Abstract

Non-orthogonal multiple access (NOMA) has recently attracted significant attention as a promising multiple access scheme for the 5th generation (5G) wireless communication due to its superior spectral efficiency, which has also been studied and shown to achieve a superior performance in visible light communication (VLC) networks. However, the error propagation (EP) problem due to successive interference cancellation (SIC) decoding has not yet been resolved, which degrades the system BER performance and causes user unfairness. In this work, symmetric superposition coding (SSC) and symmetric SIC (SSIC) decoding are proposed for a downlink NOMA-based VLC network, in which the distribution of the demodulation regions of the user allocated with more power will be symmetrical in terms of the decision threshold of the user allocated with less power. Furthermore, the proposed method is experimentally tested and the results show that more than 90% demodulation errors caused by EP are eliminated compared with traditional NOMA VLC.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Experimental demonstration of bidirectional NOMA-OFDMA visible light communications

Bangjiang Lin, Weiping Ye, Xuan Tang, and Zabih Ghassemlooy
Opt. Express 25(4) 4348-4355 (2017)

Non-orthogonal multiple access with phase pre-distortion in visible light communication

Xun Guan, Qing Yang, Yang Hong, and Calvin Chun-Kit Chan
Opt. Express 24(22) 25816-25823 (2016)

Performance improvement of NOMA visible light communication system by adjusting superposition constellation: a convex optimization approach

Hao Ren, Zixiong Wang, She Du, Yuxuan He, Jian Chen, Shiying Han, Changyuan Yu, Chao Xu, and Jinlong Yu
Opt. Express 26(23) 29796-29806 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. Haas, L. Yin, Y. Wang, and C. Chen, “What is LiFi?” J. Lightwave Technol. 34(6), 1533–1544 (2016).
  2. A. Benjebbour, Y. Saito, Y. Kishiyama, A. Li, A. Harada, and T. Nakamura, “Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access,” in International Symposium on Intelligent Signal Processing and Communications Systems (IEEE, 2013), pp. 770–774.
  3. L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-Lin, and Z. Wang, “Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends,” IEEE Commun. Mag. 53(9), 74–81 (2015).
  4. Z. Ding, Z. Yang, P. Fan, and H. V. Poor, “On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users,” IEEE Signal Process. Lett. 21(12), 1501–1505 (2014).
  5. Y. Wang, B. Ren, S. Sun, S. Kang, and X. Yue, “Analysis of non-orthogonal multiple access for 5G,” China Commun. 13(Supplement2), 52–66 (2016).
  6. Z. Ding, P. Fan, and H. V. Poor, “Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions,” IEEE Trans. Vehicular Technol. 65(8), 6010–6023 (2016).
  7. A. Benjebbour, A. Li, Y. Saito, Y. Kishiyama, A. Harada, and T. Nakamura, “System-level performance of downlink NOMA for future LTE enhancements,” in Globecom Workshops (IEEE, 2013), pp. 66–70.
  8. L. Lei, D. Yuan, C. K. Ho, and S. Sun, “Power and channel allocation for non-orthogonal multiple access in 5G systems: Tractability and computation,” IEEE Trans. Wirel. Commun. 15(12), 8580–8594 (2016).
  9. L. Yin, W. O. Popoola, X. Wu, and H. Haas, “Performance evaluation of non-orthogonal multiple access in visible light communication,” IEEE Trans. Commun. 64(12), 5162–5175 (2016).
  10. H. Marshoud, V. M. Kapinas, G. K. Karagiannidis, and S. Muhaidat, “Non-orthogonal multiple access for visible light communications,” IEEE Photonics Technol. Lett. 28(1), 51–54 (2016).
  11. B. Lin, W. Ye, X. Tang, and Z. Ghassemlooy, “Experimental demonstration of bidirectional NOMA-OFDMA visible light communications,” Opt. Express 25(4), 4348–4355 (2017).
    [PubMed]
  12. A. Benjebbour, K. Saito, A. Li, Y. Kishiyama, and T. Nakamura, “Non-orthogonal multiple access (NOMA): Concept, performance evaluation and experimental trials,” in International Conference on Wireless Networks and Mobile Communications (IEEE, 2015), pp. 1–6.
  13. S. R. Islam, N. Avazov, O. A. Dobre, and K. S. Kwak, “Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges,” IEEE Commun. Surveys Tuts. 19(2), 721–742 (2017).

