Abstract

We describe a method for measuring spatial mode dispersion (SMD) distribution along a strongly coupled multicore fiber (SC-MCF). The SMD has been defined for characterizing an SC-MCF, and it changes with respect to local fiber bending and twisting. However, conventional measurement methods characterize only the overall SMD, and cannot identify fiber portions where the environmental conditions affect the SMD. This paper demonstrates distributed SMD measurement along an SC-MCF by auto-correlating Rayleigh backscattering amplitudes obtained with coherent optical reflectometry. We confirm our method experimentally, and distinguish the difference between the SMD growth along twisted and non-twisted fiber sections in concatenated SC-MCFs.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Achievable capacity improvement by using multi-level modulation format in trench-assisted multi-core fiber system

J. H. Chang, H. G. Choi, and Y. C. Chung
Opt. Express 21(12) 14262-14271 (2013)

Advanced Space Division Multiplexing Technologies for Optical Networks [Invited]

Werner Klaus, Benjamin J. Puttnam, Ruben S. Luís, Jun Sakaguchi, José-Manuel Delgado Mendinueta, Yoshinari Awaji, and Naoya Wada
J. Opt. Commun. Netw. 9(4) C1-C11 (2017)

Space-division multiplexing: the next frontier in optical communication

Guifang Li, Neng Bai, Ningbo Zhao, and Cen Xia
Adv. Opt. Photon. 6(4) 413-487 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, “1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) Crosstalk-managed Transmission with 91.4-b/s/Hz Aggregate Spectral Efficiency,” European Conference and Exhibition on Optical Communication, Technical Digest (Optical Society of America, 2012), paper Th.3.C.1. (2012).
  2. T. Kobayashi, H. Takara, A. Sano, T. Mizuno, H. Kawakami, Y. Miyamoto, K. Hiraga, Y. Abe, H. Ono, M. Wada, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Yamada, H. Masuda, and T. Morioka, “2 x 344 Tb/s Propagation-Direction Interleaved Transmission over 1500-km MCF Enhanced by Multicarrier Full Electric-field Digital Back-Propagation,” European Conference and Exhibition on Optical Communication, Technical Digest (Optical Society of America, 2013), paper PD.3.4 (2013).
  3. R. Ryf, N. K. Fontaine, B. Guan, R.-J. Essiambre, S. Randel, A. H. Gnauck, S. Chandrasekhar, A. Adamiecki, G. Raybon, B. Ercan, R. P. Scott, S. J. Ben Yoo, T. Hayashi, T. Nagashima, and T. Sasaki, “1705-km Transmission over Coupled-Core Fibre Supporting 6 Spatial Modes,” European Conference and Exhibition on Optical Communication, Technical Digest (Optical Society of America, 2014), paper PD.3.2 (2014).
  4. T. Sakamoto, T. Mori, M. Wada, T. Yamamoto, F. Yamamoto, and K. Nakajima, “Fiber Twisting- and Bending-Induced Adiabatic/Nonadiabatic Super-Mode Transition in Coupled Multicore Fiber,” J. Lightwave Technol. 34(4), 1228–1237 (2016).
  5. T. Hayashi, “Coupled Multicore Fiber for Space-Division Multiplexed Transmission,” Proc. SPIE 10130, 1013003 (2017).
  6. S. Aozasa, T. Sakamoto, S. Nozoe, Y. Sagae, M. Wada, T. Mori, K. Tsujikawa, T. Yamamoto, and K. Nakajima, “Bending Radius Dependence of Spatial Mode Dispersion in Randomly Coupled Multi-Core Fiber,” Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2017), paper Th1H.4 (2017).
  7. P. Healey, “Fading in Heterodyne OTDR,” Electron. Lett. 20(1), 30–32 (1984).
  8. M. Froggatt, B. Soller, D. Gifford, and M. Wolfe, “Correlation and Keying of Rayleigh Scatter for Loss and Temperature Sensing in Parallel Optical Networks,” Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2004), paper PDP17 (2004).
  9. S. Ohno, D. Iida, K. Toge, and T. Manabe, “Long-Range Measurement of Rayleigh Scatter Signature beyond Laser Coherence Length based on Coherent Optical Frequency Domain Reflectometry,” Opt. Express 24(17), 19651–19660 (2016).
    [PubMed]
  10. U. Glombitza and E. Brinkmeyer, “Coherent Frequency-Domain Reflectometry for Characterization of Single-Mode Integrated-Optical Waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).
  11. S. Ohno, D. Iida, K. Toge, and T. Manabe, “Distributed Spatial Mode Dispersion Measurement Along Strongly Coupled Multicore Fibre with C-OFDR,” European Conference and Exhibition on Optical Communication, Technical Digest (Optical Society of America, 2017), paper Tu.1.A.5 (2017).
  12. ITU-T Recommendation G.650.2, “Definitions and test methods for statistical and non-linear related attributes of single-mode fibre and cable” (2015).
  13. N. Gisin, J.-P. Von der Weid, and J.-P. Pellaux, “Polarization Mode Dispersion of Short and Long Single-Mode Fibers,” J. Lightwave Technol. 9(7), 821–827 (1991).
  14. X. Fan, Y. Koshikiya, and F. Ito, “Phase-Noise-Compensated Optical Frequency Domain Reflectometry with Measurement Range beyond Laser Coherence Length Realized using Concatenative Reference Method,” Opt. Lett. 32(22), 3227–3229 (2007).
    [PubMed]
  15. F. Ito, X. Fan, and Y. Koshikiya, “Long-Range Coherent OFDR With Light Source Phase Noise Compensation,” J. Lightwave Technol. 30(8), 1015–1024 (2012).

