Rep. 3, 2662 (2013).
[Crossref] [PubMed]

Pawlik, G.

Pennybacker, M.

E. A. Gibson, M. Pennybacker, A. I. Maimistov, I. R. Gabitov, and N. M. Litchinitser, “Resonant absorption in transition metamaterials: parametric study,” J. Opt. 13(2), 024013 (2011).
[Crossref]

Phung, D. K.

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Potton, R. J.

R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys. 67(5), 717–754 (2004).
[Crossref]

Rashed, A. R.

K. V. Sreekanth, M. ElKabbash, Y. Alapan, A. R. Rashed, U. A. Gurkan, and G. Strangi, “A multiband perfect absorber based on hyperbolic metamaterials,” Sci. Rep. 6, 26272 (2016).
[Crossref] [PubMed]

Rotermund, F.

Sreekanth, K. V.

K. V. Sreekanth, M. ElKabbash, Y. Alapan, A. R. Rashed, U. A. Gurkan, and G. Strangi, “A multiband perfect absorber based on hyperbolic metamaterials,” Sci. Rep. 6, 26272 (2016).
[Crossref] [PubMed]

Strangi, G.

K. V. Sreekanth, M. ElKabbash, Y. Alapan, A. R. Rashed, U. A. Gurkan, and G. Strangi, “A multiband perfect absorber based on hyperbolic metamaterials,” Sci. Rep. 6, 26272 (2016).
[Crossref] [PubMed]

Sun, J.

J. Sun, X. Liu, J. Zhou, Z. Kudyshev, and N. M. Litchinitser, “Experimental demonstration of anomalous field enhancement in all-dielectric transition magnetic metamaterials,” Sci. Rep. 5, 16154 (2015).
[Crossref] [PubMed]

Swanson, D. G.

D. G. Swanson, Theory of Mode Conversion and Tunneling in Inhomogeneous Plasmas (Wiley, 1998).

Tarnowski, K.

Valagiannopoulos, C. A.

I. S. Nefedov, C. A. Valagiannopoulos, S. M. Hashemi, and E. I. Nefedov, “Total absorption in asymmetric hyperbolic media,” Sci. Rep. 3, 2662 (2013).
[Crossref] [PubMed]

Walasik, W.

Wu, C.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Xiao, S.

Yoon, J.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref] [PubMed]

Yu, D. J.

D. J. Yu and K. Kim, “Broadband wide-angle absorption enhancement due to mode conversion in cold unmagnetized plasmas with periodic density variations,” Phys. Plasmas 23(3), 032112 (2016).
[Crossref]

D. J. Yu, K. Kim, and D.-H. Lee, “Temperature dependence of mode conversion in warm, unmagnetized plasmas with a linear density profile,” Phys. Plasmas 20(6), 062109 (2013).
[Crossref]

D. J. Yu and K. Kim, “Effects of a random spatial variation of the plasma density on the mode conversion in cold, unmagnetized, and stratified plasmas,” Phys. Plasmas 20(12), 122104 (2013).
[Crossref]

D. J. Yu, K. Kim, and D.-H. Lee, “Resonant enhancement of mode conversion in unmagnetized plasmas due to a periodic density modulation superimposed on a linear electron density profile,” Phys. Plasmas 17(10), 102110 (2010).
[Crossref]

Zhang, X.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Zhong, S.

S. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic -near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
[Crossref]

Zhou, J.

J. Sun, X. Liu, J. Zhou, Z. Kudyshev, and N. M. Litchinitser, “Experimental demonstration of anomalous field enhancement in all-dielectric transition magnetic metamaterials,” Sci. Rep. 5, 16154 (2015).
[Crossref] [PubMed]

Zhou, M.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

S. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic -near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
[Crossref]

Europhys. Lett. (1)

K. Kim, D.-H. Lee, and H. Lim, “Theory of the propagation of coupled waves in arbitrarily inhomogeneous stratified media,” Europhys. Lett. 69(2), 207–213 (2005).
[Crossref]

J. Korean Phys. Soc. (1)

K. Kim, H. Lim, and D.-H. Lee, “Invariant imbedding equations for electromagnetic waves in stratified magnetic media: Applications to one-dimensional photonic crystals,” J. Korean Phys. Soc. 39(6), L956–L960 (2001).