2017 (2)

B. Lin, W. Ye, X. Tang, and Z. Ghassemlooy, “Experimental demonstration of bidirectional NOMA-OFDMA visible light communications,” Opt. Express 25(4), 4348–4355 (2017).
[PubMed]

S. R. Islam, N. Avazov, O. A. Dobre, and K. S. Kwak, “Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges,” IEEE Commun. Surveys Tuts. 19(2), 721–742 (2017).

2016 (6)

H. Haas, L. Yin, Y. Wang, and C. Chen, “What is LiFi?” J. Lightwave Technol. 34(6), 1533–1544 (2016).

Y. Wang, B. Ren, S. Sun, S. Kang, and X. Yue, “Analysis of non-orthogonal multiple access for 5G,” China Commun. 13(Supplement2), 52–66 (2016).

Z. Ding, P. Fan, and H. V. Poor, “Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions,” IEEE Trans. Vehicular Technol. 65(8), 6010–6023 (2016).

L. Lei, D. Yuan, C. K. Ho, and S. Sun, “Power and channel allocation for non-orthogonal multiple access in 5G systems: Tractability and computation,” IEEE Trans. Wirel. Commun. 15(12), 8580–8594 (2016).

L. Yin, W. O. Popoola, X. Wu, and H. Haas, “Performance evaluation of non-orthogonal multiple access in visible light communication,” IEEE Trans. Commun. 64(12), 5162–5175 (2016).

H. Marshoud, V. M. Kapinas, G. K. Karagiannidis, and S. Muhaidat, “Non-orthogonal multiple access for visible light communications,” IEEE Photonics Technol. Lett. 28(1), 51–54 (2016).

2015 (1)

L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-Lin, and Z. Wang, “Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends,” IEEE Commun. Mag. 53(9), 74–81 (2015).

2014 (1)

Z. Ding, Z. Yang, P. Fan, and H. V. Poor, “On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users,” IEEE Signal Process. Lett. 21(12), 1501–1505 (2014).

Avazov, N.

S. R. Islam, N. Avazov, O. A. Dobre, and K. S. Kwak, “Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges,” IEEE Commun. Surveys Tuts. 19(2), 721–742 (2017).

Benjebbour, A.

A. Benjebbour, K. Saito, A. Li, Y. Kishiyama, and T. Nakamura, “Non-orthogonal multiple access (NOMA): Concept, performance evaluation and experimental trials,” in International Conference on Wireless Networks and Mobile Communications (IEEE, 2015), pp. 1–6.

A. Benjebbour, Y. Saito, Y. Kishiyama, A. Li, A. Harada, and T. Nakamura, “Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access,” in International Symposium on Intelligent Signal Processing and Communications Systems (IEEE, 2013), pp. 770–774.

Chen, C.

Chih-Lin, I.

L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-Lin, and Z. Wang, “Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends,” IEEE Commun. Mag. 53(9), 74–81 (2015).

Dai, L.

L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-Lin, and Z. Wang, “Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends,” IEEE Commun. Mag. 53(9), 74–81 (2015).

Ding, Z.

Z. Ding, P. Fan, and H. V. Poor, “Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions,” IEEE Trans. Vehicular Technol. 65(8), 6010–6023 (2016).

Z. Ding, Z. Yang, P. Fan, and H. V. Poor, “On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users,” IEEE Signal Process. Lett. 21(12), 1501–1505 (2014).

Dobre, O. A.

S. R. Islam, N. Avazov, O. A. Dobre, and K. S. Kwak, “Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges,” IEEE Commun. Surveys Tuts. 19(2), 721–742 (2017).

Fan, P.

Z. Ding, P. Fan, and H. V. Poor, “Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions,” IEEE Trans. Vehicular Technol. 65(8), 6010–6023 (2016).

Z. Ding, Z. Yang, P. Fan, and H. V. Poor, “On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users,” IEEE Signal Process. Lett. 21(12), 1501–1505 (2014).

Ghassemlooy, Z.

Haas, H.

L. Yin, W. O. Popoola, X. Wu, and H. Haas, “Performance evaluation of non-orthogonal multiple access in visible light communication,” IEEE Trans. Commun. 64(12), 5162–5175 (2016).