2017 (1)

T. Hayashi, “Coupled Multicore Fiber for Space-Division Multiplexed Transmission,” Proc. SPIE 10130, 1013003 (2017).

2016 (2)

2012 (1)

2007 (1)

1993 (1)

U. Glombitza and E. Brinkmeyer, “Coherent Frequency-Domain Reflectometry for Characterization of Single-Mode Integrated-Optical Waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).

1991 (1)

N. Gisin, J.-P. Von der Weid, and J.-P. Pellaux, “Polarization Mode Dispersion of Short and Long Single-Mode Fibers,” J. Lightwave Technol. 9(7), 821–827 (1991).

1984 (1)

P. Healey, “Fading in Heterodyne OTDR,” Electron. Lett. 20(1), 30–32 (1984).

Brinkmeyer, E.

U. Glombitza and E. Brinkmeyer, “Coherent Frequency-Domain Reflectometry for Characterization of Single-Mode Integrated-Optical Waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).

Fan, X.

Gisin, N.

N. Gisin, J.-P. Von der Weid, and J.-P. Pellaux, “Polarization Mode Dispersion of Short and Long Single-Mode Fibers,” J. Lightwave Technol. 9(7), 821–827 (1991).

Glombitza, U.

U. Glombitza and E. Brinkmeyer, “Coherent Frequency-Domain Reflectometry for Characterization of Single-Mode Integrated-Optical Waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).

Hayashi, T.

T. Hayashi, “Coupled Multicore Fiber for Space-Division Multiplexed Transmission,” Proc. SPIE 10130, 1013003 (2017).

Healey, P.

P. Healey, “Fading in Heterodyne OTDR,” Electron. Lett. 20(1), 30–32 (1984).

Iida, D.

Ito, F.

Koshikiya, Y.

Manabe, T.

Mori, T.

Nakajima, K.

Ohno, S.

Pellaux, J.-P.

N. Gisin, J.-P. Von der Weid, and J.-P. Pellaux, “Polarization Mode Dispersion of Short and Long Single-Mode Fibers,” J. Lightwave Technol. 9(7), 821–827 (1991).

Sakamoto, T.

Toge, K.

Von der Weid, J.-P.

N. Gisin, J.-P. Von der Weid, and J.-P. Pellaux, “Polarization Mode Dispersion of Short and Long Single-Mode Fibers,” J. Lightwave Technol. 9(7), 821–827 (1991).

Wada, M.

Yamamoto, F.

Yamamoto, T.

Electron. Lett. (1)

P. Healey, “Fading in Heterodyne OTDR,” Electron. Lett. 20(1), 30–32 (1984).

J. Lightwave Technol. (4)

U. Glombitza and E. Brinkmeyer, “Coherent Frequency-Domain Reflectometry for Characterization of Single-Mode Integrated-Optical Waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).

N. Gisin, J.-P. Von der Weid, and J.-P. Pellaux, “Polarization Mode Dispersion of Short and Long Single-Mode Fibers,” J. Lightwave Technol. 9(7), 821–827 (1991).

F. Ito, X. Fan, and Y. Koshikiya, “Long-Range Coherent OFDR With Light Source Phase Noise Compensation,” J. Lightwave Technol. 30(8), 1015–1024 (2012).