J. Opt. (2)

S. Kim and K. Kim, “Invariant imbedding theory of wave propagation in arbitrarily inhomogeneous stratified bi-isotropic media,” J. Opt. 18(6), 065605 (2016).
[Crossref]

E. A. Gibson, M. Pennybacker, A. I. Maimistov, I. R. Gabitov, and N. M. Litchinitser, “Resonant absorption in transition metamaterials: parametric study,” J. Opt. 13(2), 024013 (2011).
[Crossref]

Nat. Photonics (1)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Fluids B (1)

D. E. Hinkel-Lipsker, B. D. Fried, and G. J. Morales, “Analytic expressions for mode conversion in a plasma with a linear density profile,” Phys. Fluids B 4(3), 559–575 (1992).
[Crossref]

Phys. Plasmas (6)

K. Kim and D.-H. Lee, “Invariant imbedding theory of mode conversion in inhomogeneous plasmas. I. Exact calculation of the mode conversion coefficient in cold, unmagnetized plasmas,” Phys. Plasmas 12(6), 062101 (2005).
[Crossref]

K. Kim and D.-H. Lee, “Invariant imbedding theory of mode conversion in inhomogeneous plasmas. II. Mode conversion in cold, magnetized plasmas with perpendicular inhomogeneity,” Phys. Plasmas 13(4), 042103 (2006).
[Crossref]

D. J. Yu, K. Kim, and D.-H. Lee, “Resonant enhancement of mode conversion in unmagnetized plasmas due to a periodic density modulation superimposed on a linear electron density profile,” Phys. Plasmas 17(10), 102110 (2010).
[Crossref]

D. J. Yu, K. Kim, and D.-H. Lee, “Temperature dependence of mode conversion in warm, unmagnetized plasmas with a linear density profile,” Phys. Plasmas 20(6), 062109 (2013).
[Crossref]

D. J. Yu and K. Kim, “Effects of a random spatial variation of the plasma density on the mode conversion in cold, unmagnetized, and stratified plasmas,” Phys. Plasmas 20(12), 122104 (2013).
[Crossref]

D. J. Yu and K. Kim, “Broadband wide-angle absorption enhancement due to mode conversion in cold unmagnetized plasmas with periodic density variations,” Phys. Plasmas 23(3), 032112 (2016).
[Crossref]

Phys. Rev. B (2)

M. Lobet, B. Majerus, L. Henrard, and P. Lambin, “Perfect electromagnetic absorption using graphene and epsilon-near-zero metamaterials,” Phys. Rev. B 93(23), 235424 (2016).
[Crossref]

S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B 86(16), 165103 (2012).
[Crossref]

Prog. Opt. (1)

V. I. Klyatskin, “The imbedding method in statistical boundary-value wave problems,” Prog. Opt. 33, 1–127 (1994).
[Crossref]

Prog. Quantum Electron. (1)

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Radio Sci. (1)

E. Mjølhus, “On linear conversion in a magnetized plasma,” Radio Sci. 25(6), 1321–1339 (1990).
[Crossref]

Rep. Prog. Phys. (1)

R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys. 67(5), 717–754 (2004).
[Crossref]

Sci. Rep. (5)

I. S. Nefedov, C. A. Valagiannopoulos, S. M. Hashemi, and E. I. Nefedov, “Total absorption in asymmetric hyperbolic media,” Sci. Rep. 3, 2662 (2013).
[Crossref] [PubMed]

J. Sun, X. Liu, J. Zhou, Z. Kudyshev, and N. M. Litchinitser, “Experimental demonstration of anomalous field enhancement in all-dielectric transition magnetic metamaterials,” Sci. Rep. 5, 16154 (2015).
[Crossref] [PubMed]

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref] [PubMed]

J. Linder and K. Halterman, “Graphene-based extremely wideangle tunable metamaterial absorber,” Sci. Rep. 6, 31225 (2016).
[Crossref]

K. V. Sreekanth, M. ElKabbash, Y. Alapan, A. R. Rashed, U. A. Gurkan, and G. Strangi, “A multiband perfect absorber based on hyperbolic metamaterials,” Sci. Rep. 6, 26272 (2016).
[Crossref] [PubMed]