H. Haas, L. Yin, Y. Wang, and C. Chen, “What is LiFi?” J. Lightwave Technol. 34(6), 1533–1544 (2016).

Han, S.

L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-Lin, and Z. Wang, “Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends,” IEEE Commun. Mag. 53(9), 74–81 (2015).

Harada, A.

A. Benjebbour, Y. Saito, Y. Kishiyama, A. Li, A. Harada, and T. Nakamura, “Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access,” in International Symposium on Intelligent Signal Processing and Communications Systems (IEEE, 2013), pp. 770–774.

Ho, C. K.

L. Lei, D. Yuan, C. K. Ho, and S. Sun, “Power and channel allocation for non-orthogonal multiple access in 5G systems: Tractability and computation,” IEEE Trans. Wirel. Commun. 15(12), 8580–8594 (2016).

Islam, S. R.

S. R. Islam, N. Avazov, O. A. Dobre, and K. S. Kwak, “Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges,” IEEE Commun. Surveys Tuts. 19(2), 721–742 (2017).

Kang, S.

Y. Wang, B. Ren, S. Sun, S. Kang, and X. Yue, “Analysis of non-orthogonal multiple access for 5G,” China Commun. 13(Supplement2), 52–66 (2016).

Kapinas, V. M.

H. Marshoud, V. M. Kapinas, G. K. Karagiannidis, and S. Muhaidat, “Non-orthogonal multiple access for visible light communications,” IEEE Photonics Technol. Lett. 28(1), 51–54 (2016).

Karagiannidis, G. K.

H. Marshoud, V. M. Kapinas, G. K. Karagiannidis, and S. Muhaidat, “Non-orthogonal multiple access for visible light communications,” IEEE Photonics Technol. Lett. 28(1), 51–54 (2016).

Kishiyama, Y.

A. Benjebbour, K. Saito, A. Li, Y. Kishiyama, and T. Nakamura, “Non-orthogonal multiple access (NOMA): Concept, performance evaluation and experimental trials,” in International Conference on Wireless Networks and Mobile Communications (IEEE, 2015), pp. 1–6.

A. Benjebbour, Y. Saito, Y. Kishiyama, A. Li, A. Harada, and T. Nakamura, “Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access,” in International Symposium on Intelligent Signal Processing and Communications Systems (IEEE, 2013), pp. 770–774.

Kwak, K. S.

S. R. Islam, N. Avazov, O. A. Dobre, and K. S. Kwak, “Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges,” IEEE Commun. Surveys Tuts. 19(2), 721–742 (2017).

Lei, L.

L. Lei, D. Yuan, C. K. Ho, and S. Sun, “Power and channel allocation for non-orthogonal multiple access in 5G systems: Tractability and computation,” IEEE Trans. Wirel. Commun. 15(12), 8580–8594 (2016).

Li, A.

A. Benjebbour, Y. Saito, Y. Kishiyama, A. Li, A. Harada, and T. Nakamura, “Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access,” in International Symposium on Intelligent Signal Processing and Communications Systems (IEEE, 2013), pp. 770–774.

A. Benjebbour, K. Saito, A. Li, Y. Kishiyama, and T. Nakamura, “Non-orthogonal multiple access (NOMA): Concept, performance evaluation and experimental trials,” in International Conference on Wireless Networks and Mobile Communications (IEEE, 2015), pp. 1–6.

Lin, B.

Marshoud, H.

H. Marshoud, V. M. Kapinas, G. K. Karagiannidis, and S. Muhaidat, “Non-orthogonal multiple access for visible light communications,” IEEE Photonics Technol. Lett. 28(1), 51–54 (2016).

Muhaidat, S.

H. Marshoud, V. M. Kapinas, G. K. Karagiannidis, and S. Muhaidat, “Non-orthogonal multiple access for visible light communications,” IEEE Photonics Technol. Lett. 28(1), 51–54 (2016).

Nakamura, T.

A. Benjebbour, K. Saito, A. Li, Y. Kishiyama, and T. Nakamura, “Non-orthogonal multiple access (NOMA): Concept, performance evaluation and experimental trials,” in International Conference on Wireless Networks and Mobile Communications (IEEE, 2015), pp. 1–6.