T. Sakamoto, T. Mori, M. Wada, T. Yamamoto, F. Yamamoto, and K. Nakajima, “Fiber Twisting- and Bending-Induced Adiabatic/Nonadiabatic Super-Mode Transition in Coupled Multicore Fiber,” J. Lightwave Technol. 34(4), 1228–1237 (2016).

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (1)

T. Hayashi, “Coupled Multicore Fiber for Space-Division Multiplexed Transmission,” Proc. SPIE 10130, 1013003 (2017).

Other (7)

S. Aozasa, T. Sakamoto, S. Nozoe, Y. Sagae, M. Wada, T. Mori, K. Tsujikawa, T. Yamamoto, and K. Nakajima, “Bending Radius Dependence of Spatial Mode Dispersion in Randomly Coupled Multi-Core Fiber,” Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2017), paper Th1H.4 (2017).

H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, “1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) Crosstalk-managed Transmission with 91.4-b/s/Hz Aggregate Spectral Efficiency,” European Conference and Exhibition on Optical Communication, Technical Digest (Optical Society of America, 2012), paper Th.3.C.1. (2012).

T. Kobayashi, H. Takara, A. Sano, T. Mizuno, H. Kawakami, Y. Miyamoto, K. Hiraga, Y. Abe, H. Ono, M. Wada, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Yamada, H. Masuda, and T. Morioka, “2 x 344 Tb/s Propagation-Direction Interleaved Transmission over 1500-km MCF Enhanced by Multicarrier Full Electric-field Digital Back-Propagation,” European Conference and Exhibition on Optical Communication, Technical Digest (Optical Society of America, 2013), paper PD.3.4 (2013).

R. Ryf, N. K. Fontaine, B. Guan, R.-J. Essiambre, S. Randel, A. H. Gnauck, S. Chandrasekhar, A. Adamiecki, G. Raybon, B. Ercan, R. P. Scott, S. J. Ben Yoo, T. Hayashi, T. Nagashima, and T. Sasaki, “1705-km Transmission over Coupled-Core Fibre Supporting 6 Spatial Modes,” European Conference and Exhibition on Optical Communication, Technical Digest (Optical Society of America, 2014), paper PD.3.2 (2014).

S. Ohno, D. Iida, K. Toge, and T. Manabe, “Distributed Spatial Mode Dispersion Measurement Along Strongly Coupled Multicore Fibre with C-OFDR,” European Conference and Exhibition on Optical Communication, Technical Digest (Optical Society of America, 2017), paper Tu.1.A.5 (2017).

ITU-T Recommendation G.650.2, “Definitions and test methods for statistical and non-linear related attributes of single-mode fibre and cable” (2015).

M. Froggatt, B. Soller, D. Gifford, and M. Wolfe, “Correlation and Keying of Rayleigh Scatter for Loss and Temperature Sensing in Parallel Optical Networks,” Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2004), paper PDP17 (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of proposed SMD measurement.
Fig. 2
Fig. 2 Setup for C-OFDR measurement. TLS: tunable laser source, SMF: single-mode fiber, BPD: balanced photodetector, BPF: band-pass filter.
Fig. 3
Fig. 3 FUT cross-sections.
Fig. 4
Fig. 4 Setup for fixed analyzer method. PD: photodetector.
Fig. 5
Fig. 5 Fourier transforms of output spectra measured with fixed analyzer method.
Fig. 6
Fig. 6 Auto-correlation fringes of backscattering amplitudes.
Fig. 7
Fig. 7 SMDs along (a) FUT-1, (b) FUT-2, (c) FUT-3.
Fig. 8
Fig. 8 SMDs along FUT-2 and 3.

Tables (1)

Tables Icon

Table 1 Characteristics of FUTs. D: core pitch, Δ: refractive index difference, <τ>: SMD coefficient, R: bending radius, L: fiber length.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ε ˜ (τ)= m e τ m 2 2 σ ε 2 e jθ( τ m ) ε( τ τ m ) ,
ε ˜ (τ)= m e τ m 2 ( Δτ ) 2 e jθ( τ m ) ε( τ τ m ) ,
R( τ' )= ε ˜ (τ) ε ˜ * (τ+τ')dτ δ τ',0 C(0)+ e τ ' 2 2 ( Δτ ) 2 C(τ')
C(τ') m e 2 ( τ m +τ'/2 ) 2 ( Δτ ) 2 e j[ θ( τ m )θ( τ m +τ' ) ] ,
ε(τ) ε * (τ+τ')dτ δ τ',0 ,

Metrics