Other (1)

D. G. Swanson, Theory of Mode Conversion and Tunneling in Inhomogeneous Plasmas (Wiley, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic view of an anisotropic medium slab of thickness L with the optical axis z′ tilted from the z axis by an angle ϕ. A p wave is incident from the right-hand side with an incident angle θ.
Fig. 2
Fig. 2 Spatial configurations of ϵ1 and ϵ3 inside the slab of an anisotropic medium of thickness L considered in this paper. A p wave is assumed to be incident from the region where z > L. In numerical calculations, we introduce extremely small imaginary parts of ϵ1 and ϵ3.
Fig. 3
Fig. 3 (a) Absorptance, (b) reflectance and (c) transmittance of p waves incident from the region where z > L versus incident angle for the configurations I, II and III shown in Fig. 2, when ϕ = 0, ϵi = 1, Im ϵ3 = 10−8 and L = 5λ.
Fig. 4
Fig. 4 Spatial distributions of (a) the magnetic field, (b) the z component of the electric field and (c) the x component of the electric field inside the inhomogeneous anisotropic medium when a p wave is incident from the region where z > L on the slab I of Fig. 2 at θ = 20° and on the slab II of Fig. 2 at θ = 7°, when ϕ = 0, ϵi = 1, Im ϵ3 = 10−3 and L = 5λ.
Fig. 5
Fig. 5 Absorptance (red), reflectance (blue) and transmittance (black) of p waves incident from the region where z > L versus incident angle for the configuration I shown in Fig. 2, when ϵi = 1, Im ϵ3 = 10−8, L = 5λ and (a) ϕ = 0°, (b) 15°, (c) 30°, (d) 45°, (e) 60° and (f) 75°.
Fig. 6
Fig. 6 Absorptance (red), reflectance (blue) and transmittance (black) of p waves incident from the region where z > L versus incident angle for the configuration II in Fig. 2, when ϵi = 1, Im ϵ3 = 10−8, L = 5λ and (a) ϕ = 0°, (b) 15°, (c) 30°, (d) 45°, (e) 60° and (f) 75°.
Fig. 7
Fig. 7 Absorptance (red), reflectance (blue) and transmittance (black) of p waves incident from the region where z > L versus incident angle for the configuration III in Fig. 2, when ϵi = 1, Im ϵ3 = 10−8, L = 5λ and (a) ϕ = 0°, (b) 15°, (c) 30°, (d) 45° and (e) ϕ > 45°. In (e), both T and A are zero.
Fig. 8
Fig. 8 Absorptance, reflectance and transmittance versus incident angle for (a–c) Case I, (d–f) Case II and (g–i) Case III, when Im ϵ3 = 10−8, ϵi = 1, ϕ = 30° and L = 0.5λ (black), λ (red), 5λ (green) and 20λ (blue).
Fig. 9
Fig. 9 Absorptance versus incident angle for the configurations similar to (a) I and (b) II in Fig. 2, when Im ϵ3 = 10−8, L = 5λ, ϕ = 30°, ϵi = 1 and ϵ1 = 1 (black), 2 (red), 2.9 (green) and 0.5 (blue).
Fig. 10
Fig. 10 Absorptance versus incident angle for (a) Case I, (b) Case II and (c) Case III in Fig. 2, when L = λ, ϕ = 30°, ϵi = 1 and Im ϵ3 = 10−8 (black), 0.001 (red), 0.01 (green) and 0.1 (blue).
Fig. 11
Fig. 11 Absorptance versus incident angle for the configurations similar to (a) I and (b) II in Fig. 2, when L = λ, ϕ = 0° and ϵi = 1. The configurations correspond to graded metal-dielectric multilayers made of Silver with ϵm = −15.24 + 0.4i at λ = 587.6 nm and MgF2 with ϵd = 1.9. An effective medium description where the metal fraction f varies linearly as f = 0.1 + 0.2 (z/L) in (a) and as f = 0.3 − 0.2 (z/L) in (b) has been used. The results for Im ϵm = 0.4 are compared with those obtained in the hypothetical cases with Im ϵm = 10−8.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