A. Benjebbour, Y. Saito, Y. Kishiyama, A. Li, A. Harada, and T. Nakamura, “Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access,” in International Symposium on Intelligent Signal Processing and Communications Systems (IEEE, 2013), pp. 770–774.

Poor, H. V.

Z. Ding, P. Fan, and H. V. Poor, “Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions,” IEEE Trans. Vehicular Technol. 65(8), 6010–6023 (2016).

Z. Ding, Z. Yang, P. Fan, and H. V. Poor, “On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users,” IEEE Signal Process. Lett. 21(12), 1501–1505 (2014).

Popoola, W. O.

L. Yin, W. O. Popoola, X. Wu, and H. Haas, “Performance evaluation of non-orthogonal multiple access in visible light communication,” IEEE Trans. Commun. 64(12), 5162–5175 (2016).

Ren, B.

Y. Wang, B. Ren, S. Sun, S. Kang, and X. Yue, “Analysis of non-orthogonal multiple access for 5G,” China Commun. 13(Supplement2), 52–66 (2016).

Saito, K.

A. Benjebbour, K. Saito, A. Li, Y. Kishiyama, and T. Nakamura, “Non-orthogonal multiple access (NOMA): Concept, performance evaluation and experimental trials,” in International Conference on Wireless Networks and Mobile Communications (IEEE, 2015), pp. 1–6.

Saito, Y.

A. Benjebbour, Y. Saito, Y. Kishiyama, A. Li, A. Harada, and T. Nakamura, “Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access,” in International Symposium on Intelligent Signal Processing and Communications Systems (IEEE, 2013), pp. 770–774.

Sun, S.

Y. Wang, B. Ren, S. Sun, S. Kang, and X. Yue, “Analysis of non-orthogonal multiple access for 5G,” China Commun. 13(Supplement2), 52–66 (2016).

L. Lei, D. Yuan, C. K. Ho, and S. Sun, “Power and channel allocation for non-orthogonal multiple access in 5G systems: Tractability and computation,” IEEE Trans. Wirel. Commun. 15(12), 8580–8594 (2016).

Tang, X.

Wang, B.

L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-Lin, and Z. Wang, “Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends,” IEEE Commun. Mag. 53(9), 74–81 (2015).

Wang, Y.

H. Haas, L. Yin, Y. Wang, and C. Chen, “What is LiFi?” J. Lightwave Technol. 34(6), 1533–1544 (2016).

Y. Wang, B. Ren, S. Sun, S. Kang, and X. Yue, “Analysis of non-orthogonal multiple access for 5G,” China Commun. 13(Supplement2), 52–66 (2016).

Wang, Z.

L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-Lin, and Z. Wang, “Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends,” IEEE Commun. Mag. 53(9), 74–81 (2015).

Wu, X.

L. Yin, W. O. Popoola, X. Wu, and H. Haas, “Performance evaluation of non-orthogonal multiple access in visible light communication,” IEEE Trans. Commun. 64(12), 5162–5175 (2016).

Yang, Z.

Z. Ding, Z. Yang, P. Fan, and H. V. Poor, “On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users,” IEEE Signal Process. Lett. 21(12), 1501–1505 (2014).

Ye, W.

Yin, L.

H. Haas, L. Yin, Y. Wang, and C. Chen, “What is LiFi?” J. Lightwave Technol. 34(6), 1533–1544 (2016).

L. Yin, W. O. Popoola, X. Wu, and H. Haas, “Performance evaluation of non-orthogonal multiple access in visible light communication,” IEEE Trans. Commun. 64(12), 5162–5175 (2016).

Yuan, D.

L. Lei, D. Yuan, C. K. Ho, and S. Sun, “Power and channel allocation for non-orthogonal multiple access in 5G systems: Tractability and computation,” IEEE Trans. Wirel. Commun. 15(12), 8580–8594 (2016).

Yuan, Y.

L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-Lin, and Z. Wang, “Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends,” IEEE Commun. Mag. 53(9), 74–81 (2015).

Yue, X.

Y. Wang, B. Ren, S. Sun, S. Kang, and X. Yue, “Analysis of non-orthogonal multiple access for 5G,” China Commun. 13(Supplement2), 52–66 (2016).