ϵ = ( ϵ 1 0 0 0 ϵ 2 0 0 0 ϵ 3 )
ϵ = R T ϵ R ,
R = ( cos ϕ 0 sin ϕ 0 1 0 sin ϕ 0 cos ϕ ) .
ϵ = ( ϵ 11 0 ϵ 13 0 ϵ 2 0 ϵ 13 0 ϵ 33 ) , ϵ 11 = ϵ 1 cos 2 ϕ + ϵ 3 sin 2 ϕ , ϵ 33 = ϵ 1 sin 2 ϕ + ϵ 3 cos 2 ϕ , ϵ 13 = ( ϵ 3 ϵ 1 ) sin ϕ cos ϕ .
d d z ( H y E x ) = ( i q ϵ 13 ϵ 33 i k 0 ϵ 1 ϵ 3 ϵ 33 i k 0 ( 1 q 2 k 0   2 1 ϵ 33 ) i q ϵ 13 ϵ 33 ) ( H y E x ) ,
d 2 E y d z 2 + ( k 0   2 ϵ 2 q 2 ) E y = 0 .
d 2 H y d z 2 1 ϵ 1 d ϵ 1 d z d H y d z + ( k 0   2 ϵ 1 q 2 ϵ 1 ϵ 3 ) H y = 0 .
H y ( z ) = { e i p ( L z ) + r e i p ( z L ) , z > L t e i p z , z < 0 ,
1 i p d r d l = 2 ϵ 1 ϵ 3 ϵ 33 ϵ i r + 1 2 ( sec 2 θ ϵ 1 ϵ 3 ϵ 33 ϵ i ϵ i ϵ 33 tan 2 θ ) ( 1 + r 2 ) , 1 i p d t d l = ( ϵ 1 ϵ 3 ϵ 33 ϵ i + ϵ 13 ϵ 33 tan θ ) t + 1 2 ( sec 2 θ ϵ 1 ϵ 3 ϵ 33 ϵ i ϵ i ϵ 33 tan 2 θ ) ( 1 + r ) t ,
1 i p H y l = ( ϵ 1 ϵ 3 ϵ 33 ϵ i + ϵ 13 ϵ 33 tan θ ) H y + 1 2 ( sec 2 θ ϵ 1 ϵ 3 ϵ 33 ϵ i ϵ i ϵ 33 tan 2 θ ) ( 1 + r ) H y .
H y = ϵ 1 ψ
ψ + [ k 0 2 ϵ 1 q 2 ϵ 1 ϵ 3 + 1 2 ϵ 1   ϵ 1 3 4 ( ϵ 1   ) 2 ϵ 1   2 ] ψ = 0 ,
ψ + k 2 [ 1 η ( z ) ] ψ = 0 ,
η = 1 ϵ 1 ϵ i + ϵ 1 ϵ 3 sin 2 θ 1 2 1 k 2 ϵ 1   ϵ 1 + 3 4 1 k 2 ( ϵ 1   ) 2 ϵ 1   2 .
η I = sin 2 θ 2 ( z / L ) 1 .
η II = η I = sin 2 θ 2 ( z / L ) 1 .
η III = 2 sin 2 θ 2 ( z / L ) 1 .
E z = q k 0 H y ϵ 3 , E x = i k 0 ϵ 1 d H y d z .
ϵ 33 = 1 2 z L cos 2 ϕ .
z R L = 1 2 cos 2 ϕ .
sec 2 θ ϵ 1 ϵ 3 ϵ 33 ϵ i ϵ i ϵ 33 tan 2 θ = 2 ( z / L ) ( cos 2 θ cos 2 ϕ ) ϵ 33 cos 2 θ ,
η = 1 + ( 2 z L 1 ) cos 2 θ + 3 ζ 2 [ 2 ( z / L ) 1 ] 2 ,
ϵ 33 = 1 + 2 ( z L 1 ) cos 2 ϕ .
z R L = 1 1 2 cos 2 ϕ .
ϵ 33 = 2 z L cos 2 ϕ 1 .
ϵ 3 = f ϵ m + ( 1 f ) ϵ d , 1 ϵ 1 = f ϵ m + 1 f ϵ d ,

Metrics