China Commun. (1)

Y. Wang, B. Ren, S. Sun, S. Kang, and X. Yue, “Analysis of non-orthogonal multiple access for 5G,” China Commun. 13(Supplement2), 52–66 (2016).

IEEE Commun. Mag. (1)

L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-Lin, and Z. Wang, “Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends,” IEEE Commun. Mag. 53(9), 74–81 (2015).

IEEE Commun. Surveys Tuts. (1)

S. R. Islam, N. Avazov, O. A. Dobre, and K. S. Kwak, “Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges,” IEEE Commun. Surveys Tuts. 19(2), 721–742 (2017).

IEEE Photonics Technol. Lett. (1)

H. Marshoud, V. M. Kapinas, G. K. Karagiannidis, and S. Muhaidat, “Non-orthogonal multiple access for visible light communications,” IEEE Photonics Technol. Lett. 28(1), 51–54 (2016).

IEEE Signal Process. Lett. (1)

Z. Ding, Z. Yang, P. Fan, and H. V. Poor, “On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users,” IEEE Signal Process. Lett. 21(12), 1501–1505 (2014).

IEEE Trans. Commun. (1)

L. Yin, W. O. Popoola, X. Wu, and H. Haas, “Performance evaluation of non-orthogonal multiple access in visible light communication,” IEEE Trans. Commun. 64(12), 5162–5175 (2016).

IEEE Trans. Vehicular Technol. (1)

Z. Ding, P. Fan, and H. V. Poor, “Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions,” IEEE Trans. Vehicular Technol. 65(8), 6010–6023 (2016).

IEEE Trans. Wirel. Commun. (1)

L. Lei, D. Yuan, C. K. Ho, and S. Sun, “Power and channel allocation for non-orthogonal multiple access in 5G systems: Tractability and computation,” IEEE Trans. Wirel. Commun. 15(12), 8580–8594 (2016).

J. Lightwave Technol. (1)

Opt. Express (1)

Other (3)

A. Benjebbour, Y. Saito, Y. Kishiyama, A. Li, A. Harada, and T. Nakamura, “Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access,” in International Symposium on Intelligent Signal Processing and Communications Systems (IEEE, 2013), pp. 770–774.

A. Benjebbour, K. Saito, A. Li, Y. Kishiyama, and T. Nakamura, “Non-orthogonal multiple access (NOMA): Concept, performance evaluation and experimental trials,” in International Conference on Wireless Networks and Mobile Communications (IEEE, 2015), pp. 1–6.

A. Benjebbour, A. Li, Y. Saito, Y. Kishiyama, A. Harada, and T. Nakamura, “System-level performance of downlink NOMA for future LTE enhancements,” in Globecom Workshops (IEEE, 2013), pp. 66–70.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Constellation and (b) demodulation regions of two 4QAM signals with TSC and TSIC.
Fig. 2
Fig. 2 (a) Constellation and (b) demodulation region of two 4QAM signals with SSC and SSIC.
Fig. 3
Fig. 3 Experimental setup of our downlink NOMA VLC.
Fig. 4
Fig. 4 BER performance for NOMA VLC with 2 users.
Fig. 5
Fig. 5 BER performance for NOMA VLC with 3 users.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

X = i = 1 k α i P X i ,
i 1 k α i = 1.
Y = H m × i 1 k α i P X i + N m ,
{ Y k = Y / H S i = D e Q A M ( Y i / α i ) Y i 1 = Y i α i × Q A M ( S i ) ,
{ S 1 = α 1 P X 1 S i = α i P X i + [ ( 1 ) [ Q i r r e a l ( X i ) ] / 2 a × r e a l ( S i 1 ) + j ( 1 ) [ Q i i i m a g ( X i ) ] / 2 a × i m a g ( S i 1 ) X = S k , i = 2 , 3 , k
{ Y k = Y / H S i = D e Q A M ( Y i / α i ) Y i 1 = ( 1 ) [ Q i r r e a l ( S i ) ] / 2 a × r e a l [ Y i α i × Q A M ( S i ) ] + ( 1 ) [ Q i i i m a g ( S i ) ] / 2 a × i m a g [ Y i α i × Q A M ( S i ) ] .
S I N R 2 = α 2 P | h | 2 α 1 P | h | 2 + N = 1 / [ P A R + ( P A R + 1 P A R + 1 ) N ] ,

Metrics